
Received September 27, 2020, accepted October 15, 2020, date of publication November 10, 2020,
date of current version December 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3035063

Determining Bug Prioritization Using Feature
Reduction and Clustering With Classification
SHAHID IQBAL1, RASHID NASEEM 2, SALMAN JAN 3, SAMI ALSHMRANY4,
MUHAMMAD YASAR5, AND ARSHAD ALI4
1Department of Computer Science, City University of Science and Information Technology, Peshawar 25000, Pakistan
2Department of IT and Computer Science, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur 22600, Pakistan
3Department of Computer Science, University of Peshawar, Peshawar 25120, Pakistan
4Faculty of Computer and Information Systems, Islamic University of Madinah, Medina 42351, Saudi Arabia
5Malaysian Institute of Information Technology, University of Kuala Lumpur, Kuala Lumpur 50250, Malaysia

Corresponding author: Salman Jan (salman@uop.edu.pk)

ABSTRACT Assigning accurate and timely priorities to bugs manually is resource consuming and effects
addressing important bugs. In the existing work single feature is used which leads to information loss because
bugs have a lot of features including ‘‘severity’’, ‘‘component’’, ‘‘operation system’’, ‘‘owner’’, ‘‘status’’,
‘‘assigned to’’, ‘‘summary’’ etc. In this research, the authors proposed an improved model based on problem
title, severity, and component for bug prioritization. We converted these textual features to numeric features
using Term Frequency Inverse Document Frequency. During conversion, 5591 new features are generated,
which increase complexity and running time of algorithms. To minimize these aspects, non-negative Matrix
Factorization (NMF) and Principal Component Analysis (PCA) algorithms are used. Our proposed model
is a combination of feature reduction, clustering, and classification algorithms. Clustering is performed on
all and reduced features. For clustering X-Mean and K-Mean algorithms are used. SVM and Naive Bayes
classifiers are applied on all features, reduced features, and on clustered features. For experiments chromium,
eclipse, net beans, mozilla, and free desktop datasets are used. Experimental results reveal better performance
of model, both with all features and with reduced features in terms of precision, recall, f-score, and accuracy.
Maximum improvement is achieved with reduced features.With all features chromium, eclipse, free desktop,
mozilla and net beans achieved 22.46%, 8.32%, 30.93%, 25.79% and 37.78% respectively improvement in
accuracy.With reduced features chromium, elipse, free desktop, mozilla, net beans achieved 14.64%, 8.81%,
33.22%, 34.37% and 41.01% accuracy respectively. Overall classification with clustering and reduced
features performed better than classification on all features, classification with clustering on all features,
and classification on reduced features. In all the approaches SVM classifier outperformed Naive Bayes in
terms of precision, recall, f-score, and accuracy. On average maximum accuracy is achieved by SVM with
NMF and X-Mean clustering.

INDEX TERMS Quality software, bugs, textual features.

I. INTRODUCTION
Software systems are becoming necessary for every busi-
ness. Many organizations depend on software to deal with
their day-to-day operations and deliver services to their
clients. Thus, the increasing demand for quality software
also increases software maintenance costs. According to [1]
approximately 90% of software life-cycle cost is con-
sumed by softwaremaintenance activities.Withmaintenance,
software testing is also performed to check the quality of

The associate editor coordinating the review of this manuscript and

approving it for publication was Mamoun Alazab .

software. In software testing, one of the most important activ-
ities is Bug Triaging. Critical decisions can be taken in bugs
fixing with the help of bug triaging. It also helps in finding
duplicate reported bugs, correct and incorrect reported bugs,
bugs that require immediate attention, and which does not,
and assigning an appropriate developer to it. However, man-
ual bug triaging is a tedious, time, and resource-consuming
process. This problem is addressed by different researchers
in [2]–[6] andUddin et al. [7]. According to Guo et al. [8] and
Uddin et al. [7] up to August 2009, the Eclipse bug database
contains over 250,000 and the Mozilla bug database over
500,000 bug reports. On average, Eclipse received 120 and

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 215661

https://orcid.org/0000-0002-4952-8100
https://orcid.org/0000-0002-8250-694X
https://orcid.org/0000-0002-1928-3704

