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ABSTRACT Load forecasting is one of the critical tasks for enhancing the energy efficiency of smart
grids. Even though recent deep learning-based load forecasting models have shown excellent forecasting
performance, one of the common problems they faced was that their forecasting accuracy was highly
dependent on the data quality and quantity available for the model training. Collecting a sufficient amount
of high-quality data is expensive and time-consuming. Recently, a generative adversarial network (GAN)
has shown its potential as a solution to the data shortage problem by generating virtual data based on a
small amount of real data, and several studies have used GAN to generate electric load data for training
forecasting models. However, due to the noise data problem of GANS, their predictive performance also
deteriorated. To solve this problem, in this study, we propose a two-stage data generation scheme that
more effectively generates input and output variables for short-term load forecasting. In the first stage,
we generate virtual calendar and temperature data used as input variables using a conditional tabular GAN
(CTGAN). In the second stage, we generate electric load data corresponding to the input variables using
a deep learning-based regression model. Lastly, we construct our forecasting model by training another
regression model using a mixture of generated data and real data. To verify the effectiveness of our scheme,
we conducted extensive experiments using various datasets and data generation models. We report some of

the results.

INDEX TERMS Short-term load forecasting, smart grid, conditional generative adversarial networks.

I. INTRODUCTION

A smart grid is a novel electrical power grid that combines
information and communication technologies with the exist-
ing power grid. It aims to enhance energy efficiency by
exchanging information in real-time between power suppli-
ers and consumers. The smart grid enables the suppliers to
precisely forecast the electrical power demand by providing
them with information, such as current energy consumption
and user profile. As a result, suppliers can maximize effi-
ciency by generating the right amount of electricity. The
smart grid has attracted much attention due to its diverse
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advantages, and many studies have been conducted to deal
with various issues of the smart grid.

One critical issue of the smart grid is the precise prediction
of electric loads that will be demanded during a specific
period [1], [2]. Suppliers determine the amount of power
that should be generated based on the prediction. If suppliers
produce more electricity than necessary due to incorrect pre-
diction, they will suffer from economic losses. In the opposite
case, they will experience serious problems such as frequency
drops and blackouts.

Electric load forecasting models are generally classified
by the forecasting period [3]. In particular, short-term load
forecasting (STLF) has been the key issue in smart grids
because its short forecasting period is required for smart grid
operation.
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One popular approach for STLF is to use machine learning
models, such as support vector regression (SVR) [4] and
gradient boosted regression trees [5]. Those models capture
diverse relevant data such as time, weather, and user profile
through input variables and forecast future electric loads via
output variables. More recently, with the development of deep
learning technology, various prediction models based on deep
learning have been proposed to achieve better forecasting
accuracy [6], [7]. Even though such deep learning models
have achieved significant performance improvement, their
performance heavily depends on the quality and quantity of
the historical data used for the model training. If the amount
of historical data is insufficient or the data contains significant
noise, their predictive performance will drop significantly due
to improper learning.

On the other hand, collecting a sufficient amount of high-
quality data is expensive and time-consuming. One popular
method to overcome this problem is to complement insuf-
ficient data through artificial data generation. For instance,
Li et al. [8] combined a mega-trend-diffusion technique with
data trend estimation to generate artificial data. Xu et al. [9]
adapted a variational auto-encoder to tabular data by mod-
ifying the loss function and training two neural networks
using evidence lower-bound loss [10]. The emergence of
a generative adversarial network (GAN) [11] has acceler-
ated that trend. Since its introduction in 2014, many varia-
tions have been proposed to improve its ability to generate
data [12], [13], and have made outstanding achievements in
diverse fields [14], [15]. For instance, GAN was used to gen-
erate data for training electric load forecasting models. There
are two typical approaches for learning-based electric load
forecasting: (1) time-series forecasting, in which only the
variables to be predicted are considered, and (2) label variable
forecasting through external variables corresponding to fea-
tures. In the first approach, GAN was effective in generating
electric load data [16], [17]. However, in the second approach,
GAN sometimes failed to learn the correlation between vari-
ables and showed poor forecasting accuracy [18], [19]. For
example, although the generated input variables are similar
to the real input variables, having a high value of output vari-
ables, they sometimes have a low value of output variables.
GAN generally regards each variable dimension equally,
regardless of whether they are input or output. This leads to
ignoring the importance of output variables and generating
incorrect data points for output variables.

To alleviate this problem, in this paper, we propose a two-
stage data generation scheme to construct a large dataset
for training a short-term load forecasting model. The dataset
can be divided into two categories: external feature data and
electric load data. In the first stage, we train a conditional
tabular GAN (CTGAN) [9] using real external feature data
such as calendar and temperatures and generate artificial fea-
ture data using the trained CTGAN. Because STLF variables
can be described as tabular data, CTGAN, which can model
tabular data distributions well, is suitable for generating data
for STLF models. In the second stage, we generate electric
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load data using a deep learning-based regression model, and
then label the input variables generated in the first stage.
Finally, we construct our STLF model by training another
deep learning-based regression model using a mixture of
real and generated data. To evaluate the performance of our
scheme, we conducted extensive experiments using various
datasets and data generation schemes and measure the pre-
diction accuracy.
The contributions of this paper are as follows:

o We utilize CTGAN to generate external feature data for
STLF models. To the best of our knowledge, this is the
first use of CTGAN for electric load forecasting.

