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ABSTRACT Curve feature description is an important issue in the field of image matching. In the past
years, this problem has been studied mainly based on handcrafted methods. To conquer the disadvantages
of low discrimination and weak robustness of curve feature description under complex conditions, a Mean-
Standard Deviation Curve Descriptor based on Deep learning (D-MSCD) is proposed in this paper. Firstly,
a large-scale curve feature dataset with 210,000 labeled curve image patches is constructed for training and
testing. After longitudinally compressing the support areas of the curve in each image into the support areas of
points, the mean and standard deviation image patches of each curve are obtained, then the curve image patch
is uniquely represented. Secondly, a modified L2-Net(DSM) which is a network architecture with dilated
convolution is constructed to improve the performance of curve descriptors, and the experimental results on
the Brown dataset show the mean FPR95 value is reduced by 17.48%. Finally, the modified L2-Net(DSM)
is trained on the large-scale curve feature dataset and the model of D-MSCD is obtained, it achieves the best
matching performance in every image change, and the average matching performance on the Oxford dataset
is improved by 13.09%. Experimental results demonstrate the proposed D-MSCD has better effectiveness

than the traditional handcrafted curve descriptors.

INDEX TERMS Computer vision, deep learning, curve descriptor, a large-scale dataset.

I. INTRODUCTION

Feature description is a key technology in the fields of com-
puter vision, which has considerable applications in image
retrieval [1], scene recognition [2], [3], and 3D reconstruction
[4], [5], etc. Curve feature description is an important process
of image feature matching, and the performance of descrip-
tors has a direct impact on feature matching. Therefore, the
study of robust feature description methods has received lots
of researchers’ attention.

The traditional curve feature description methods are hand-
crafted, which are based on the experience accumulation
and design inspiration of the researchers, and the desired
structural features of the image to be detected are formalized
through appropriate mathematical tools to obtain correspond-
ing feature description. Various handcrafted methods have
been proposed for curve matching in recent years [6]-[10],
but these methods have the disadvantages of low distinguisha-
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bility and weak robustness under complex conditions. There-
fore, it’s necessary to use a new method for curve feature
description.

With the continuous success of deep learning in image
recognition tasks, the current research on image feature
matching has entered a new data-driven era. In recent years,
attempts on using deep learning for image feature description
and matching have also shown great opportunities [11]-[18].
However, there are no reports on the method using deep
learning to describe curve features at present. One reason is
that deep learning requires a large amount of annotated data,
another reason is that there is no neural network architecture
suitable for curve feature training. Therefore, the key to using
deep learning for curve feature description is to transform
the problem of curve feature description into a deep learning
problem.

This paper attempts to use the convolutional neural net-
work to learn the curve characteristics. Specifically, we con-
vert the curve feature description problem into the mean and
standard deviation of point feature description and propose
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a method for describing the curve feature based on deep
learning to achieve reliable curve feature matching. Com-
pared with traditional methods, the contributions of this paper
are as follows: 1) A large-scale image curve dataset labeled
with matching information is constructed for network training
and testing. 2) Improved the latest L2-Net (DSM) [17] and
used it to train the dataset. 3) Proposed a feasible curve
feature descriptor based on deep learning, and the experi-
mental results demonstrate that the proposed D-MSCD has
better matching performance compared with the traditional
handcrafted descriptors.

The remainder of this article is structured as follows:
Section II describes the related work. Section III elabo-
rates on the proposed method in detail. Experimental results
are demonstrated in section IV, while the conclusion is in
Section V.