S. Iqbal et al.: Determining Bug Prioritization Using Feature Reduction and Clustering With Classification

Mozilla 170 new bug reports on each day from January to
July 2009. So, it is a very time consuming and tedious job for
bug triager to triage these bugs daily. In a normal bug triaging
process, when a new bug enters the bug repository, the triager
analyzes the bug report in two ways for taking decisions
i.e. Repository Oriented Decisions (ROD) and Development
Oriented Decisions (DOD). In ROD, once it is verified that
the reported bug is not duplicate its validity is checked i.e.
it is Correct or Incorrect. This verification and validation help
discard the bug reports which do not need to be resolved.
In DOD, the triager assigns Severity and Priority to bug
reports. So that critical bugs should be fixed on priority bases
[2], [7]. In the end, the triager writes his remarks regarding the
reported bug, and the bug is assigned to the appropriate devel-
oper for resolution. Hence an automated system is required
to assign accurate and timely priority to newly reported bugs.
For achieving this task researchers have used different data
mining techniques like clustering, classification, etc. But still,
improvement is required because assigning correct priority
to reported bugs plays an important role in fixing critical
bugs on time. An improved model has been proposed in this
work to achieve this task. According to [6], [9], [10] when
non-supervised machine learning algorithms are applied as
preprocessing steps like Clustering, before applying super-
visedmachine learning algorithms like Classification on data,
it improves results. This approach is the first time used by
Goyal et al. [6].

A. RESEARCH SIGNIFICANCE
The proposed model has significant effects on bug prioriti-
zation. It has enhanced the accuracy of bug prediction and
is helpful for open source software (Chromium, Eclipse,
NetBeans, Mozilla, and FreeDesktop) for fixing their crit-
ical bugs on a priority basis. The proposed model can be
implemented in software houses for the improvement of their
software quality.

The remainder of this research article is organized as fol-
lows. Section II provides an overview of bug prioritization
and literature review. This chapter discusses the different
techniques used by researchers. The review of compara-
tive published literature and evaluation criteria is also dis-
cussed. Section III presents the research methodology. The
first phase presents the steps for analysis of the existing
bug prioritization model, finding problems in the existing
model, and propose improvements. Second phase incorporat-
ing proposed improvements in the existing system. Section IV
presents and discusses the experimental results of the pro-
posed system and compare results with existing approaches.
Section V concludes this papers with accomplished goals and
contributions.

II. LITERATURE
Different Researchers have worked on bug reports, detecting
duplicate bugs, assigning severity, priorities, and developer
to a bug. There is a number of studies in this field, different
bug-finding tools are developed to find bugs from source code

and prioritize them, but the usually high false-positive rate
is observed in prioritization. A lot of researchers proposed
different ways of bug prioritization improvement.

A. BUG FINDING TOOLS
Kim and Ernst [11] applied three bug-finding tools FindBugs,
JLint, and PMD on open source projects Columba Lucene,
and Scarab to assign priority levels and analyzing the lifetime
of a bug. Software change history (history-based data) is used
for analyzing bug lifetime and a higher priority is assigned to
bug with a shorter life. Kim and Ernst [12] also worked on
the weight of bug categories. The weight of a bug category
depends on the resolution of a bug in that category. When
a bug is resolved in a bug category, that category weight is
increased. Kremenek and Engler [13] also used bug-finding
tools for prioritization based on a frequency count of success-
ful and failed checks. Based on the tool’s analysis decisions
successful and failed checks are classified.

