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ABSTRACT The exhaustion of natural energy and oil reserves has initiated the concept of renewable
energy systems (RESs). This has expanded the vision of energy sector towards a diversified power grid
while introducing the distributed energy resources (DERs) and distributed generation (DG). Though, this
diversification is achieved by adding new energy generation sources and a two-way power flow, it opens the
channel of production and trading with alternating current (AC) and direct current (DC) energy formats. But
DC-based energy, due to its sporadic nature, can be further stored easily by energy storage devices. However,
in recent years, a compelling need has arisen to understand the communication systems in distributed
generation (DG) for better performance management, control and parallel power transfer. In this article,
a bibliographic review on communication systems in distributed generations (DGs) is provided. The study
identifies various communication technologies, standards, and protocols used in AC and DC-based DGs.
Moreover, it contains the classification of different frameworks and methods involved. The methodology
of different approaches and their likely combination are discussed for different types of communication
networks. This study also represents useful information for readers, thereby demonstrate the complete
life-cycle of digital data in sensors/actuators, transmitter, receiver, filter, decoder for control of DG elements
and identifies future challenges as well. A comprehensive list of publications to date are compiled to provide
a complete picture of different developments in this area.

INDEX TERMS Bibliographical review, communication network, communication technologies, distributed
energy resources (DERs), distributed generation (DG), literature review, network control, power line
communication (PLC), renewable energy, renewable energy system (RES).

NOMENCLATURE
ASK amplitude shift keying
BAN building area network
BER bit error rate
BMS battery management system
BPLC broadband power line communication
CAN controller area network
CPAN consumers premises area network
DALI digital adressable lightening interface
DCPO DC-DC power optimizer
DERs distributed energy resources
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DFT discrete fourier transform
DG distributed generation
DPSK differential phase shift keying
DSL digital subscriber line
DSN demand side network
DSO distribution system operator
EM electro-magnetic
EMS energy management system
ESS energy storage system
FOC fiber optic communication
FSK frequency shift keying
HAN home area networks
IAN industrial area network
ICT information and communication technology
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IOE internet of energy
IP internet protocol
LED light emitting diode
LD laser diode
Li-Fi light fidelity
LIN local interconnected network
LoWPAN low power wireless personal area network
MIMO multi-input multi-output
NAN neighborhood area network
NPLC narrow-band power line communication
OFDM orthogonal frequency division multiplexing
OWC optical wireless communication
FOC fiber optic communication
PEC Power electronics converter
PLC power line communication
PSD power spectral density
PV photo voltaic
PWM pulse width modulation
RES renewable energy system
RF radio frequency
SCADA supervisory control and data acquisition
SFM switching frequency modulation
SISO single input single output
SWIPT simultaneous power information and power

transfer
TSO transmission system operator
VLC visible light communication
VPP virtual power plant
VPPM variable pulse position modulation
WAN wide area networks
WLAN wireless local area network
WPAN wireless personal area network
WPF wind power farm
WSN wireless sensor network
WWAN wireless wide area network

I. INTRODUCTION
Renewable energy systems (RESs) are getting more impor-
tance during the last two decades [1]. This is due to the
hazardous concerns of: 1) depletion of traditional energy
resources such as coal, diesel, oil, gas, 2) getting clean and
healthy environment, and 3) increasing demand of energy
with the population growth and changing life style. Since
most of the RES are inherently DG-based, the resources such
as photovoltaic (PV) panels, wind turbines, e-plants, energy
storage systems (ESSs) can be directly connected to a DG
[2]–[9]. In DER, voltage levels can be easily managed. On the
other hand, in conventional AC grid system, transformers
are used to step down the voltage levels, DC voltage levels
can be changed by using DC-DC converter [10]. Moreover,
DC power systems require no reactive power compensation
and bear no skin and proximity effects [11]. A conceptual
view of distributed power generation system can be seen
in Fig. 1.1 A DER is generating DC or AC power and

1In this figure, PEC is the acronym of power electronics converter.