« We propose a two-stage data generation scheme that
generates external feature data and electric load data
separately to represent their correlation more effectively.

« We compare the performance of various data generation
schemes in the domain of electric load forecasting.

The remainder of this paper is organized as follows:
Section 2 presents the literature review; Section 3 briefly
summarizes the datasets; Section 4 presents the details of
the proposed scheme; Section 5 demonstrates various exper-
iments; and finally, Section 6 presents the conclusions.

Il. BACKGROUNDS

A. RELATED WORKS

This section presents a brief literature review on machine
learning-based load forecasting, GANs, and GAN-based
forecasting. Among the various approaches for load fore-
casting, load forecasting using machine learning algorithms
has attracted much attention recently. For instance, Fard
and Akbari-Zadeh [20] proposed a hybrid method based
on wavelet transform, artificial neural network (ANN), and
autoregressive integrated moving average for STLF. They
used autocorrelation and partial autocorrelation functions to
observe the stationary and non-stationary behaviors of an
electric load time series and determined the model config-
uration based on the behavior. Grolinger et al. [21] proposed
STLF models based on SVR and ANN and discussed the
strengths and weaknesses of each model by comparing them
in the diverse experimental environments, including datasets
and granularities (daily, every 15 minutes, etc.). They also
presented a model selection algorithm to determine the hyper-
parameters of SVR and ANN.

More recently, many deep learning-based models have
been proposed for STLF. For instance, Kuo and Huang [22]
proposed a CNN-based STLF model, where the input vari-
ables were the previous electric loads and the output variables
were future electric loads. They reported that their model
was more accurate than five comparable artificial intelligence
methods; SVR, random forest, decision tree, multi-layer
perceptron (MLP), and long short-term memory (LSTM).
Shi et al. [23] proposed a pooling-based deep recurrent neural
network (RNN) that batches a set of customer load profiles
into a pool of input. Ekonomou et al. [24] implemented
an ANN-based STLF model reinforced by the appropriate
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FIGURE 1. Architecture of vanilla GAN.

wavelet analysis. Tian et al. [25] integrated the hidden fea-
tures of CNN and LSTM models to improve forecasting accu-
racy. With the CNN, they extracted the local trend of electric
loads and captured similarities in usage patterns. They then
trained the LSTM model to learn the relationship between the
trend and the pattern with respect to time.

When GAN was introduced, it drew much attention due to
its novel theory and performance. However, training GAN is
not an easy task because GAN is sensitive to its hyperparam-
eters and often suffers from serious problems, such as failing
to generate the given data or learning only a small portion of
the data [26], [27]. Hence, several attempts have been made
to stabilize GAN training and simultaneously improve GAN
performance. For instance, Arjovsky er al. [12] proposed
Wasserstein GAN (WGAN) by introducing a Wasserstein
distance to the loss functions of GANs. Gulrajani et al. [13]
applied the gradient penalty to WGAN (WGANGP) to further
improve the WGAN performance.

GANSs have been widely used for diverse purposes and for
solving forecasting tasks. Accordingly, several GAN-based
studies have also been reported. Generative models were
used for forecasting in the following studies. Tian et al. [16]
proposed a parallel prediction scheme using a small number
of original data to generate artificial data using a GAN.
They formed a mixed dataset that included both original and
artificial data and utilized it to train machine learning models
for forecasting. Zhang et al. [28] proposed a GAN model for
stock market forecasting and constructed their model based
on an LSTM and an MLP. They used daily stock data to train
the model and succeeded in achieving improved forecasting
accuracy. Rezagholiradeh and Haidar [29] utilized GAN to
resolve a regression problem. They modified the GAN struc-
ture such that their GAN model can simultaneously generate
training data and perform forecasting. Consequently, their
model succeeded in error reduction.

B. GAN

GAN [30] (Fig. 1) is a generative model based on the idea
of game theory, which learns data distributions through an
adversarial training process. The GAN is composed of two
networks: generator G and discriminator D. The generator
aims to generate realistic data with a distribution similar to
that of real data and deceive the discriminator into discrim-
inating them as real data. On the contrary, the discriminator
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aims to precisely distinguish whether input data come from
the generator or real data. Such conflicting goals lead to
simultaneous network training through competition. Equa-
tion (1) formulates such a process.