Il. RELATED WORK

A. TRADITIONAL CURVE FEATURE DESCRIPTOR

Curve feature description plays an important role in image
feature description and it has attracted considerable attention
from scholars. The most classical feature descriptor is the
SIFT [6], which is proposed by Lowe. It is based on the
gradient distribution in the detected regions and is invariant to
scale rotation and viewpoint change. Wang et al. [7] proposed
the Mean-Standard Deviation Line Descriptor (MSLD) based
on the idea of neighborhood location division of SIFT and
extended it to the curve description to obtain the Mean-
Standard Deviation Curve Descriptor (MSCD). The MSCD
successfully solved the problem of a unified description of
lines of different lengths. However, when the viewing angle
changes, the image deformation will distort the shape of the
region, which can lead to the decline of the matching ability
of the descriptor. Liu et al. [8] divided sub-region according
to the overall intensity order and the local intensity order
mapping, and proposed Intensity Order Curve Descriptor
(IOCD), which performs robustly on image rotation, view-
point change, illumination change, blur change, noise change,
and JPEG Compression change. However, when the image
has shadows and partial occlusions, there will be wrong sub-
region divisions in the brightness sequence division, resulting
in incorrect matching. Wang et al. [9] combined the idea
of intensity order division with MSCD and proposed the
Intensity Order Based Mean-Standard Deviation Descriptor
(IOMSD), the principle of this algorithm is simple and stable,
but the description performance is not high and it is not
suitable for weakly textured images. Liu et al. [10] proposed
the Gradient Order Curve Descriptor (GOCD), which is con-
structed based on a global gradient magnitude order for sub-
region division and local gradient order feature. However,
since the radius of the pixel support region and the stride
for computing the gradient magnitude around a feature point
are fixed, it is not invariant to large scale change. These
traditional methods can be widely used for image registra-
tion, optical image matching with different geometric and
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photometric transformations such as scale, rotation, blur,
illumination, and JPEG compression, and textured scenes
images. However, these methods have some limitations due
to the intensity distribution and varying illumination which
are caused by noise.

B. DEEP LEARNING-BASED LOCAL FEATURE DESCRIPTOR
With the booming of handcrafted descriptors in the past
decades, more and more deep learning-based descriptors have
appeared. Han et al. [12] proposed MatchNet, which consists
of a featured network for extracting feature representation,
a bottleneck layer for reducing feature dimension, and a
metric network for measuring the similarity of features pairs.
It shows great potential for deep learning in local feature
descriptions. Balntas et al. [13] proposed to use the distance
relationship between a pair of negative samples and positive
samples that are more difficult to distinguish in the triplet for
CNN network training. And a good feature matching result
is achieved with only 2 convolutional layers. Tian et al. [14]
proposed L2-Net, which used a fully convolutional network
structure for feature descriptor learning, and compared the
distance of positive samples with the distance of all nega-
tive samples during training. This greatly outperformed the
performance of previous methods. Mishchuk et al. [15] pro-
posed HardNet, which only considered the relative distance
between positive samples and the most difficult negative
samples in a batch of training data when training. This fur-
ther improved the matching performance of L2-Net. Zhang
and Rusinkiewicz [17] proposed a new triplet loss based on
HardNet, which replaced the hard margin with dynamic soft
margin, and got a better matching performance. Tian et al.
[18] proposed the Second Order Similarity Regularization
(SOSR) and incorporated second order similarities into the
learning of local descriptors. The matching performance of
learning descriptors is significantly improved. These methods
of using deep learning for image local feature description
show us the possibility of using deep learning for curve
feature description.

Ill. PROPOSED METHODOLOGY

Different from traditional handcrafted descriptors which are
mostly driven by intuition or researcher’s expertise, deep
learning-based methods are driven by data. So we constructed
alarge-scale image curve dataset labeled with matching infor-
mation for network training and testing.

A. THE CURVE FEATURE DATASET

1) IMAGE PAIRS

We created about 1,700 sets of image pairs with a size of
640 x 480 pixels through Internet downloading and mobile
phone shooting, most of them are buildings and cultural relics
that contain more curves. These images include seven types
of changes, namely, Scale, Illumination, Blur, Viewpoint,
Rotation, Compression, and Noise.
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FIGURE 1. The example of image pairs with different transformations.

As can be seen in Fig. 1, the first image in each row
is the reference image, and the rest are the target images
of different transformation degrees, each target image and
reference image form an image pair.

To produce the image pairs under different transforma-
tions, the MatlabR2015b and Photoshop CC2018 are used,
and the following operations are performed:

a: SCALE

The reference image of each group is downloaded from the
Internet, the target images are obtained by using Photoshop to
crop the reference image in different degrees and then enlarge
to the size of the reference image.

b: ILLUMINATION

The reference image of each group is downloaded from the
Internet, the target images are obtained by adjusting the
illumination of the reference image with the curve tool in
Photoshop.

