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ABSTRACT Low-Density Parity-Check (LDPC) codes have low linear decoding complexity, which is a
kind of good codes with excellent performance. Therefore, LDPC codes have great research value. Two
kinds of LDPC codes are constructed based on vector space over finite field. The code length, code rate and
minimum distance are given. Moreover, the two kinds of codes are compared with the existing codes, and
the constructed codes are better than some existing ones in terms of code rate or minimum distance.

INDEX TERMS Low-density parity-check codes, finite fields, code rate, minimum distance.

I. INTRODUCTION
The error correction coding theory is an important part of dig-
ital communication system and computer system, and LDPC
codes channel coding technology is one of the important
achievements in the coding field. As early as 1962, Gallager
[1] proposed the LDPC codes, but has not got the attention of
scholars. Tanner [2] studied the codes from the perspective
of graph theory until 1981, then Mackay [3] rediscovered the
LDPC codes almost at the same time. In recent years, how
to construct a code with excellent performance and simple
encoding and decoding has always been a hot topic.

The methods of constructing codes are divided into two
kinds: random structure construction and algebraic construc-
tion. Different construction methods are designed to achieve
the following goals: enlarging the ring in the graph, optimiz-
ing the node distribution of non-regular code, and reducing
the coding complexity. In 2001, Kou et al. [4] constructed
LDPC codes based on Euclidean space and Projective space,
and studied the girth, length and minimum distance of this
kind of codes. In 2008, Bonello et al. [5] constructed a kind
of regular Quasi-Cyclic protograph LDPC codes based on the
vandermondematrix. In 2009, Fu et al. [6] gave a coding con-
struction method based on the LDPC codes of PEG algorithm
structure. In 2011, Fang et al. [7] et.al. proposed a joint opti-
mization algorithm based on the protograph LDPC codes. In
2013, Wang [8] and Deng [9] used algebraic methods to con-
struct LDPC codes based on symplectic space, unitary space
and orthogonal space. In 2015, Zhang et al. [10] constructed

The associate editor coordinating the review of this manuscript and

approving it for publication was Yeliz Karaca .

the LDPC codes based on the general protograph. In the same
year, Chen and Yuan [11] proposed an improved method of
constructing QC-LDPC codes based on PEG algorithm.
In this paper, two kinds of LDPC codes are constructed

with the inclusive relation of vector space over finite fields,
which provides a new method of constructing LDPC codes,
and produces a new series of LDPC codes with good perfor-
mance and practical application value.

II. PRELIMINARIES
In this section, we shall introduce the contents of LDPC codes
and vector sapce over finite fields.

Firstly, the definition of LDPC codes is introduced.
LDPC codes are a class of linear block codes, defined by

their parity-check matrices. The parity-check matrix H is a
matrix of sizeM×N , then the code length is N , the length of
information bits is K , the length of check bits isM = N −K ,
and the code rate is R.
Definition 2.1 [12]: The parity-check matrix H of binary

regular LDPC code satisfies the following four conditions:
(1) Each row cosists of ρ ‘‘ones’’;
(2) Each column cosists of γ ‘‘ones’’;
(3) The number of ‘‘one’’ in common between any two

rows (or two columns) is no greater than 1;
(4) Both ρ and γ are small compared to the length of the

code and the number of rows in H . That is, H has a small
density of ‘‘ones’’ and hence is a spare matrix.

For this reason, the code specified by H is called an LDPC
code. The LDPC code defined above is known as a regular
LDPC code. If the columns (or rows) of the parity-check
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matrix H have different number of ‘‘ones’’, an LDPC code
is said to be irregular.
Lemma 2.2 [8]: Let C be a linear code with check matrix