V (D, G) = Ex~p, [logD (x)] + Ez~p.(z) [log (1—D (G(2)))]
(D

Here, x represents the data drawn from the real data dis-
tribution p,, p, is the noise distribution, z is the noise from
Pz G(z) refers to the data generated by the generator with
z as an input, and D indicates the discriminator function that
outputs 1 if the given data are real; otherwise, it outputs 0. The
discriminator attempts to maximize the value function V (D,
G) because D(x) becomes 1, and D(G(z)) becomes O if V (D,
G) reaches the maximum. Conversely, the generator attempts
to minimize V (D, G) to ensure that D(G(z)) becomes 1. Even
though the generator and discriminator hardly achieve their
own goals during GAN training because of their competitive
dynamic, the generator can generate realistic data at the end
of the training.

Ill. MODEL ARCHITECTURE

In this section, we describe the architecture of our model. Our
model is composed of two main parts: (i) a data generation
part that generates external data and electric load data for
training our forecasting model, and (ii) a regression-based
forecasting model that is trained using the real data and
generated data. Data generation has two modules: CTGAN
for generating external feature data such as temperature and
calendar data and a deep learning-based regression model for
generating electric load data corresponding to the external
feature data.

A. DATA GENERATION MODEL: CTGAN
Even though vanilla GAN has proven its superior ability to
generate data, it cannot fully generate every type of data.
For instance, vanilla GAN can hardly model all distributions
in tabular data when the independent variables in the table
have different distributions [31]. In addition, if the given data
include categorical information represented by a one-hot vec-
tor, vanilla GAN cannot ensure the properties of the one-hot
vector.

CTGAN [9] was proposed to solve such problem through
two novel techniques. The first technique is the mode-specific
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FIGURE 2. Architecture of conditional tabular GAN (CTGAN).

normalization N (0, 1) for a continuous variable consisting
of float values. CTGAN uses a variational Gaussian mix-
ture model [32] as a unit distribution model to estimate the
number of distributions for each variable and normalize the
variable values according to the estimated distributions. Then,
CTGAN utilizes these encoded values in place of the original
values during training. When generating artificial data after
the training, CTGAN transforms the generated data into the
original scale. The second technique is a conditional training
approach for handling imbalanced category-level frequencies
in categorical variables. The frequency imbalance makes the
GAN generator produce only a few categories that frequently
appear in the given data. Hence, this problem should be
resolved to generate various data. The conditional training
approach addresses this problem as follows: each column of
the tabular data and the categorical variables are encoded into
condition vectors. These vectors are sampled according to the
log-frequency of the categories to ensure that rare categorical
levels are evenly sampled. These vectors are then used as
generator inputs. In addition to these techniques, CTGAN
also leverages recent advances in GAN training, such as loss
function of the WGANGTP [13] and discriminator architecture
of the PacGAN [33], which improve both the training stability
and quality of the generated data. Fig. 2 shows its structural
difference from the vanilla GAN and Equation (2) presents
the loss function of CTGAN. In the equation, the first two
terms indicate the original loss of the WGAN [12], and the
last term indicates the gradient-penalty loss to control the gra-
dient of the discriminator for random samples x ~ P; [13].
P, and P, represent the distribution of real and generated
data. Here, A is a gradient penalty coefficient and x represents
samples that are linearly interpolated by real data x.

L = Eg(5)~p, [D(G(2))] — Ex~p, [D(x)]
R 2
+ 3B, [ (VD@ - 1)°] @
B. VARIABLE CONFIGURATION
We constructed data containing 10 input variables and one

output variable. The output variable was an electric load
during a specific period. The input variables included diverse
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data relevant to the output variable such as time and tem-
perature, which have been popularly used in electric load
forecasting [34], [35]. Table 1 lists the input and output
variables that we considered in this paper.

TABLE 1. Input and output variables for model training.

In.put Description Variable type
variables
Month, Sine value at the month Continuous on [—1,1]
Month, Cosine value at the month Continuous on [-1,1]
Day; Sine value at the day Continuous on [—1,1]
Day, Cosine value at the day Continuous on [—1,1]
Hour, Sine value at the hour Continuous on [—1,1]
Hour, Cosine value at the hour Continuous on [—1,1]
Weekday, Sine value at the weekday Continuous on [—1,1]
Weekday,  Cosine value at the weekday Continuous on [-1,1]
Holiday Weekdays/holidays status ~ Binary [1:holiday, 0:others]
Temp. Temperature value Continuous
Ou.tput Description Variable type
variable
Electric load Hourly electric load Continuous

The time information consists of month, day, hour, and
weekday, and whether that date is a holiday or not. Month,
day, hour, and weekday are numeric values initially; for
instance, month and hour range from 1 to 12 and from 1 to 24,
respectively. As these numeric values cannot reflect periodic
properties, we transformed them into continuous data (i.e.,
timey, and timey) in a two-dimensional space using Equa-
tions (3) and (4) to represent their periodicity [6].

time, = sin ((360/cycle) x time) 3)
timey, = cos ((360/cycle) x time) 4

Here, cycle represents the period of time. For instance,
if we transform month=1 into the month, and month,, time
and cycle become 1 and 12, and then, month, and month,

become sin(30) and cos(30), respectively. Further explana-
tions of this transformation can be found in this paper [36].