B. MACHINE LEARNING ALGORITHMS
Anvik et al. [14] applied machine learning algorithms on
bug reports for assigning developers automatically to the
newly reported bug. Decision Trees (DT), Naive Bayes
(NB), and SVM were used on Firefox, Eclipse, and GCC
open-source projects. Among DT, NB, and SVM, high pre-
cision was achieved by SVM. Anvik and Murphy [15]
compared their approaches by retrieving the expertise of
developers from source code repositories and bug reposito-
ries. They found that both approaches are good at assigning
appropriate developers for bug fixing. Anvik and Murphy [2]
proposed a model for building recommenders for the vari-
ation of DODs. e.g. finding people interested in a bug,
predicting component of newly reported bug, and assign-
ing a developer to the new bug. GCC, Bugzilla, Eclipse,
Mylyn, and Firefox open-source projects are used for the
evaluation of recommenders and achieved more than 70%
precision. For the recommender’s configuration, an auto-
matic approach is proposed which reduced configuration
efforts. Researchers have used different classification tech-
niques for predicting suitable developers. In the proposed
work of Murphy and Cubranic [16] supervised Bayesian
learning approach is used, which can accurately assign
30% of the reports to developers. Anvik et al. [14] used a
supervised ML algorithm and presented a semi-automatic
approach for assigning bug reports to a developer with his
appropriate expertise for bug resolution. Ahsan et al. [17]
used SVM, Naive Bayes, Decision Tree, Random Forest,
Reduces Error Pruning (REP) Tree, Tree-J48, and Radial
Basis Function (RBF) Network and presented compara-
tive analysis in order to automatically assign bug report
to a developer in an optimized way. Lamkanfi et al. [18]
analyzed the textual description of bug reports by using
text mining algorithms, for predicting the severity of
bug reports accurately. Studies [3] extended their previ-
ous work by using SVM, K-Nearest Neighbour (KNN),
NB, and NB Multinomial Classifiers, and found that NB

215662 VOLUME 8, 2020

S. Iqbal et al.: Determining Bug Prioritization Using Feature Reduction and Clustering With Classification

Multinomial Classifier results best than other proposed algo-
rithm. Chaturvedi and Singh [19] applied SVM, KNN, NB,
NB Multinomial, J48, and RIPPER for assigning Severity
to reported bug. For assigning bug priority Yao et al. [20]
used Artificial Neural Network (ANN) and for increasing
the accuracy of the model several strategies are proposed.
Kanwal and Maqbool et al. [4] used NB and SVM clas-
sifiers for bug prioritization and found SVM perform bet-
ters than NB. Also, two new measures (Nearest False
Negatives and Nearest False Positives) are proposed by them.
Sharma et al. [21] used Neural Network, KNN, NB, and
SVM for predicting the priority of new bugs and evalu-
ated their performance on different measures. Pre-processing
step including Tokenization and stop word removal applied
to a Summary attribute of bug reports. The accuracy of
all techniques was better except for NB. Nigam et al. [5]
used Inverse Multiquadric, Sigmoid, Radial Basis, Power
and Multiquadric Kernel functions with Multi-Class SVM
for grouping similar bug reports on Labeled, Unlabeled, and
Test data. Experimental results showed that Radial Basis,
Multiquadric, and Inverse Multiquadric provided good accu-
racy. Javed et al. [22] proposed an automated bug classifi-
cation model. For feature selection, they used Chi-Square
and TFIDF and for assigning the correct class to reported
bugs they used a multinomial Naive Bayes classifier.
Kaur and Jindal [23] performed prediction bug severity of
thirteen different apache projects, which were automatically
extracted from the Bug Report Collection System tool. They
predicted severity on the most frequent terms used in the bug
report summary attribute. Initially, they used preprocessing
on summary and then applied different machine learning
techniques including NB, DT, SVM, RF, KNN, Bagging,
Boosting, SLDA, MAXENT, and Glmnet. They found that
the Boosting technique outperformed other machine learning
techniques. Kukkar et al. [24] proposed a novel deep learning
model for multiclass severity classification, using Convo-
lution Neural Network and Random forest with Boosting
(BCR). For preprocessing they used the natural language
technique on bug report and then n-gram is used for feature
extraction. After that CNN extracts important feature patterns
of respective severity classes and at the end random forest
with boosting classifies the multiple bug severity classes.
The average accuracy of the proposed model is 96.34%.
Gomes et al. [25] conducted a comprehensive mapping study
review of the latest research efforts on automatically bug
report severity prediction. They categorize their study into
ten different quantitative aspects of experiments reported in
different papers. Initially, they selected 50 papers and then
filter them to 18 papers and adding more 9 papers to con-
duct a mapping study review. There gathered data confirms
the relevance of the topic, reflects the scientific maturity
of the research area, as well as identify gaps, which can
motivate new research initiatives. A comprehensive sum-
mary of different researcher work is given below in Table 1
while Bugs Report example of each dataset is presented in
Table 2.