¢: BLUR

The reference image of each group is downloaded from the
Internet, the Matlab function ‘fspecial’ is used to generate the
blurred target images on the reference image, the types of the
function are set to ‘average’, ‘gaussian’ and ‘disk’.

d: VIEWPOINT
The reference image and the target images in each group are
all taken with a mobile phone from different perspectives.

e: ROTATION
The reference image and the target images in each group are
all taken with a mobile phone from different perspectives.

f: COMPRESSION
The reference image of each group is downloaded from the
Internet, the target images are obtained by compressing the
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FIGURE 2. The number of image pairs under different transformations in
the training set and testing set.

reference image through a program, in which the compression
ratios are set to 75%, 85%, 90%, and 95% respectively.

g: NOISE

The reference image of each group is downloaded from the
Internet, the Matlab function ‘imnoise’ is used to generate the
target images on the reference image, the types of the function
are set to ‘salt & pepper’ and ‘gaussian’.

We divided the image pairs into training set and testing set,
the training set contains 1395 pairs of images and the testing
set contains 313 pairs of images. Fig. 2 shows the number of
image pairs in the training set and testing set under different
transformations.

2) CURVE FEATURE DATASET

Canny edge detection operator [19] is used to extract the
curve of the image pair, as well as filter the points with cur-
vature greater than 0.8 and eliminate the curves with length
less than 20 pixels. For each image pair, the IOCD [8] is used
to obtain the curve matching result. To improve the accuracy
of the matching result, artificial culling is used to delete the
wrong matching to obtain the correct matching curve pair in
the image pair.

We use the local image patches around the curve to charac-
terize the curve, the neighborhood of the curve is transformed
into a square image patch independent of the curve length.
For any curve C composed of Num (C) points, the pixel on
C is denoted as Py, k = 1,2,...,Num(C). The image
patch I (Py) along the gradient direction with the length and
width of 64 pixels centered at Pj is extracted as its local
neighborhood. Then, the mean matrix M (C) and standard
deviation matrix S (C) of the local neighborhoods of all the
pixels are calculated to obtain two patches of the same size
with the neighborhood of the pixel, the M (C) and S (C) can
be calculated as:

M (C) = Mean (I (P1) .1 (P2),....I(PNumc))) (1)
S(C) = Std (I (P1), I (P2),....I (Pnum))) ()

where Mean means the mean value of the matrices and
Std means the standard deviation of the matrices. Finally,
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FIGURE 3. The process of curve patches construction.

the mean matrix and standard deviation matrix are concen-
trated to obtain the curve patch A (C) to represent the curve
C uniquely:

A(C)=[M(C),S(C)] 3

Fig. 3 describes the process of curve patches construction,
which takes a matching curve as an example. As can be
seen that for two matched curves C and C’ with the length
of 278 and 261 pixels respectively, the matrix A¢c and A¢s of
a fixed size can represent the curve uniquely.

In this way, a large-scale curve feature dataset with
the patch size of 64 x 128 pixels is constructed, it has
214,296 curve patches labeled with matching information.
The number of different changes is shown in Fig. 6, each
category has over 30,000 curve patches, of which the training
set and the testing set are about 25,000 and 5,000 respectively.

B. NETWORK ARCHITECTURE

The basic architecture of our network-a, shown in Fig. 4,
is adopted from L2-Net(DSM) [17], which is built by a
seven-layer full convolution structure. Compared with L2-
Net(DSM), our network has two more convolutional layers,
which are the fourth and the seventh convolutional layers.
The fourth convolutional layer contains 32 kernels with size
3 x 3 and the seventh convolutional layer contains 64 kernels
with size 3 x 3. Dilated convolution can expand the receptive
field without pooling the loss of information and make each
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convolution output contain a larger range of information [20],
we use it in the fourth and seventh layers to learn more
features. Batch normalization and ReLU are performed after
each convolutional layer except the last layer. There are no
pooling layers, and dropout regularization is used before the
last layer. Padding with zeros is applied to all convolutional
layers except the final one, the size of the convolutional kernel
is 3 except for the last layer. Each curve patch with the size
of 128 x 64 pixels in our curve feature dataset is divided into
two curve patches with the size of 64 x 64 pixels, as the input
of the network. The output of the network is L2 normalized
to produce a 128-D descriptor with unit length.

Besides, we studied the improved L2-Net(DSM) in
network-b, shown in Fig. 5, which produces a 256-D descrip-
tor with unit length. Compared with network-a, the number
of convolutional kernels in each layer is doubled. In the first
to third convolutional layers, the number of convolutional
kernels is changed from 32 to 64. In the fourth to sixth
convolutional layers, the number of convolutional kernels is
changed from 64 to 128. In the seventh to eighth convolu-
tional layers, the number of convolutional kernels is changed
from 128 to 256. The other network parameters are the same
as the network-a shown in Fig. 4.