VOLUME 8, 2020



J. Moon et al.: CTGAN-Based Two-Stage Data Generation Scheme for STLF

IEEE Access

We also used a binary variable of either 0 or 1 to indicate
whether that date is a holiday or not. Lastly, temperature is
closely related to the operation of appliances, such as air
conditioners and heaters, that require a lot of electricity [37];
therefore, this variable has been widely used in STLF mod-
els [38]-[40]. We also exploited this variable herein. How-
ever, the input variable configuration can be varied according
to the applicability of data. For example, the past electric load
data can be utilized as an input variable. Our scheme can
achieve improved forecasting accuracy even in this condition.

C. FORECASTING MODEL
Now, we describe the overall steps for constructing our STLF
model. Fig. 3 shows the overall architecture of our scheme,
and the numbers (1)—(6) in the figure represent the flow of the
main steps in our scheme.

First, (1) we train a CTGAN using input variables X4 and
(2) generate artificial input variables Xz.. As the CTGAN
learns the characteristics of X, via this training, it can
generate variables similar to X,.,;. Nine variables, includ-
ing Month,, Monthy, and Temperature, are used as contin-
uous variables, which require mode-specific normalization.
We follow the conditional training approach for the remaining
variable (i.e., Holiday).

Second, we generate the artificial output variable Y.
corresponding to Xgue. To do this, (3) we train a regression
model Reg_out using X, and their correspondent output
variable Y., so that Reg_out can predict the output variable
when the input variables are given. When Xy, is given as an
input variable, Reg_out forecasts the estimated output vari-
able. (4) We make Reg_out predict for each Xy, and denote
the obtained output variable by Y. Here, any regression
model (e.g., random forest, linear regression, and gradient
boosting machine) can be used as Reg_out. However, we only
consider deep learning-based regression models because we
focus on generating sufficient data for deep learning models.

Finally, (5) we develop a training dataset by combining
Xreal> Yreal> Xfake» and Yy and (6) train another regres-
sion model Reg_stlf using the dataset to construct our STLF
model.

The reason we generate Xy and Yy separately using
CTGAN and Reg_out is to reduce the possibility for the
CTGAN to generate wrong output variable. Each data dimen-
sion generally has the same weight in the CTGAN. Thus,
the relative weights of the input and output variables are
determined by the number of their dimensions. In most cases,
the dimension of the input variables is larger than that of the
output variables; hence, the CTGAN gives more attention to
the input variables than the output variables. Hence, if the
CTGAN generates input and output variables simultaneously,
generated output variables are not well-matched with the
input variables.

Several studies on semi-supervised learning have investi-
gated a similar approach to this learning scheme [41], [42].
For instance, in the pseudo-label [43] scheme, a classification
model is trained with the labeled data through supervised
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Algorithm 1 Data Generation and Model Construction
Input: A set of real variables:  Xeq =
{x17x27x37 e 7~xn},

a set of real output variables: Y.y =

{)’1’)’27)’37 e »Yn}
Output: A trained regression model reg_stIf

input

Set of artificial input variables:  Xpue =
{x'1,x2, %3, Xy}

Set of artificial output variables:  Yyue =
VY Ys Yl

Train CTGAN using X

Generate Xy, using the trained CTGAN where n =2n
Train a regression model reg_out using Xeq; and Yieq
Generate Yy using the trained reg_out for input Xy, where
n =2n

Mix X,eq; and Xpre and then Yyeqr and Yygge

Train a regression model reg_stlf using the mixed data

learning; the unlabeled data are then labeled by the trained
model and the generated labels are regarded as true labels in
the remaining training steps.

After all, the pseudo-label generates labels for unlabeled
real data based on labeled real data. On the contrary, our
scheme generates both data and labels artificially based on
a small amount of real labeled data. Hence, the performance
of our scheme heavily depends on the quality of the generated
data.

IV. EXPERIMENTAL SETUP

To evaluate the effectiveness of our scheme, we performed
extensive experiments. Before we present the details of our
experiments, we first introduce the datasets, comparison
models, and evaluation metrics.

A. DATASET DESCRIPTION

For the experiment, we considered the following three electric
load datasets.

o« GEFCOM 2012: The first dataset includes hourly elec-
tric load data of a US utility and the temperature
data from January 1, 2005 to December 31, 2008 for
20 zones, which were used in the load forecasting track
of the Global Energy Forecasting Competition 2012
(GEFCom 2012) hosted on Kaggle [44]. This dataset
is open to the public 45], and we used the data from
2007 to 2008. Out of the 20 zones, we only used data
from zone_1 to zone_11 because the remaining nine
zones had no temperature data.

o Mendeley Malaysia: The second dataset includes the
hourly load data of the power supply company of Johor
City in Malaysia, and the temperature data—ranging
from January 1, 2009 to December 31, 2010—were
provided by Mendeley [46]. This dataset is also open to
the public. However, it does not contain any information
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FIGURE 3. Overall structure of the proposed scheme.

on Malaysian holidays; thus, we collected the holiday
information for the period from the Internet.