H . Let d be the largest integer such that any d of the columns
ofH are linearly independent. ThenC has minimum distance
d+1. (Conversely, ifC has minimum distance d+1 then any
d columns of H are linearly independent.)
Next, we shall introduce the relative contents of vector

space over finite field [13].
Let Fq be the finite field with q elements, where q is a

power of a prime and let n be positive integer. We use Fnq =
{(x1, x2, · · · , xn)|xi ∈ Fq, i = 1, 2, · · · , n} to denote the n-
dimensional row vector space over the finite field Fq.
Now let P be an m-dimensional vector subspace of Fnq, then

we write dimP = m. Let v1, v2, · · · , vm be a basis of P. We
usually use the m× n matrix

v1
v2
...

vm


to represent the vector subspace P, write

P =


v1
v2
...

vm

 ,
i.e., we use the same letter P to denote a matrix which rep-
resents the vector subspace P, and call the matrix P a matrix
representation of the vector subspace P.

The set of n×n nonsingular matrices overFq forms a group
under matrix multiplication, called the general linear group of
degree n over Fq and denoted by GLn(Fq). In fact, GLn(Fq)
is transitive on the set of all subspaces of the same dimension
in Fnq.

Let s1, s2 be two integers. Then the Gaussian coefficient

[
s2
s1

]
q
=

s2∏
i=s2−s1+1

(qi − 1)

s1∏
i=1

(qi − 1)
.

In particular,
[
s2
0

]
q
= 1 for all integer s2, and

[
s2
s1

]
q
= 0

whenever s1 < 0 or s2 < s1.
Lemma 2.3: Let 0 ≤ m ≤ n and N (m, n) be the number of

m-dimensional vector subspaces of Fnq. Then

N (m, n) =
[
n
m

]
q
=

n∏
i=n−m+1

(qi − 1)

m∏
i=1

(qi − 1)
.

Lemma 2.4: Let 0 ≤ t ≤ m ≤ n and N (t,m, n) be
the number of t-dimensional vector subspaces contained in

a given m-dimensional vector subspace of Fnq. Then

N (t,m, n) = N (t,m) =
[
m
t

]
q
=

m∏
i=m−t+1

(qi − 1)

t∏
i=1

(qi − 1)
.

Lemma 2.5: Let 0 ≤ t ≤ m ≤ n. Then the number
N ′(t,m, n) of m-dimensional vector subspaces containing a
given t-dimensional vector subspace of Fnq is equal to N ′(m−
t, n− t).

N ′(t,m, n) = N ′(m− t, n− t)

=

[
n− t
m− t

]
q
=

n−t∏
i=n−m+1

(qi − 1)

m−t∏
i=1

(qi − 1)
.

III. CONSTRUCTION
In this section, two kinds of LDPC codes based on vector
space over finite fields are given, then we compare them with
the LDPC codes that have been constructed.

A. FIRST CLASS OF CONSTRUCTION
Definition 3.1.1: Given integers 2 ≤ m ≤ b n2c,m1 =

m − 1. Let H be the binary matrix, whose rows are indexed
by the m1-dimensional vector subspaces of Fnq, and whose
columns are indexed by the m-dimensional vector subspaces
of Fnq. H (i, j) = 1 if and only if the i-th m1-dimensional
vector subspace is contained in the j-th m-dimensional vector
subspace, otherwise, H (i, j) = 0.

By Lemmas 2.3, 2.4 and 2.5,H is anM×N matrix, whose
constant column weight is γ , constant row weight is ρ, where

M =
[
n
m1

]
q
, N =

[
n
m

]
q
,

γ =

[
m
m1

]
q
, ρ =

[
n− m1
m− m1

]
q
.

Theorem 3.1.2: Let 2 ≤ m ≤ b n2c,m1 = m−1. The matrix
H constructed by Definition 3.1.1 is the check matrix of an
LDPC code.

Proof: The matrix H is the check matrix of LDPC code;
Firstly, by Lemmas 2.4 and 2.5, we know every column of

matrix H has γ ‘‘ones’’, where γ =
[
m
m1

]
q
, and every row

of matrix H has ρ ‘‘ones’’, where ρ =
[
n− m1
m− m1

]
q
.