C. LOSS FUNCTION

The Dynamic Soft Margin (DSM) loss function [17] is used in
this paper to get the real-valued curve feature descriptor. The
“harder” triplets in a mini-batch are more useful for training,
80 it’s necessary to measure how hard a triplet is compared
with other triplets in the same mini-batch, by computing its
signed distance to the decision boundary (dpos — dheg) and
the distribution of these distances. Given a mini-batch of
size N, the Probability Distribution Function (PDF) of signed
distances is discretized into a histogram, and the dpos — dneg
for each triplet is computed to make the aggregated histogram
more accurate, then the dpos — dheg is linearly allocated into
two neighboring bins in the histogram, and the Cumulative
Distribution Function (CDF) is obtained by integrating the
histogram. The loss is defined as:

1 . ,
L= gy 2 (dho = ) @

The w; for each triplet is weighted by the corresponding value
from the CDF.

wi = CDF (dj,, = i, ) )
IV. EXPERIMENTS

To evaluate the performance of the proposed D-MSCD,
we use the evaluation metrics, FPR95 (false positive rate
(FPR) at true positive rate (TPR) equal to 95%) and mAP
(mean Average Precision) [25], for reference. Specifically, in
the experiments for parameters selection, the FPR95 is com-
puted when TPR = 0.95 according to the following equation:

FP

FPR= ———
FP+ TN

(6)
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where TN denotes true negative rate.

For image matching, the mAP is adopted as the perfor-
mance indicator. The Average Precision (AP) score of the pos-
itive matching category on an image pair is firstly computed
as:

Y | Precision;

ap="2— 7 )
n

where n represents the total number of retrieved positively
matched line pairs and Precision denotes the ratio of the
number of the retrieved positive matched line pairs to the
total number of retrieved line pairs. Then, the mAP can be
calculated as:

2 iz AP

m

where m is the total number of image pairs in the test set.

As the descriptor is learned from the mean and stan-
dard deviation curve patches by deep learning, we name the
descriptor proposed in this paper as D-MSCD, and name
the descriptor learned from Network-a as D-MSCD-a and
the descriptor learned from Network-b as D-MSCD-b in the
following experiments.

In the following Hyper-Parameters section and Curve
Matching section, each curve patch in the training set with
the size of 128 x 64 pixels is divided into a mean patch and
a standard patch with the size of 64 x 64 pixels, then the
mean descriptor and the standard descriptor are obtained by

mAP = ®)
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network training, finally, they are combined to generate the
D-MSCD. The D-MSCD-a is 256-D and D-MSCD-b is 512-
D respectively in the two sections.

A. HYPER-PARAMETERS SELECTION

The basic architecture of our modified network and the loss
function are based on L2-Net(DSM), so we choose the same
hyper-parameters as L2-Net(DSM). The Stochastic Gradient
Descent (SGD) is used with momentum and weight decay
equal to 0.9 and 0.0001, respectively, to optimize the network.
Weights are initialized to orthogonally with gain equal to
0.6, biases set to 0.01, the learning rate is linearly decayed
from 0.1 to 0 and the dilated rate is 2. Training is done with
PyTorch library. Two TITAN RTX GPUs are employed to run
the experiments.

Besides, we studied the influence of the batch size on
network performance. We reported the results for batch sizes
64, 128, 256, 512, 1024. We trained the model on Network-b
using the training set of the large-scale curve feature dataset
constructed in section III. B2), and tested on the testing set.
Fig. 7 shows the average FPR95 value over seven types
of changes. The performance improves with increasing the
mini-batch size but brings little benefit after 512 batch size,
and the performance stabilizes after 14 epochs. To make full
use of the GPUs, we set the batch size to 1024 and the training
epochs to 20 in the following experiments. Table 1 shows the
results of the testing set under different transformations.
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TABLE 1. The FPR95 (%) values of the testing set under different transformations.

Scale [llumination Blur Viewpoint Rotation Compression Noise Mean
D-MSCD-a 0.0371 0.2097 0.0000 0.2077 0.1183 0.1266 0.0353 0.1049
D-MSCD-b 0.0288 0.1748 0.0000 0.1898 0.0788 0.1071 0.0000 0.0827

TABLE 2. Performance of networks on the Brown dataset. The numbers shown are FPR95 (%), the lower the better. “+” and “+" denote training with

anchor swapping and data augmentation.