C. INTERACTIONS WITH A BUG REPORT
People play different roles as they interact with reports in a
bug repository. The person who submits the report is known
as a reporter or the submitter of the report. The triager is
the person who decides if the report is meaningful and who
assigns the responsibility of the report to a developer. The
one that resolves the report is the resolver. A person that
contributes a fix for a bug is called a contributor. A contributor
may also contribute comments about how to resolve a bug or
additional information that leads to the resolution of a report.
A person may assume any one of these roles at any time.
For example, a triager may resolve a report as a duplicate of
an existing report. Alternatively, a developer may submit a
report, assign it to himself, contribute a fix, and then resolve
the report. For that report, a single person has fulfilled all the
roles [14].

D. PROBLEM BACKGROUND
Software development organizations use their significant por-
tion of resources in handling user-submitted bug reports.
In the overall life cycle of the software product, 70% of the
cost is consumed by maintenance [29]. The software which
is commonly used by society, the number of reported bugs
typically exceeds the resources available to triage them. As a
result, important bugs are entertained very late. According
to Anvik et al. [14], 3426 bug reports were submitted for
Eclipse over the four-month period, averaging 29 reports per
day. Manually assigning priorities to this bug is a time and
resource-consuming process. Automated bug prioritization
will reduce the time and effort of resources. In the bug track-
ing system, the reported bug severity is assigned by the user,
and priority is assigned by the developer. One serious issue
in the submitted report is the assigning of accurate severity.
In most of the cases, the user is unaware of the difference
between categories (Herraiz et al. 2008). Developer assigns
priorities and allocates their time and resources accordingly.
Accurate prioritization helps in bug fixing schedule and
resource allocation, otherwise important bugs resolution will
be delayed [21].

E. PROBLEM STATEMENT
Manual bug triaging is a very tedious, time and resource-
consuming process, due to which important bugs are enter-
tained very late [6]. In the existing model single feature is
used for bug prioritization, which leads to information loss,
because bugs have a lot of features like ‘‘severity’’, ‘‘com-
ponent’’, ‘‘operation system’’, ‘‘owner’’, ‘‘status’’, ‘‘assigned
to’’ and ‘‘summary’’. To improve the result, we will use three
features for bug prioritization i.e, problem title, severity, and
component. These are text and categorical features and will
be transformed into numeric features because clustering and
classification algorithms accept numeric data as input. When
converting text and categorical features to numeric features,
the total number of features increases to 5591, and these
features will increase more if a large number of bug’s dataset

VOLUME 8, 2020 215663

S. Iqbal et al.: Determining Bug Prioritization Using Feature Reduction and Clustering With Classification

TABLE 1. Summary of approaches used by different researchers.

TABLE 2. Bugs Report example of each dataset.

is used. A large number of features will increase complexity
and obviously running time of algorithms. In the existing
model, Naive Bayes provides better results but Naive Bayes
does not perform well with high dimension data [4].

F. RESEARCH SCOPE
This research emphasizes the prioritization of bugs. To eval-
uate the proposed improved model, different bug datasets
will be used such as Chromium, Eclipse, NetBeans, Mozilla,

215664 VOLUME 8, 2020

S. Iqbal et al.: Determining Bug Prioritization Using Feature Reduction and Clustering With Classification

FIGURE 1. Existing research model [6].

and FreeDesktop. Each dataset contains 19917, 10000, 9909,
3398, and 2184 bugs respectively. For a comparison of the
proposed model with an existing model of Goyal et al. [6],
evaluation criteria like accuracy, F-score, precession, and
recall will be utilized.

G. EXISTING BUG PRIORITIZATION MODEL
In the existing model single feature is used for bug
prioritization [6]. The existing model is shown in Figure 1.
Numeric features are extracted from a single feature prob-
lem title, which leads to information loss. Three clustering
algorithms X-Mean, K-Mean, and Expectation Maximiza-
tion are used. Classification with clustering performs bet-
ter results. The clustering result of each algorithm is given
to three different classification algorithms Random Forest,
Naive Bayes, and Sequential Minimal Optimization. Results
of all combinations are compared, and it was found that
X-Mean clustering performs better results with Naive Bayes.
The dotted line is used in Figure 1 to highlight the best
combination.