Next, let P1,P2 be the representation matrices of m1-
dimensional vector subspaces on Fnq, and let Q1,Q2 be the
representation matrices of m-dimensional vector subspaces
on Fnq, P1 6= P2, Q1 6= Q2. Clearly, rank(P1)=rank(P2) =
m1, rank(Q1)=rank(Q2) = m.
Assume that P1 ⊆ Q1,P1 ⊆ Q2,P2 ⊆ Q1,P2 ⊆ Q2, then

P1 ∩P2 ⊆ Q1, P1 ∩P2 ⊆ Q2. Since m = m1+ 1, we deduce
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rank(P1 ∩ P2) = m− 2. Thus we can assume that

P1 =
(
P1 ∩ P2
P11

)
m1 − 1

1
,

P2 =
(
P1 ∩ P2
P22

)
m1 − 1

1
,

then

Q1 =

P1 ∩ P2
P11
P22

 m− 2
1
1

,

sQ2 =

P1 ∩ P2
P11
P22

 m− 2
1
1

.

So Q1 = Q2. It is shown that representation matrices of
two m-dimensional vector subspaces are equivalent. Hence,
the number of ‘‘ones’’ in common between any two rows (or
two columns) is no greater than 1.

Lastly, both ρ and γ are small compared to the length of
the code and the number of rows in H . That is, H has a small
density of ‘‘ones’’.

In conclusion, from Definition 2.1, the matrix H is the
check matrix of LDPC code.

B. SECOND CLASS OF CONSTRUCTION
Definition 3.2.1:Given integers 3 ≤ m′ ≤ n′,m′1 = m′−1.

Let V1 is a 1-dimensional vector subspaces of Fn′q , where base
e1 = (1, 0, 0, · · · , 0), V2 = { all m′1-dimensional vector sub-
spaces of Fn′q }, V is am′-dimensional vector subspaces of Fn′q ,
and satisfy V = V1⊕V2. Let H ′ be the binary matrix, whose
rows are indexed by the m′-dimensional vector subspaces V
ofFn′q , andwhose columns are indexed by them′1-dimensional
vector subspaces V2 of Fn′q . H ′(i, j) = 1 if and only if the
i-th m′-dimensional vector subspace contains in the j-th m′1-
dimensional vector subspace, otherwise, H ′(i, j) = 0.
Note: The constructed matrix removes duplicate columns

in order to ensure the minimum distance at least 3.
By Lemmas 2.3, 2.4 and 2.5, H ′ is an M ′ × N ′ matrix,

where

M ′ =
[
n′ − 1
m′ − 1

]
q
, N ′ =

[
n′ − 1
m′ − 1

]
q
+

[
n′ − 1
m′ − 2

]
q
.

Theorem 3.2.2. Let 3 ≤ m′ ≤ n′, m′1 = m′ − 1. The matrix
H ′ constructed by Definition 3.2.1 is the check matrix of an
LDPC code with code length

N ′ =
[
n′ − 1
m′ − 1

]
q
+

[
n′ − 1
m′ − 2

]
q
,

information length

K ′ =
[
n′ − 1
m′ − 2

]
q
,

minimum distance

d ′ ≥
qn
′
−m′+1

− 1
q− 1

+ 1,

and the code rate

R′ =
qm
′
−1
− 1

qn′−m′+1 + qm′−1 − 2
.

Proof: (1) ThematrixH ′ is the check matrix of an LDPC
code; The proof is the same as the Theorem 3.1.2.

(2)Code length N ′ =
[
n′ − 1
m′ − 1

]
q
+

[
n′ − 1
m′ − 2

]
q
;

By the Definition 3.2.1, H ′ is the binary matrix, whose
columns are indexed by them′1-dimensional vector subspaces
V2, whose rows are indexed by the m′-dimensional vector
subspaces V . Since

V = V1 ⊕ V2,V1 = 〈(1, 0, 0, · · · , 0)〉,

we have V1 ⊆ V , thus row M ′ is decided by the number
of m′-dimensional vector subspaces V containing a given
1-dimensional vector subspace V1. According to Lemma 2.5,

M ′ =
[
n′ − 1
m′ − 1

]
q
=

[
n′ − 1
m′1

]
q
.

where H ′(i, j) = 1 if and only if the i-th m′-dimensional vec-
tor subspace is contained in the j-th m′1-dimensional vector
subspace.