doing energy interactionwith renewable energy resources and
AC grid [12] through distribution transformers and power
electronic converter (PEC). The concept invites integration
of all elements of electricity systems to improve opera-
tions, efficiency and resilience while reducing conversion
and distribution losses [13], [14]. This involves integration
with: 1) centralized power and heat generation units, which
provide power to DERs using AC to AC conversion,
2) renewable energy resources using DC to DC conversion,
3) bi-directional integration with smart transmission and dis-
tribution, EMS, ESS, transportation electrification using DC
to DC conversion, 4) storage devices such as hydro-storage
[15] and batteries using DC to DC conversion. Although DG
systems do not get instant power from AC grid, a communi-
cation system for instant information exchange may still be
handy during power intermittency to decide on its reconnec-
tion with AC source for power exchange.

Based on instant communication, another component
which could tackle the sporadic nature of renewable energy
sources and difference in demand-supply is the ESS [16]. ESS
can easily store the produced DC-based energy in DC batter-
ies. This is to tackle and control the power fluctuation during
irregular periods and RES connection in a DER [17]. Despite
of the feasibility provided by ESS towards the intermittency
of RES, there are some limitations which could be faced due
to: 1) the impact of environment, 2) aging-cost, 3) technology
at hand [18]. The alternates to overcome these limitations
should be utilized. For large-scale RES plants, such as wind
and solar farms, the pumped storage hydro-electricity station
and lead acid batteries are respectively the best alternates to
energy storage [15], [19]. Note an alternate to the pumped
storage hydroelectricity could be a combination of fuel cells
and hydrogen tanks electrolyzers [19]. The alternate tech-
nologies and instant power availability from AC grid can
enhance the coordination of DERs by maintaining acceptable
levels of voltage and frequency stability in power distribution
systems [20]. However, it requires a reliable communication
infrastructure to optimize the use of renewable energy sys-
tems for high penetration levels, which is the main motivation
of this article.

In the earlier era, this communication was handled in
power systems by supervisory control and data acquisi-
tion (SCADA) to transfer data between field devices, control
units, and computers in the SCADA central host. A ring
system was also introduced to connect DGs to the consumers
by a grid [21]–[23]. Later, PMUs were also introduced for
SCADA enhancement in smart power grid [24], [25].

Information and communication technologies (ICTs) can
be used in a DGs and DER systems for optimal and secure
bi-directional flow of power with dynamic loads [26]. How-
ever, communication systems in DCmicrogrid and smart grid
systems should meet some specific requirements based on
grid applications such as reliability, latency, bandwidth and
security [27], [28]. The selection of proper communication
network is a big challenge in DG due to many variables
and different component requirements, which depend on
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FIGURE 1. DG – A concept of distributed power generation system.

applications and utility expectations [29]–[34]. Fig. 2 shows
a brief timeline of utilization and technology developments
of communication system in DGs to date. The three pillars
of communication systems have their development phases
as follows: 1) Communication infrastructure (2011–2014),
2) Communication networks (2002–2020), 3) Communica-
tion technologies (1998–2020). The prominent contributions
of each development phase has been highlighted.

The main contribution of this article is to explore and iden-
tify the development of communication infrastructures in DG
systems. The article aims to bridge the gap of different appli-
cations of communication frameworks in DGs by: 1) com-
munication infrastructures, 2) mathematical representation of
such an infrastructure, 3) the respective networks and tech-
nologies, and 4) analysis of different validation approaches
carried out by different applications. From the perspective
of DG, a bibliographic review on communication systems
is provided covering technologies, standards, protocols and
classification of different frameworks.

The rest of the article is structured as follows: Section II
introduces the communication system and standards.

FIGURE 2. Timeline of communication systems in DG.

The infrastructure and mathematical representation is
explained in Section III. Section IV and V discuss the differ-
ent communication networks and technologies respectively.
Finally, the concluding remarks and future challenges are
illustrated in Section VI.
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FIGURE 3. Communication systems in DG.

II. COMMUNICATION SYSTEM AND STANDARDS
The delivery of energy to remote geographical locations has
urged the development of communication system2 in dis-
tributed power generation systems. A comprehensive com-
munication system can be seen in Fig. 3. It is showing a DG
power system with different available communication tech-
nologies and networks accompanied by a DG control center.
It particularly comprises of the following components: a) a
communication infrastructure, b) communication networks,
and c) communication technologies. All these components
effectively contribute towards the control, monitoring and
management of the DG system for a reliable delivery of
energy to customers and industry end-users.