FIGURE 2. Research framework for bug prioritization.

III. METHODOLOGY
This research starts with the study of the existing bug prior-
itization model; to determine the strengths and weaknesses
of the existing model Goyal et al. [6]. After the in-depth
study of the existing bug prioritization model, few limitations
were recognized as explained in the problem statement in
Section II-F. The proposed model will overcome the weak-
ness of the existing model. A comparison with the existing
model will be carried out in order to determine if the proposed
model succeeds to get the best results? In the proposed frame-
work weakness and strengths of the existing bug, the pri-
oritization model is studied. After finding weaknesses new
features are added to improve the performance of the existing
model. Figure 2 shows the proposed framework.

A. PROPOSED BUG PRIORITIZATION MODEL
The proposed bug prioritization model is shown in Figure 3.
Three features are used for bug prioritization, ‘‘problem

VOLUME 8, 2020 215665

S. Iqbal et al.: Determining Bug Prioritization Using Feature Reduction and Clustering With Classification

FIGURE 3. Proposed model for bug prioritization.

title’’, ‘‘component’’ and ‘‘severity’’. Modification / New
additions including ‘‘features reduction techniques’’ and
‘‘classification algorithms’’ are shaded in 3. In each dataset,
60% data is used for training and 40% data is used for testing.
The implementation of the proposed model can be divided
into four categories.
• Classification on all features.
• Clustering on all features and then apply classification
on clustered data.

• Features reduction and then apply classification on
reduced features.

• Feature reduction, then apply clustering on reduced fea-
tures and finally apply classification on clustered data.

The proposed model is discussed in subsequent sections.

1) FEATURE EXTRACTION
The bug reports have many features, some are filled during
processing the reports, and some are filled by the user at
the reporting time. The features we will be used for classi-
fication are ‘‘problem-title’’, ‘‘component’’ and ‘‘severity’’.
Problem Title is a text feature while component and severity
are categorical features. The algorithms we will be used
for clustering and classification work on numeric features.
So, we need to transform these categorical and text features
to numeric features, for which below information retrieval
techniques are used.

2) PRE-PROCESSING
The summary attribute of the bug report contains the
unstructured text. It may have some special characters,
other language alphabets, sentences, etc, which make this

inappropriate for any type of analysis. To make this fit for
analysis the text should be passed through the following
stages.
• Tokenization: In this step, text provided by the user in
the problem title feature is converted to lower case and
then divided into tokens (words). Punctuations, symbols
such as hyphens, brackets, and nonalphabetic constructs
are removed.

• Stop Word Removal: In this step, common words,
like is, am, are, the, and, a, with, for, etc are removed.
Because these words do not mean anything special.

• Lemmatization: Words appearing in the problem title
of a bug report can appear in different forms. For exam-
ple, the word ‘‘connect’’ can appear as ‘‘connected’’,
‘‘connection’’, ‘‘connections’’ and ‘‘connecting’’. With
the help of lemmatization, all these words will be con-
verted to their ground word ‘‘connect’’.

• Term Frequency-Inverse Data Frequency: In the end,
TF-IDF is applied to the words obtained from the pre-
vious step to convert them into numeric features. It is
one of the most widely used techniques for processing
textual data [30]. It is an information retrieval technique
that evaluates a term’s frequency (TF) and its inverse
document frequency (IDF). Each word or term has its
own TF and IDF score. The product of the TF and IDF
scores of a term is called the TF*IDF score of that term.
The TF*IDF algorithm is used to assign the importance
to a word based on the number of times it appears in the
bug report. More importantly, it checks how relevant the
word is throughout the bug reports. For a word v in a
bug report b, the weight Wv,b of word v in a bug report
is given by Wv, b = TFv, blog(N/DFv) Where TFv,b is
the number of occurrences of v in bug report b, DFv is
the number of bug reports containing the word v, and N
is the total number of bug reports in a dataset.