Descrintor Leneth Train Notredame Liberty Yosemite Mean
P & Test Liberty Yosemite Notredame  Yosemite Liberty Notredame

TFeat-M*[13] 128 7.39 7.24 3.06 8.06 1031 3.80 6.64
TL+GOR* [22] 128 4.80 5.15 1.95 5.40 6.45 2.38 4.36
PCW [23] 128 7.44 6.56 3.48 5.02 9.84 3.54 5.98
L2-Net+ [14] 128 2.36 1.71 0.72 2.57 4.70 1.29 2.23
CS-L2-Net+ [14] 256 1.71 1.30 0.56 2.07 3.87 1.09 1.76
HardNet+ [15] 128 1.49 1.84 0.53 1.96 2.51 0.78 1.51
DOAP+ [24] 128 1.54 1.21 0.43 2.00 2.62 0.87 1.45
L2-Net(DSM)+ [16] 128 1.21 1.29 0.39 1.51 2.01 0.68 1.18
SOSNet+ [18] 128 1.08 0.95 0.35 1.03 2.12 0.67 1.03
Ours-a+ 128 0.88 1.12 0.29 1.37 1.86 0.58 0.89
Ours-b+ 256 0.69 0.86 0.20 1.38 1.45 0.53 0.85

Otraining set  Mtesting set consists of three subsets: Liberty, Notredame, and Yosemite

Noise I | with about 400k normalized 64 x 64 patches in each, and the

Compression ‘ | dataset assigns each patch with its 3D point ID to identify the

matching image patches. Each 3D point ID is associated with

Viewpoint ' ‘ a list of patches that are assumed to be matching. Key points

Rotation | | were detected by DoG detector and verified by 3D model.

Blur I | Data augmentation is achieved by random flipping and rotaF-

o ing the patch by 90, 180, or 270 degrees. The patch pair

Illumination [ \ P .- .
classification benchmark measures the ability of a descriptor
Scale . . . . | 4 to discriminate positive patch pairs from negative ones in the

0 5 10 15 20 25 30 35

number of curve patches(thousand)

FIGURE 6. The number of curve image patches under different
transformations.

0.25

64 128 256
020 | 512 1024

I

=

W
T

FPR95(%)
IS
=

005 |

0.00 1 1 1 1 1 1 1 1 1

Epoch

FIGURE 7. Influence of the batch size on network performance.

B. NETWORK PERFORMANCE

To verify the performance of our modified network, we con-
ducted tests on the Brown dataset [26]. The Brown dataset

204514

Brown dataset. We adopt the commonly used false positive
rate at 95% true positive recall (FPR95) to evaluate how
well the descriptor classifies the patch pairs. We train one
model using each subset and test on the other two subsets,
for example, we train one model using Notredame subset
and test on Liberty and Yosemite subsets. The results are
shown in Table 2. Our descriptors show the best performance
compared to other descriptors under the same configuration,
the mean FPR95 value is reduced by 17.48% and 27.94%
compared to SOSNet and L2-Net(DSM) respectively. This
can prove the superiority of our modified network.

C. CURVE MATCHING

To further evaluate the performance of the D-MSCD,
we compared the matching performance with the traditional
handcrafted descriptors IOCD, IOMSD, and GOCD on the
Oxford dataset [25] and the Paper dataset (A dataset of
image pairs used in papers including IOCD, IOMSD, and
GOCD shown in Fig. 8, we named it the Paper dataset for
convenience) by using different descriptors to match the
curves in the reference image R and the target image T. First,
we obtain the curve patches Mg = {M (Cj,i=1,...,Ny)}

in reference image R and My = {M (C]f,j =1,... ,Nz)}

VOLUME 8, 2020
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in target image 7', where N is the number of the detected
curves in R and N, is that in 7. The curve patches were
obtained by using the same method as stated in section III.
A2). Next, we train Mg and M7 in the network respectively
and output the corresponding description matrices of N1 X256
and Ny x 256 or N1 x 512 and N, x 512. Then, the nearest
neighbor to the next nearest neighbor distance ratio (NNDR)
matching criterion is used to obtain the final matching results
of the two images, and the threshold is 0.8. To obtain the true
matching results, all the correctly matched curves contained
in the image pairs in the two datasets are manually labeled.
The large-scale curve feature dataset we constructed is used
for training in the following experiment. The results reveal
that the descriptors achieve state-of-the-art performance.