From the perspective of communication standards, dif-
ferent RESs-based DGs can use different communication
standards based on: 1) requirements, 2) applications, and
3) available resources. For instance, the IEC61850-7-410 is
a communication standard considered for monitoring and
control using different logical nodes classes and data objects
[37]. Some other communication standards with their uti-
lization and applications are summarized in Tables 1 and 2
respectively. Communication standards IEC

2Note the communication system of a renewable power generation plants
follow communication standards (Table 1 and 2). These standards are also
used in virtual power plant (VPP) concepts [35], [36]

61850-7-410/420/500/510 cover communication for moni-
toring, control and logical nodes. Communication standards
IEC 61850-90-1/2/3/4/5/6/7/8/9/10 looks into communica-
tion between control centers, substations, object models etc.
Communication standards IEC 61400-25-1/2/3/4/5/6 consid-
ers wind turbine and applications of information models,
mapping, node/data classes etc.

The components of the communication system, i.e. com-
munication infrastructure, communication networks, and
communication technologies are further classified in the fol-
lowing sections. The classification is further illustrated with
applications, technologies involved and their architectures.

III. COMMUNICATION INFRASTRUCTURE AND
MATHEMATICAL MODELING
In DER-based grids, communication infrastructures are con-
sidered to be the backbone of all the information exchange
and telecommunication services. There are some articles
which describe the need of communication infrastruc-
tures, their required characteristics and traffic requirements
[38]–[42]. Authors in [43] have covered various available
wired and wireless communication technologies with their
possible use in smart grid applications. In DER-based grid
systems, though the information subsystem (e.g. smart meter
and sensors) will be different than the traditional AC system,
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TABLE 1. Communication standards for various renewable power
generation plants.

TABLE 2. Communication standards for wind turbines and applications.

same communication infrastructure can be used in both AC
and DC systems.

An insight of communication infrastructure will be repre-
sented with a mathematical model.
1) Communication Infrastructure of a DG – Mathemat-

ical Representation: The mathematical representation of a
communication infrastructure and its connection with net-
works and technologies is expressed. Consider communica-
tion infrastructure of a DG as shown in Fig. 3. A set of various
renewable energy resources are represented as base stations.
The base stations are equipped with energy storage devices,
which can be utilized when the conventional system cannot
provide sufficient power. All the base stations are communi-
cating with DG control center. A two-way communication is
facilitated with communication technologies.
2) Communication Channel Model: For the wireless com-

munication technologies like cellular, Zigbee, Wi-Fi, Wi-
Max, and bluetooth, consider transmission and reception with
WL,T and WL,R antennas respectively. WL,T is deployed
at each RES. A sample of information transferred through
communication channel can be represented as:

st,i = zt,i
(
CtBt,iTt,i +Wt,i

)
(1)

where st,i is the i-th information received at time-instant t , zt,i
∈ RWL,R is the combiner to scale the received information,
Ct is the multi-communication channel. Bt,i ∈ RWL,T is the
beamformer for directional signal transmission for transmit-
ter Tt,i ∈ R. Wt,i ∈ RWL,R is the independent and identically
distributed noise across space and time.
3) Observation Model: To monitor the communication

channel in (1), an observation model for a state xt is
represented. This representation requires transformation from

a complex number to a real number, which involves property
of Kronecker product3 as:

vec[zt,iCt (xt )Bt,i] =
(
BTt,i ⊗ zt,i

)
vec[Ct (xt )] (2)

where vec represents the vectorization. This gives observation
model as:

yt = BTt,i ⊗ zt,i vec[Ct (xt )]+ vt (3)

where yt ∈ Rm is the observation output, and vt ∈ Rm is the
white-Gaussian observation noise.

For wired communication technologies, the beamformer
and the antennas are not considered in the communication
infrastructure.

Once the base of a communication system is defined by its
infrastructure, the role of communication network and tech-
nology comes in. The selection of a particular communication
network in particular depends on the required data rate and
coverage range of any specific application.