« Private University: The last dataset contains the hourly
electric load data of private university buildings located
in Seoul, South Korea, from January 1, 2015 to Decem-
ber 31, 2018. Among them, we used the data of the
recent two years. We considered three types of school
buildings: academic buildings, laboratory buildings, and
dormitories. An academic building contains classrooms,
department offices, and other administrative offices.
Unlike other datasets, this dataset provides the load data
only. Thus, we collected the temperature data from the
Korea Meteorological Administration (KMA) and the
holiday information from the Internet.

Based on these datasets, we constructed a total of fifteen
datasets for the experiment: eleven datasets from the first
dataset, one from the second dataset, and three from the third
dataset. All dataset variables were normalized into a range
of 0 to 1. Table 2 shows those datasets and some of their
characteristics.

B. MODEL SETUP

For performance comparison, we considered five other gen-
eration models: three GAN-based models, one statistical
generation model, and one deep neural network generation
model. The three GAN-based models are vanilla GAN [30],
CGAN [47], and WGANGTP [13], and the statistical and deep
neural network generation model are Mega-trend-diffusion
(MTD) [5] and Tabular Variational Auto Encoder (TVAE) [9],
respectively. We implemented all these models using Python
3.7.3 with TensorFlow 1.13.1 and Pytorch 1.5.0.

We used similar hyperparameters for the GAN-based mod-
els. The generators and discriminators were set to have
three layers with seven perceptrons each, and sigmoid and
rectified linear unit (ReLU) were used as their activation
function, respectively. The number of epochs, learning rate,
noise dimension and batch size were 1000, 0.001, 20 and 50,
respectively. In the case of CGAN, as CGAN requires both
inputs and an associated condition unlike other GAN-based
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TABLE 2. Characteristics of fifteen datasets.

No. Dataset Public data
1 zone_1 (¢}
2 zone 2 (¢}
3 zone 3 (¢}
4 zone 4 (¢}
5 zone_ 5 (¢}
6 zone_6 (¢}
7 zone 7 (¢}
8 zone_ 8 (¢}
9 zone 9 (¢}
10 zone_10 (¢}
11 zone 11 (¢}
12 Malaysia (¢}
13 Academic X
14 Dormitory X
15 Laboratory X

models, we used normalized electric loads as its condition
when we train the model. Furthermore, when generating arti-
ficial input variables, we used a condition with an even distri-
bution over 0 to 1 for uniformly distributed output variables.
That is, the CGAN condition was set to 0, 0.1,0.2, ..., 1.0.
For other hyperparameters not mentioned above, we followed
the experimental setup described in each model’s paper.
For the input variable column designation of the CTGAN,
we set the “Holiday” variable as the categorical column
and the other variables as continuous columns. For the other
hyperparameters of the CTGAN and TVAE, such as opti-
mizer, activation, and the number of epochs, we followed
the default settings of SDGym [48]. In the case of MTD,
we implemented the original paper [5].

We used MLP as the regression model, the hyperparame-
ters of which were unchanged throughout the experiment. For
implementation, we used scikit-learn library [49]. We set the
number of hidden layers to seven, empirically. Furthermore,
we set the number of perceptrons in each hidden layer to
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FIGURE 4. PCA of real data and input variables generated by various generation models.

seven, which was approximately 2/3 of the number of input
variables according to [35]. The objective function was a
mean squared error between forecasting results and true elec-
tric loads. The other settings followed the default settings of
the library. We only used 10-dimensional input variables at
one point for forecasting; thus, we did not experiment with
other deep learning models that require a sequence of data
input variables at a consecutive time (e.g., CNN and RNN).

C. EVALUATION METRICS

For the accuracy comparison, we calculated the mean abso-
lute percentage error (MAPE), root mean square error
(RMSE), and mean absolute error (MAE), which are the most
popular metrics used for comparison. The MAPE, RMSE,
and MAE are computed in Equations (5), (6), and (7), respec-
tively, where N is the number of data samples, A; is the actual
electric load, and F; is the forecasted value electric load.

1 A, — F,
MAPE = 100 x — Lt 5
1 2
RMSE = /]v Zt: (A, — F)) (6)
1
MAE = v Xt: A, — F,| (7

V. EXPERIMENTS AND DISCUSSION

In this section, we present four experiments that we per-
formed to evaluate the effectiveness of our scheme. First,
we investigate the effectiveness of various data genera-
tion schemes. Second, we evaluate the performance of the
forecasting models trained using those generated datasets.
Third, we compare the effect of our separate data genera-
tion scheme and traditional data generation scheme, which
generates input variables and output variables at the same
time. Finally, we evaluate our scheme with a different input
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variable configuration. In all the experiments, we divided
all datasets into training and test sets at a ratio of 5:5
(1 year each). Thus, the number of training and test data was
8,766 each. When we generate artificial data using diverse
generation models, we generated 17,532 data samples, twice
as much as the training data.