Let P′j be the representation matrix of m′1-dimensional

vector subspaces, where 1 ≤ j ≤
[
n′

m′1

]
q
; and Q′i be the

representation matrix of m′-dimensional vector subspaces,

where 1 ≤ i ≤
[
n′ − 1
m′1

]
q
. So we can divide the represen-

tation matrix of m′1-dimensional vector subspaces into two
situations.

1◦: (1, 0, 0, · · · , 0) * P′j, at this point, to give a P′j can
only be included in a Q′i, then the matrix H ′ is ‘cogredient’ to(
I T

)
M ′×N ′ . SinceM

′
=

[
n′ − 1
m′1

]
q
, we deduce the number

of the representation matrix of m′1-dimensional vector sub-

spaces have
[
n′ − 1
m′1

]
q
.

2◦: (1, 0, 0, · · · , 0) ⊆ P′j, at this point, to give a P′j can
not only be included in a Q′i. At the time, the number of the
representation matrix of m′1-dimensional vector subspaces is
equivalent to the number of columns of the computematrix T ,
that is to compute the number of (m′1−1)-dimensional vector
subspaces containing a given 1-dimensional vector subspace
V1. By Lemma 2.5, we obtain

N ′ −M ′ =
[
n′ − 1
m′1 − 1

]
q
=

[
n′ − 1
m′ − 2

]
q
.

In conclusion, N ′ =
[
n′ − 1
m′ − 1

]
q
+

[
n′ − 1
m′ − 2

]
q
.

(3)Information length K ′ =
[
n′ − 1
m′ − 2

]
q
. It is necessary to

prove that matrix H ′ is row full rank.
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According to the proof of (2), we can get the matrix H ′

is cogredient to
(
I T

)
M ′×N ′ . Then the matrix H ′ is row full

rank.
(4) Minimum distance d ′ ≥ qn

′
−m′+1

−1
q−1 + 1.

The code has minimum distance d at least γ + 1 [2].
From the proof of (2), column weight is maximum when
(1, 0, 0, · · · , 0) ⊆ P′j. Under the circumstances, maximum
column weight is equivalent to the number ofm′-dimensional
vector subspacesV containing a givenm′1-dimensional vector
subspace V2. That is,[

n′ − m′1
m′ − m′1

]
q
=

[
n′ − m′ + 1

1

]
q
.

Hence,

d ′ ≥ γ + 1

=

[
n′ − m′ + 1

1

]
q
+ 1

=
qn
′
−m′+1

− 1
q− 1

+ 1.

So, we can deduce

R′ =
K ′

N ′
=

qm
′
−1
− 1

qn′−m′+1 + qm′−1 − 2
.

�
Example 3.2.3: From Definition 3.2.1, let n′ = 4, q =

2,m′1 = 2,m′ = 3, V1 = {(1, 0, 0, 0)}, V2 = { all 2-
dimensional vector subspaces of F4

2}, V is a 3-dimensional
vector subspace of F4

2, and satisfies V = V1 ⊕ V2.
Rows of the matrix H ′ are indexed by the 3-dimensional

vector subspaces V of F4
2. These subspaces are shown as

follows, 1 0 0 0
0 1 0 0
0 0 1 0

 ,
 1 0 0 0
0 1 0 0
0 0 0 1

 ,
 1 0 0 0
0 1 0 0
0 0 1 1

 ,
 1 0 0 0
0 0 1 0
0 0 0 1

 ,
 1 0 0 0
0 1 1 0
0 0 0 1

 ,
 1 0 0 0
0 1 0 1
0 0 1 0

 ,
 1 0 0 0
0 1 0 1
0 0 1 1

 .
Columns of thematrixH ′ are indexed by the 2-dimensional

vector subspaces V of F4
2, it has two situations.