IV. COMMUNICATION NETWORKS
The communication networks in DG can be classified into
four sub-networks: A. Consumer’s Premises Area Net-
work (CPAN), B. Neighborhood Area Network (NAN),
C. Wide-area Network (WAN), and D. Hybrid Network
(HAN/NAN). This classification is based on their 1) appli-
cation requirement, 2) coverage area, 3) data rate, and
4) communication technologies [28], [43]. Fig. 4 shows the
illustration of this classification.

A. CONSUMERS’ PREMISES AREA NETWORKS (CPAN)
CPAN can be further classified into: a) Home area network
(HAN), b) Building area network (BAN), and c) Industrial
area networks (IAN). This sub-classification is based on
residential, commercial and industrial applications respec-
tively. The coverage area is 1–100 m, and data rate is
1–100 kbps. The technologies used by these networks are low
powered wireless personal area network (LoWPAN), PLC
technologies

(
narrowband PLC (NPLC) and broadband PLC

(BPLC)
)
, Ethernet, Zigbee and Wi-Fi [44]–[50]. LoWPAN

and Zigbee can interact with internet protocol (IP)-based
system. 6LoWPAN is an acronym of IPV6 [51], [52].

B. NEIGHBORHOOD AREA NETWORKS (NAN)
The NAN is utilized for DER monitoring information. The
high coverage area (100m–10 km) and data rate (1–100 kpbs)
allows control signals at smart meters to be relayed to dis-
tribution system operators (DSOs) and transmission system
operators (TSOs). The technologies used by NAN are PLC,
Zigbee, mesh-network, Wi-Fi, cellular, digital subscriber
line (DSL) and Wi-Max [44]–[50], [53]–[57].

3Note the Kronecker product property enables the generalization of com-
plex number with respect to standard choice of basis. This generalization
gives an expression of linear combination of elements.
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FIGURE 4. Classification of communication networks.

C. WIDE AREA NETWORKS (WAN)
The WAN is used to exchange information with DG sys-
tems to enhance visibility into DERS [58], [59]. This is due
to its high coverage area (10 km–100 km) and data rate
(1 Mbps–1 Gbps). WAN primarily prefers to use high-speed
optic cable [60]. Other options could be Wi-Max, PLC and
cellular [44]–[46], [55], [57], [61].

D. HYBRID NETWORK (HAN/NAN)
The hybrid network is designed to multiple HANs and NANs.
It provides nine architectures [60] as shown in Fig. 4. This
includes combination of various technologies as: 1) Hybrid
1: LoWPAN (HAN) and ethernet cable (NAN), 2) Hybrid
2: LoWPAN (HAN) and Wi-Fi (NAN), 3) Hybrid 3: LoW-
PAN (HAN) andWi-Max (NAN), 4) Hybrid 4: BPLC (HAN)
and ethernet cable (NAN), 5) Hybrid 5: BPLC (HAN) and
Wi-Fi (NAN), 6) Hybrid 6: BPLC (HAN) and Wi-Max
(NAN), 7) Hybrid 7: NPLC (HAN) and ethernet cable (NAN),
8) Hybrid 8: NPLC (HAN) and Wi-Fi (NAN), 9) Hybrid 9:
NPLC (HAN) and Wi-Max (NAN).

V. COMMUNICATION TECHNOLOGIES
In this section, communication technologies with DG will
be reviewed for better performance management, control and
parallel power transfer with different real life applications.
A framework of this section can be seen in Fig. 5. Gen-
erally, the DG system can be classified for communication
technologies as: 1) wired communication, and 2) wireless
communication. Well established communication techniques
are being explored in a DG system as well as in AC grid sys-
tems. Researchers are also exploring new techniques specif-
ically for DERs including channel modeling [62]–[65] and
different communication networks protocols like DC local

interconnected network (DC-LIN) [66] or controller area
network (CAN) protocol [67]. ESS is an essential part of any
DER for energy storage. This is due to the intermittent nature
of renewable energy sources and difference in demand-supply
[68]. Different communication techniques have been pro-
posed for energy management system (EMS) to reduce cost
and resource wastage [69], [70]. Energy efficiency of differ-
ent communication systems (cellular, WSNs etc.) connected
to a DG, can also be increased with the concept of energy
harvesting [71], [72]. Different communication techniques
are being proposed and implemented for DG with different
benefits from power line communication (PLC), wireless
communication, internet of energy (IOE) [73]–[79] etc.