1) CURVE MATCHING ON OXFORD DATASET
The Oxford dataset is a standard benchmark library used
to evaluate the performance of image feature algorithms.
We evaluate our descriptors on five image sequences,
namely, Boat (Rotation), Leuven (Illumination), Bikes (Blur),
Graf (Viewpoint), and UBC (Compression). In each image
sequence, there are six images sorted in an order of increasing
degree of distortions with respect to the first image, so each
image sequence constitutes five pairs of images. The mAP is
used to measure the matching performance of the descriptors.
Fig. 9 (a) shows the matching performance of the pro-
posed D-MSCD-a and D-MSCD-b with IOCD, IOMSD, and
GOCD on the Oxford dataset. It can be easily observed that
both the proposed D-MSCD-a and D-MSCD-b achieve the
best performance on each image sequence compared with
the traditional handcrafted descriptors, D-MSCD-b has a lit-
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tle advantage over D-MSCD-a, and the average matching
performance is improved by 13.09%, 34.48%, and 31.32%
compared with the IOCD, IOMSD, and GOCD respectively.
The performance of our descriptors is greatly improved espe-
cially under the image transformation of blur change and
viewpoint change. The performance improvement proves that
the proposed D-MSCD is superior to handcrafted descriptors.
In addition to the matching accuracy, the number of cor-
rectly matched curves is also an important factor to measure
the performance of the descriptor. Table 3 shows the total
number of correctly matched curves obtained by different
descriptors on the Oxford dataset. It can be seen that with the
same number of detected curves, the D-MSCD has an obvious
advantage in the total number of correctly matched curves.

2) CURVE MATCHING ON PAPER DATASET

To further verify the matching performance of our descriptor,
we tested different descriptors on the Paper dataset (shown
in Fig. 8) with the same method above. The dataset includes
seven image sequences, namely, Scale change, [llumination
change, Blur change, Viewpoint change, Rotation change,
JPEG compression change, and Noise change. In each image
sequence, there are five pairs of different images. Fig. 9
(b) shows the matching performance of the D-MSCD-a and
D-MSCD-b with IOCD, IOMSD, and GOCD on the Paper
dataset, as can be seen that the proposed D-MSCD shows
the best performance on each image sequence. What’s more,
MSCD-b has a little advantage over MSCD-a, and the aver-
age matching performance is improved by 5.14%, 12.23%,
and 16.94% compared with the IOCD, IOMSD, and GOCD
respectively. It also has a great improvement under the image
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FIGURE 9. Matching performance on the Oxford dataset and the Paper dataset.

TABLE 3. Total correct number of matches for different descriptors on the Oxford dataset.

Descriptor IOCD IOMSD GOCD D-MSCD-a D-MSCD-b  Total

Boat 294 292 184 349 353 540

Leuven 595 521 561 611 613 628

Bikes 778 410 572 935 940 998

Graf 405 389 348 466 469 976

Ubc 661 566 557 730 732 751

All 2733 2178 2222 3091 3107 3893

TABLE 4. Total correct number of matches for different descriptors on the Paper dataset.

Descriptor IOCD IOMSD GOCD D-MSCD-a D-MSCD-b Total
Scale 586 521 585 602 604 630
I[llumination 232 199 253 300 308 329
Blur 435 201 277 505 509 537
Viewpoint 273 243 248 313 315 377
Rotation 615 573 532 617 618 687
Compression 691 637 639 713 715 735
Noise 400 338 316 413 416 435
All 3242 2712 2850 3452 3485 3730

transformation of blur change and viewpoint change, which
is similar to the performance on the Oxford dataset.

Table 4 shows the total number of correctly matched curves
for different descriptors on the Paper dataset with the same
number of curves detected. It can be seen that the proposed
D-MSCD in this paper shows the highest performance on
each image sequence compared to the handcrafted descriptor
I0CD, IOMSD, and GOCD.

V. CONCLUSION

Inspired by the great progress achieved by the description
of feature points in deep learning, we convert the curve
feature description problem into the mean value and standard
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deviation problem of point features, and then propose the
curve feature description method based on deep learning.
Specifically, we constructed a large-scale curve image dataset
labeled with matching information and improved the L2-
Net(DSM), the descriptor is obtained by training the network
in the self-build dataset. Experimental results show that the
obtained descriptor of D-MSCD is superior to the traditional
handcrafted descriptors under different image transforma-
tions, which demonstrate the great potential of deep learning
in curve feature description.

In the future, we will study the effects of different network
architectures and loss functions on the learning of curve
feature descriptors.
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