A. DATA GENERATION

In this experiment, we consider two types of data generation:
one for input variables and the other for output variables.
In the data generation for input variables, we considered six
different data generation schemes and compared their effec-
tiveness by using a principal component analysis (PCA) [50].
PCA is one of the visualization methods for representing
multi-dimensional data by reducing the data dimension using
principal components extracted from the given data. When
extracting two principal components from the generated
data, the generated data samples are represented in a two-
dimensional space. In the data generation for the output
variable, we used our regression model Reg_out to generate
data corresponding to the input variables and visualized their
distribution using a histogram. We conducted this analysis for
all the datasets. For instance, Fig. 4 depicts the distribution
of real data and input variables generated by vanilla GAN,
CGAN, WGANGP, CTGAN, MTD, and TVAE, respectively,
in terms of the first two principal components for the Mende-
ley Malaysia dataset. Fig. 5 depicts the histogram of real
data and the output variables produced by Reg_out using the
generated input variables. In the figures, the x-axis and y-axis
represent the distribution of normalized output variables and
the frequency of each output variable, respectively.

The data distribution in Fig. 4(a) shows several bars. The
distributions of Figs. 4(b)~(g) show three different patterns.
In the case of vanilla GAN and MTD (Figs. 4(b) and (f),
respectively), most of the generated input variables were
located near the origin. That is, these models learned only the
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FIGURE 5. Distribution histogram of real data and the output variables generated by Reg_out.
TABLE 3. MAPE comparison of forecasting results.
MLP GAN CGAN WGANGP CTGAN MTD TVAE
Dataset Real-1yr Real-1yr + Generated Data
zone 1 14.71 14.09 1335 13.22 1291 13.09 14.24
zone 2 10.73 9.76 9.83 8.74 8.31 9.27 9.35
zone 3 8.47 9.55 8.44 8.36 8.32 9.74 8.65
zone 4 21.57 19.74 21.52 19.77 18.22 19.61 19.10
zone 5 14.77 15.46 14.58 15.30 13.25 17.33 13.94
zone 6 9.81 8.89 8.47 8.90 8.75 9.55 9.08
zone 7 8.72 8.35 8.89 8.59 8.27 8.54 8.45
zone 8 11.94 11.40 11.87 11.50 11.84 11.92 11.32
zone 9 176.28 171.67 167.79 164.94 170.61 169.25 174.72
zone 10 11.39 11.27 10.38 10.59 11.87 11.13 10.02
zone 11 14.07 13.85 13.72 13.62 13.17 13.98 13.80
Malaysia 12.75 10.78 11.42 11.74 10.66 10.70 12.11
Academic 15.89 16.58 1522 16.35 14.70 18.43 16.10
Dormitory 11.07 1048 10.60 10.64 9.69 10.29 10.29
Laboratory 10.92 10.62 9.83 11.73 9.69 10.25 10.69

mean or mode of the data distribution rather than the whole
data distribution. As a result, their output variable distribution
was concentrated around 0.4, as shown in Figs. 5(b) and (f).
On the contrary, the input variables of CGAN and WGANGP
(Figs. 4(c) and (d), respectively), had a square-shaped distri-
bution including the distribution boundary of the real data.
Hence, their output variables were spread between 0.1 and
0.8. Although WGANGP and CGAN generated some out-
put variables over the entire range, they were still focused
on specific areas. On the contrary, CTGAN and TVAE
(Figs. 4(e) and (g), respectively) showed the most similar dis-
tribution of the input variables to the real data distribution.
In addition, the distributions of their output variables were
similar. In particular, CTGAN covered the largest portion
among the generation models and the distribution was the
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most similar to the real data. The other datasets showed
similar results.

B. FORECASTING PERFORMANCES

We generated artificial input variables using six different
generation models for fifteen datasets in the first experiment
to augment the dataset for training a forecasting model.
Hence, to determine the effectiveness of data augmenta-
tion, we investigate the accuracy of the regression-based
forecasting models constructed by using the six augmented
datasets. As a baseline, we constructed an MLP, trained it
using actual 1-year, and measured its forecasting accuracy.
Tables 3, 4, and 5 show their MAPE, RMSE, and MAE,
respectively. The values in the tables represent the average
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TABLE 4. RMSE comparison of forecasting results.