PLC is considered to be a strong candidate in DG system
followed by visible light communication (VLC), Wi-Fi, Wi-
Max, Zigbee, internet of energy (IOE), fiber optic communi-
cation (FOC) or combination of any of these communication
techniques.

A. WIRED COMMUNICATION – POWER LINE
COMMUNICATION (PLC)
PLC is used in different applications for low voltage power
system, such as automatic meter reading, demand side net-
works (DSN) [80] etc. It is due to this property that PLC is
considered to be the most commendable option for DERs.
Its structural flexibility in expansion and readily available
infrastructure has allowed it to deal with the bi-directional
flow of power, varying nature of DC/AC loads, and for better
signaling in DERs [81]–[90]. A DC transmitter and receiver
block diagram is shown in Fig. 6.
1) Utilization and Architecture: The major advantage of

using PLC in a grid is its low installation cost because power
lines are already deployed and no amount has to be paid to any
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FIGURE 5. Communication technologies in DG.

FIGURE 6. A PLC transceiver/module with bus/PLC channel.

communication service provider [91]. Though PLC suffers
from different noises, attenuation and distortion problems
[92], it is considered to be more secure from cyber-attacks
as compared to wireless communication systems [93].
A coupler/de-coupler in a PLC transceiver is used to inject
or extract information signal from a grid [94]. A coder and
decoder will improve the bit error rate (BER) [69] at the cost
of transceiver complexity. A modulator along with carrier
signal is used to map the signal properties to communication
channel properties. Moreover, the interaction of PLC with:
1) different DERs, such as solar panels, wind turbines, e-plant
and hydrogen fuel cell [95]–[97], 2) DC bus, 3) data logger,
and 4) processor, are shown in Fig. 7.
2) Applications and Advantages: Table 3 lists PLC with its

applications and advantages. In [81], PLC is used for control
signal communication in a DER-based grid for load sharing.
The authors have proposed switching frequency modula-
tion (SFM) techniques to overcome power convertor limita-
tions and also to enhance PLC performance. The performance
is also verified by using 3.3 kW dual active bridge prototype.
In [98], an intelligent PV module was proposed with PLC
by using frequency shift keying (FSK) modulation. This is to
reduce the electricity losses by full monitoring and to help in

FIGURE 7. DER with bus, PLC-modules, data logger and processor.

predictivemaintenance of a PV system. This workwas further
extended in [99] for residential consumer with home plug
communication architecture in which orthogonal frequency
division multiplexing (OFDM) modulation technique is used
to enhance noise immunity [100] in PLC. A low cost solution
was discussed in [101] in which PLC module is used by
using amplitude shift keying (ASK) without communication
modem. A smart graphical user interface was also designed
and tested with sixteen panel each with monitoring module.
This work was further extended in [102] by having one
monitoring module for four PV panels to reduce the cost.
A scheme was also discussed to localize the faulty panel with
the help of data gathered through PLC and synchronization
of monitoring time. To enhance the performance of DC-DC
power optimizer (DCPO) in a DG system with PV panels,
PLC was used with differential phase shift keying (DPSK)
modulation technique along with discrete fourier transform
(DFT) [103]. By sharing the data of PV panels connected
in series in string using existing DC cables, an algorithm
is run to achieve maximum power from PV panels because
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TABLE 3. PLC with applications.