1◦: V1 * V2, at this point, to give a 2-dimensional vector
subspaces can only be included in a 3-dimensional vector
subspaces. By Theorem 3.2.2, the numbers of 2-dimensional

vector subspaces have
[
4− 1
2

]
= 7. These subspaces are

shown as follows,(
0 0 0 1
0 0 1 0

)
,

(
0 0 0 1
0 1 0 0

)
,

TABLE 1. Parameter comparison of two kinds of LDPC codes.

(
0 0 0 1
0 1 1 0

)
,

(
0 0 1 0
0 1 0 0

)
,(

0 0 1 0
0 1 0 1

)
,

(
0 0 1 1
0 1 0 0

)
,(

0 0 1 1
0 1 0 1

)
.

2◦: V1 ⊆ V2, at this point, to give a 2-dimensional vector
subspaces can not only be included in a 3-dimensional vector
subspaces. By Theorem 3.2.2, the numbers of 2-dimensional

vector subspaces have
[
4− 1
2− 1

]
= 7. These subspaces are

shown as follows,(
0 0 0 1
1 0 0 0

)
,

(
0 0 1 0
1 0 0 0

)
,(

0 0 1 1
1 0 0 0

)
,

(
0 1 0 0
1 0 0 0

)
,(

0 1 0 1
1 0 0 0

)
,

(
0 1 1 0
1 0 0 0

)
,(

0 1 1 1
1 0 0 0

)
.

From above, we can obtain the checkmatrix of LDPC code,
which parameter is [14, 7, 4]. That is,

0 0 0 0 1 0 1 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 0 1 1 0 0 1
1 0 0 1 0 0 1 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 1 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1 0 1 1 0


.

C. COMPARISON OF TWO KINDS OF LDPC CODES
Example 3.3.1: (1) Suppose H be the binary matrix, which

is constructed by Definition 3.1.1. Let q = 2, n = 4,m1 =

1,m = 2. The parameters of the constructed LDPC code are
[35, 24, 4]. The constructed code is denoted byC1, which has
code rete 24

35 and minimum distance 4.
(2) Suppose H ′ be the binary matrix, which is constructed

by Definition 3.2.1. Let q = 2, n′ = 5,m′1 = 3,m′ = 4.
By Theorem 3.2.2, The parameters of the constructed LDPC
code are [50, 35, 4]. The constructed code is denoted by C2,
which has code rete 7

10 and minimum distance 4.
Thus we can get that the rate of codeC2 is larger than code

C1 when the minimum distance is the same.
Next, we shall show the comparison of constructed LDPC

codes and known LDPC code, and we can get the minimum
distance of constructed code larger than the known codewhen
the code rate is close.
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TABLE 2. Parameter comparison of different LDPC codes.

Example 3.3.2: (1) The parameters of the known LDPC
code is [15, 7, 5] [1], we denote this code as C, which has
code rate is 7

15 , minimum distance is 5.
(2)Suppose H be the binary matrix, which is constructed

by Definition 3.1.1. Let q = 2, n = 4,m1 = 1,m = 2. The
parameters of the constructed LDPC code are [35, 24, 4]. The
constructed code is denoted byC1, which has code rete 24

35 and
minimum distance 4.

(3) Suppose H ′ be the binary matrix, which is constructed
by Definition 3.2.1. Let q = 2, n′ = 5,m′1 = 3,m′ = 4.
By Theorem 3.2.2, The parameters of the constructed LDPC
code are [50, 35, 4]. The constructed code is denoted by C2,
which has code rete 7

10 and minimum distance 4.
Thus we can get that the minimum distance of codeC1 and

C2 is larger than that of the known codeCwhen the code rate
is close.

IV. CONCLUSION
In this paper, we presented two general construction of LDPC
codes from vector spaces. Two class of binary codes are
constructed based on the subspaces of vector spaces over
Fq. We determined and proved the length, coding rate and
minimum distance of the LDPC code. In addition, the two
kinds of codes constructed are compared with the existing
codes, and the constructed codes are better than some existing
ones in terms of code rate or minimum distance.
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