3) NON-NEGATIVE MATRIX FACTORIZATION
NMF also is known as positive factorization or non-negative
rank factorization has been studied by different researchers
in the past few decades [31], [32]. It got popularized when
Lee and Seung [33] discovered that with the help of it, images
of visual objects can be decomposed into meaningful parts.
According to Cichocki and Phan [34] NMF has emerged as a
very helpful technique for data mining, information retrieval,
blind source separation (BSS), and clustering applications.
There are a lot of good algorithms produced by NMF includ-
ing geometry-based methods [35] and optimization-based
methods [34], [36]. NMF belongs to the unsupervised matrix
decompositions category in which it is guaranteed that the
values of attributes will be not negative [37]. In many appli-
cations, Non-negativity is a valid constraint, due to which
NMF got success by providing interpretable and meaning-
ful results, even ‘‘correct’’ results sometimes [38]. Matrix
decomposition methods such as Singular-Value Decompo-
sition (SVD), Independent Component Analysis (ICA), and
Principal Component Analysis (PCA) decomposes the matrix

215666 VOLUME 8, 2020

S. Iqbal et al.: Determining Bug Prioritization Using Feature Reduction and Clustering With Classification

into positive and negative value matrices, which are very hard
to interpret [37]. NMF is different from these decomposition
methods, it does not allow negative values in matrix decom-
position/factorization. As compared to other dimensionality
reduction methods like SVD, We can reconstruct the original
matrix from NMF decomposition by using no subtractive
and only additive combination of basic elements [39]. NMF
decomposes the matrix ‘‘M’’ of size ‘‘m * n’’ into factors
‘‘W’’ and ‘‘H’’ i.e.M = WH , where W is of size m * r and H
is of size r ∗ n. Additionally, the reduced rank r is generally
chosen as (n + m) r < m * n, hence the compression effect is
accomplished. As a result,M is able to be estimated as a linear
combination of the vectors of the basis matrix W and gains
matrix H. The nonnegative rank may be higher than the usual
matrix rank over the real field due to nonnegative constraints.

4) PRINCIPAL COMPONENT ANALYSIS
On a daily basis,k bugs are reported, due to which datasets
are increasing and are often difficult to interpret. PCA is
one of the most widely used techniques for reducing the
dimensionality of such datasets. It increases the interoper-
ability of data with minimum information loss [40]. PCA
finds patterns in data, and express the data by highlighting
their variations and similarities. It is hard to discover patterns
in high-dimensional data sets where graphic representation
luxury is not available. PCA is a powerful analysis tool for
this data. When patterns are found in data, the number of
dimensions can be reduced by using compression. Under-
standing variance, standard deviation, and covariance are
very important for understanding the working of PCA. PCA
algorithm is a six-step process.

1) Load dataset.
2) Find the mean of each data dimension and subtract

values from mean.
3) Find the covariance matrix of the dataset.
4) Find eigenvalues and eigenvector of the covariance

matrix.
5) Select Components(Eigenvectors) and form a feature

vector (matrix of eigenvectors).
6) Deriving the new dataset.

5) K-MEANS Clusterink2g
K-means clustering is a kind of unsupervised learning, that
is used for unlabeled data. The aim of this algorithm is to
classify your objects into the K number of the group based
on attributes/features. K is a positive integer number. The
grouping is carried out by reducing the sum of distance
squares between data in the matching cluster center. Hence,
the aim of K-mean clustering is to categorize the data into K
groups. Below are the steps of the K-mean algorithm.

1) Define the K value. (How many clusters or groups of
data are required).

2) Randomly select ‘‘K’’ number of centroids from data.
3) Calculate the distance of each data item from each

centroid.
4) Group data items based on minimum centroid distance.

5) Repeat steps ‘‘c’’ and ‘‘d’’ until the data item clusters
have not been changed.

6) X-MEANS CLUSTERING
X−means is an extended version of the K−mean algorithm.
X − mean was first introduced by Yahoo. This algorithm
consists of the below steps.