current can be reduced in a string due to non-uniform age-
ing, shading or manufacturing differences of PV panels. The
proposed technique performance is verified with string of six
PV panels connected in series. DG system for EV is discussed
with PLC: 1) in-vehicle, 2) between vehicle and grid [104],
and 3) using multi-carrier modulation technique [105]. Using
PLC in EVwill reduce weight and space and it will also make
the maintenance and diagnosis, easy. Channel modeling is
done in: 1) in-vehicle, and 2) grid-to-vehicle. Noise modeling
in time and frequency domains, produced bymotor drives and
AC/DC converters, is also proposed. PLC can be used for trip
information, entertainment, vehicle diagnosis in DC grid and
Plug-in EV. Small scale radial distribution system (for indus-
trial applications) is implemented with photo voltaic (PV)
DER-based grid system in [67] by using PLC between energy
management system (EMS) and several battery management
systems (BMS). Single carrier is generated and then modu-
lated by the Bus bar impedance to have different carrier sig-
nals. The proposed system can be used with different appli-
cations such as road signs, street lightening or parking meter
systems. Street lightening system can work smoothly with
maximum 10kb/sec. In [106], noise power spectral densi-
ties (PSDs) are derived to enhance data transmission in LVDC
based grid. Electro-magnetic (EM) noises are also predicted
while using PLC in a DERs-based grid to optimize the man-
agement and performance of the system. These EM noises
are usually generated by house hold devices [107]. In [108],
PLC is deployed to analyze data transmission over pulse
width modulation (PWM) network. This is utilized by using
a PWM-based filter. PMW is also used with PLC in [109] to
exchange information between invertor and a motor in a grid.
PLC is widely used to exchange information for control and
coordination among different convertors in DRES based grids
[110], [111]. To deal with information signal attenuation issue
and also to design an economical PLC transceiver, a frac-
tional harmonic domain based technique is proposed in [112].
The primary control loop and modulation algorithm of the
convertor is used for encoding and decoding of information
data.

B. WIRELESS COMMUNICATION – OPTICAL AND RADIO
FREQUENCY
Wireless communication can be classified into: a) optical, and
b) radio-frequency (RF) wireless communication.
1)OpticalWireless Communication (OWC):Light-emitting

diodes (LEDs) have already captured the conventional light-
ening devices usage market due to its low energy con-
sumption. LEDs are also used for communication purposes
along with illumination at the same to achieve high data
rates in the range of GHz as compared to conventional RF
communication [113]. Note OWC is also called as visible
light communication (VLC) or light-fidelity (Li-Fi) [114].
It is considered to be harmless for human body and more
secure because it cannot penetrate in walls. The data rate can
further be increased by using Visible light laser diodes (LDs)
[115] or by developing multi-input multi-output (MIMO)
communication architecture [116]. The major limitation of
VLC is that its data rate can decrease significantly with the
increase in distance between transmitter and receiver.
Applications of VLC: A simple block diagram of a VLC

transceiver is shown in Fig. 8. Information signal is first
modulated and then amplified according to the channel con-
ditions. A photo diode is used at receiver side to detect the
modulated signal and then demodulation is done to estimate
the information signal. A solar powered home with VLC is
shown in Fig. 9. Little modifications are required in LED
bulbs and other user’s devices such as smart phones, laptops
and smart sound system to get full advantage of this high
data rate communication technique. Approximately 8% of the
total energy consumption is used for lightening purposes in
commercial and residential buildings [117]. Table 4 summa-
rizes the applications of VLC with its advantages. VLC is
proposed in [118] for personalization and localization using
LEDs for building management, considering indoor envi-
ronment. The variable pulse position modulation (VPPM)
was used for secure communication and location information
transmission and authorization with different dimming levels
of LEDs. DG system with smart DC LED-based intelligent
lighting system named EDISONwas discussed with different
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TABLE 4. VLC with applications.

TABLE 5. RF wireless communication technologies.

FIGURE 8. A VLC transceiver.

communication techniques including VLC [119]. VLC was
used for control signal transmission with high Bandwidth
efficiency as compared to other communication techniques.
The modulation technique even works when the LEDs are
almost dimmed and appeared to be off to human eye.
2) Radio Frequency (RF) Wireless Communication: In