MLP GAN CGAN WGANGP CTGAN MTD TVAE
Dataset Real-1yr Real-1yr + Generated Data
zone 1 4026.07 3974.62 367391 3866.79 3664.96 3949.87 3937.80
zone 2 25784.80 23551.15 23849.98 23289.12 20053.93 22629.85 2244522
zone 3 22277.84 25046.28 22071.18 21869.86 21814.20 25228.29 22794.50
zone 4 88.01 79.48 87.46 77.24 74.50 79.57 75.05
zone 5 1424.99 1430.19 1363.16 137543 1209.44 1592.94 1300.18
zone 6 24682.13 22707.51 21610.51 22423.67 22764.25 2426391 23119.44
zone 7 22854.04 22391.96 23657.02 22338.21 22001.37 22113.89 22460.02
zone 8 673.40 639.09 651.50 639.01 665.67 671.07 632.10
zone 9 21504.38 21251.80 21323.59 21376.54 2127715 21751.77 21254.68
zone 10 4032.99 4013.97 3606.94 3695.33 4187.48 3918.41 3685.11
zone 11 22888.21 22633.30 22592.03 22030.51 21750.47 23399.16 22717.28
Malaysia 6970.90 6192.82 6537.09 6585.22 5941.74 6125.80 6774.74
Academic 486.40 519.78 508.27 509.25 454.30 432.94 465.12
Dormitory 203.34 192.25 197.67 196.62 181.80 143.40 191.14
Laboratory 379.08 373.87 346.52 406.95 344.25 361.18 359.18
TABLE 5. MAE comparison of forecasting results.
MLP GAN CGAN WGANGP CTGAN MTD TVAE
Dataset Real-1yr Real-1yr + Generated Data
zone 1 3031.98 2950.32 2746.32 2826.59 2713.61 2935.87 2943.12
zone 2 19833.00 18152.67 18386.71 17741.98 15393.78 17362.13 17253.05
zone 3 17004.50 19306.20 16893.39 16772.05 16707.21 19564.56 17324.26
zone 4 68.84 61.60 68.38 60.12 57.08 61.80 58.62
zone 5 1096.63 1112.99 1051.14 1079.81 947.69 1250.86 1008.26
zone 6 18994.53 17292.03 16470.24 17265.14 17226.36 18583.18 17752.64
zone 7 1749891 16990.58 18003.14 17197.12 16796.63 16999.06 17121.02
zone 8 510.79 485.92 503.99 486.16 501.52 509.70 482.46
zone 9 15391.58 15160.43 15298.85 15369.72 15301.12 15606.48 1528291
zone 10 3111.95 3082.83 2810.28 2878.69 3216.63 3030.44 2783.96
zone 11 17455.90 17195.23 17113.79 16550.20 16482.46 17622.00 17277.47
Malaysia 5112.49 4308.38 4552.60 4743 .45 4268.85 4293.92 4991.68
Academic 366.04 391.70 367.01 380.32 337.65 432.94 353.19
Dormitory 154.23 146.25 148.90 148.43 135.79 143.40 144.37
Laboratory 283.02 27791 255.34 304.50 254.05 266.39 274.04

value of the results of repeating the prediction 10 times. The
generation schemes that showed the best performance in each
dataset are marked in bold font.

In the case of MAPE, the zone_9 dataset showed extraordi-
nary errors from 164% to 176%. This is because it had many
entries with zero electric load. This could result in a severe
penalty in calculating MAPE.

As we can see in the tables, our CTGAN exhibited the
best performance among all the generation schemes. Com-
pared to MLP using real 1-year data, our CTGAN improved
the MAPE in the fourteen datasets and showed a marginal
difference for the one dataset. WGANGP also enhanced the
forecasting accuracy for twelve out of fifteen datasets. TVAE
and CTGAN showed very similar forecasting performance in
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most datasets because they had a very similar distribution of
generated data in the previous experiment.

Overall, the data generation schemes we considered con-
tributed to enhancing the forecasting performance. In partic-
ular, CTGAN demonstrated the best performance for most
datasets in terms of MAPE because it has a superior ability to
learn the overall distribution of the real data and effectively
generate data following the distribution.

Tables 4 and 5 show that using properly augmented data for
training can enhance the forecasting performance in terms of
RMSE and MAE compared to only using real 1-year data.
In particular, our CTGAN achieved better RMSE and MAE
than the MLP using the 1-year real data for all datasets except
for zone_10. On the contrary, MTD and GAN, which learned
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TABLE 6. Comparison of our scheme and traditional scheme.

Our scheme Traditional scheme

Dataset MAPE RMSE MAE MAPE RMSE MAE
zone 1 1291 3664.96 2713.61 19.78 4302.61 3543.07
zone 2 8.31 20053.93 15393.78 11.74 28312.65 21827.54
zone 3 8.32 21814.20 16707.21 12.41 31419.21 24585.39

zone 4 18.22 74.50 57.08 23.84 93.66 7534
zone 5 13.25 1209.44 947.69 22.52 2033.69 1618.60
zone 6 8.75 22764.25 17226.36 13.25 29879.71 24143.75
zone 7 8.27 22001.37 16796.63 12.97 31748.84 25205.56

zone 8 11.84 665.67 501.52 18.17 849.02 690.21
zone 9 170.61 21277.15 15301.12 160.80 22354.16 17122.19
zone 10 12.04 4292.89 3294.14 16.22 5289.43 4239.09
zone 11 13.17 21750.47 16482.46 16.46 27592.26 20496.85
Malaysia 10.66 5941.75 4268.85 17.97 8626.29 7015.90

Academic 14.70 454.30 337.65 29.75 848.63 669.83

Dormitory 9.69 181.80 135.79 15.03 249.25 197.62

Laboratory 9.69 344.25 254.05 16.83 561.31 432.62

only the mean or mode of the real data distribution, showed
the worst performance among the generation models.