RF wireless communication, electromagnetic waves are used
to carry the information. So many different communication
architecture have been proposed with their advantages such
as easy installation, low cost and flexibility and disadvan-
tages such as information security breach, limited available
spectrum and interference from other users or devices [120],
[121]. In a MIMO communication architecture, band width
and power efficiency can be increased by increasing num-
ber of antennas at transmitter and/or at receiver side (See
Fig. 10). To further improve the system performance large
scale or massive MIMO communication systems are also
been proposedwith large number of antennas [122]. Table 5 is
summarizing RF wireless communication technologies. Note
the RF band values can be different for various countries or
regions.
Applications and Advantages: A scalable MIMO com-

munication system architecture is shown in Fig. 11. This
system has a MIMO energy management system (EMS).
Table 6 lists the application of RF wireless communication.
RF wireless communication technologies will get a place
in DERs by using the concept of simultaneous information
and power transfer (SWIPT) [70] to reduce energy resources
wastage. A super capacitor was used with multi directional
power flow to store energy for wireless sensor nodes. WSNs
in a DG can be used for information and control signal
communication inside DG system or among different set of
DG systems [123]. A smart personal WSN was proposed
and implemented inside a building for DC powered LED

FIGURE 9. Solar powered home.

based lightening system. The energy optimization is achieved
by controlling the illuminance using WSN [124]. A smart
street lightening system was tested by F. Leccese in which
each pole has a transceiver to form a Zigbee communication
architecture in a mesh topology. Then all the information is
transmitted and processed in a central control unit by using a
low cost with good computational performance Raspberry-Pi
processor [125]. This central control unit is connected to a
grid through Wi-Max to overcome the distance limitations
of commercially available Wi-Fi networks [126]. By using
the motion and light sensors inside the building, 55% energy
saving was achieved. LEDs were controlled and illumination
was monitored by using Zigbee architecture, keeping in mind
the user satisfaction [127]. A public street lightening system
performance was evaluated in [128] with WPAN by using
digital addressable lightening interface (DALI) to digitally
control light bulbs ballasts. Another smart lightening sys-
tem was proposed with Brute-Force algorithm to optimize
the energy consumption. Among the lightening poles, PLC
transceivers were used for monitoring and sharing the infor-
mation, then the Wi-Max architecture was used for segment
and supervisor monitoring and control [129]. Industrial WSN
was used for information sensing and exchange to do strategy
estimation and event-triggered control [130] in a DG system.
A wind power farm (WPF) with wireless RF communica-
tion architecture was proposed in [131] according to IEC
61400-25 standard [132] for remote monitoring with scalable
area coverage and capacity. The network performance was
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TABLE 6. RF with applications.

FIGURE 10. A scalable MIMO wireless communication transceiver.

FIGURE 11. EMS with a scalable MIMO wireless communication architecture.

evaluated considering different wireless technologies like
ZigBee, WiFi and WiMAX in view of end-to-end delay,
wireless channel capacity, and data loss.

C. EXISTING RESEARCH IN COMMUNICATION
TECHNOLOGIES – SUMMARY
All the communication technologies discussed in this section
are contributing individually or in combination. This is based

on the respective technology requirements, such as: 1) cost,
2) data rate, 3) reliability, 4) easy expansion, 5) infor-
mation security, and 6) interference from other users or
devices. In principle, PLC technology has low installation
cost with options of flexible expansion. From the perspective
of data rates, VLC is significant. It can provide high data
rates as compared to conventional RF communication. The
massive MIMO communication-based architectures are also
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TABLE 7. Future challenges in communication infrastructures.

considered to be a strong candidate for DGs communication
networks. This is due to their higher spectral efficiency with
low energy consumption.

VI. CONCLUSION AND FUTURE CHALLENGES
The communication system in DGs have gained a lot of
attention due to the increasing trend of utilizing renewable
energy resources. Currently, the outlook of renewable as a
source of energy is too optimistic. This has raised bars with
high expectations on the value of technology. This article
provided a survey on the utilization of communication tech-
nology in DG systemwhile discussing the recent applications
and frameworks. It also expressed the advantages of commu-
nication infrastructures in DG systems. However, to success-
fully implement the framework of communication in DGs,
significant challenges of integration of various technologies
and digital layers will be encountered.

Though the frameworks and review on communication
infrastructures show promising achievements in future DG
systems, the full deployment of the infrastructure could face
numerous number of challenges. This can be seen in Table 7.
These challenges are due to the fusion of various protocols
and technologies, which could lead to constraints of standard-
ization and optimization [133]–[135].
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