C. COMPARISON WITH TRADITIONAL METHOD

In this experiment, we compare our two-stage data generation
scheme with the traditional one-stage approach, where both
input and output variables are generated simultaneously. For
a fair comparison, we used CTGAN for simultaneous data
generation. Table 6 presents its MAPE, RMSE, and MAE.
Our proposed scheme demonstrated better accuracy than the
traditional scheme in all datasets except zone_9, where the
traditional scheme achieved slightly better MAPE than our
proposed scheme. Still, its RMSE and MAE were worse than
our proposed scheme.

To observe the effectiveness more closely, we compared
the forecasting results of the proposed scheme and traditional
scheme with actual electric load data. Fig. 6(a) shows the
comparison result over about one month for the Mendeley
Malaysia dataset, and Figs. 6(b) and (c) show the enlarged
portion of some weekends and weekdays, respectively. Over-
all, our scheme predicts the overall trend and maximum
and minimum values more accurately than the traditional
scheme.

D. INPUT VARIABLE FLEXIBILITY EVALUATION

In this experiment, we demonstrate the flexibility of our
scheme in the input variable configuration by using datasets
to which several input variables were newly added. We con-
structed new datasets by merging 10 original input variables
and 7 variables indicating the electrical usage data during
the past 7 days; thus, we had 17 input variables. Then,
we measured the forecasting performance of a baseline model
(MLP trained with actual 1-year data) and our scheme. The
other experimental settings were the same as the previous
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experiments. Table 7 presents the forecasting performance of
MLP and our scheme. The forecasting results of our scheme
that showed better performance in each metric are marked in
bold font. Compared with the results organized in Tables 3,
4, and 5, the overall forecasting performances of both MLP
and our scheme were improved because we used past elec-
trical usage data as input variables. Even in this case, our
scheme outperformed the baseline MLP, especially in terms
of MAPE and MAE. This result means that our scheme can be
a reasonable way for improving the forecasting performance
regardless of what input variables are used.

VI. CONCLUSION

In this paper, we proposed a two-stage data generation
scheme for short-term load forecasting to solve the data short-
age problem in training a forecasting model. We employed
CTGAN, which is a novel GAN-based model, to generate
input variables and a deep learning-based regression model
to generate output variables using the available small real
data. We then trained an electric load forecasting model using
actual and generated data. To determine the effectiveness of
our data generation scheme, we implemented five other data
generation schemes, constructed forecasting models using
their data, and compared their performances in terms of
MAPE, RMSE, and MAE.

The experimental results demonstrated that as CTGAN can
model tabular data distributions well, it is appropriate for gen-
erating input variables for STLF. Also, our data generation
scheme enhanced the forecasting accuracy more than other
data generation schemes. In addition, from the comparison
with the actual electric load data, our proposed scheme can
achieve better performance than traditional one-stage data
generation method.
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TABLE 7. Comparison of forecasting results with added input variable.
MAPE RMSE MAE
Dataset
MLP Our scheme MLP Our scheme MLP Our scheme
zone 1 5.20 2.96 1379.99 928.31 1022.73 628.56
zone_2 5.15 2.10 11671.84 10473.02 9153.81 4194.33
zone 3 3.33 1.80 8746.455 5222.26 6571.91 3637.85
zone 4 28.91 9.86 125.30 35.54 100.15 21.44
zone 5 5.75 3.78 549.59 562.055 407.37 308.87
zone_6 3.30 221 8097.16 10451.16 6222.56 4502.87
zone 7 4.63 1.79 11632.49 5273.60 9128.59 3638.58
zone_8 5.87 3.09 319.31 219.79 238.15 132.24
zone_9 40.77 24.32 9962.76 8469.49 6235.72 5325.16
zone 10 5.55 2.50 2041.14 1178.57 1522.14 718.87
zone 11 5.42 3.17 8017.09 11594.39 6225.01 4367.85
Malaysia 5.47 3.65 3052.57 2652.69 2237.77 1491.02
Academic 11.53 4.19 299.72 169.40 225.00 104.66
Dormitory 5.63 3.54 99.00 80.42 75.25 50.22
Laboratory 5.65 2.72 204.77 126.79 146.15 75.22

However, the limitation of our scheme is that since our
scheme is based on GAN, if the amount of data is so small,
then the GAN cannot sufficiently train the distribution. GANs
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that are not sufficiently trained cannot be able to properly
generate artificial data, which cannot be used to improve
forecasting performance. In future works, we will make a
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more applicable load forecasting scheme to such industry
than this work by applying generation models which can train
even in a small amount of data.
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