1) Traditional K-Mean algorithm
2) Improve Structure
3) If K > Kmax stops and reports the best scoring model

found during the search. Else go to step 1.
Once the K-mean algorithm executes. In step 2 it is tried

to split the resulted centroids into two centroids if possible.
There are two approaches used for splitting the final centroids
provided by K-mean. Approach one is to pick each centroid
one by one, split the selected centroid into two centroids, run
K-mean to completion and use Bayesian Information Crite-
rion (BIC) or Akaike Information Criterion (AIC) measure to
see if the new resulting model scores better. If it does, accept
the new centroid, otherwise return to the previous structure.
In the first approach, each centroid is tested for a split which
is an expensive process andwill needO (Kmax). To overcome
this expensive process second approach is to pick half of
the centroids according to some heuristic criterion for how
promising they are to split. Split them, run K-means, and
check if the resulting model scores better than the original
using BIC or AIC measure. Accept the split, if it performs
better, otherwise return to the previous structure.

7) SUPPORT VECTOR MACHINE
SVM is a supervised machine learning algorithm also known
as maximal margin classifier and is used both for regression
and classification. The goal of SVM is to discover hyperplane
in an N-dimensional area that clearly categorizes the data
points. To categorize data points of different classes, multiple
hyperplanes exists that can be chosen. Discovering a plane
that has maximum margin should be objective, i.e the max-
imum distance between data points of different categories.
Margin and supporting vectors are shown in Figure 4.

FIGURE 4. Support vectors and margin [41].

8) SUPPORT VECTORS AND HYPERPLANE
The hyperplane is boundaries that help in separating data
points of different categories. The number of hyperplanes

VOLUME 8, 2020 215667

S. Iqbal et al.: Determining Bug Prioritization Using Feature Reduction and Clustering With Classification

is dependent on a number of features. In the case of two
features, the hyperplane will be a single line. In the case of
three features, a two-dimensional plane will be the hyper-
plane. Support vectors are data points that are nearer to the
hyperplane and affect the position and orientation of the
hyperplane. Using these support vectors, the margin of the
classifier is maximized. The location of the hyperplane is
updated if support vectors are deleted.

9) NAIVE BAYES
Naive Bayes is built on Bayes’ theorem with an assumption
of independence between indicators. It is a commonly used
machine learning classifier due to its effectiveness and sim-
plicity. It assumes the occurrence of a feature in a group/class
is not linked to the occurrence of any other feature. Using
maximum posterior decision rules in the Bayesian setting,
it makes probabilistic classifications. It is commonly used
for text classification and spam detection problem. Bayes
theorem gives a way of calculating posterior probability
P(c|x) from P(c), P(x), and P(x|c) as shown in the following
equation:

P (c| x) =
P (x| c) .P (c)

P (x)
(1)

P(c|x) is the posterior probability of class (c, target) given
predictor (x, attributes). P(c) is the prior probability of a class,
P(x|c) is the likelihood which is the probability of predictor
given class while P(x) is the prior probability of predictor.
The prior probability represents uncertainty before sampling
any data. The posterior probability represents uncertainty
after sampling data. The probability is the likelihood of an
already occurred event that will produce a specific outcome.
The events which are going to occur in the future refer to
probability, while the events which occurred in the past with
known outcomes refer to the likelihood.

B. EXPERIMENTAL STUDY
The following are the research questions of the proposed
research work that will be ascertained in the subsequent
results section.
• Does the addition of the SVM classifier and increasing
the number of features improve the bug prioritization
model?

• Does feature reduction techniques improve the perfor-
mance of the bug prioritization model?

While the following are the research objectives of the
proposed research work.
• To propose an improved model for bug prioritization
using clustering with classification.

• To evaluate the impact of features reduction techniques
on the bug prioritization model.

C. TESTING, COMPARISON, AND ANALYSIS
Recall, Precision, and F-Score are used to test the achieve-
ment of the proposed model and are compared with the exist-
ing model. The results of the following performance matrices

TABLE 3. Confusion matrix.

shall be provided in the results section.

Precision = ((RelevantBugs) ∗ 100)/(TotalRetrievedBugs)

(2)

Recall = ((RelevantBugs) ∗ 100)/(TotalBugsinDataset)

(3)

F−Score= 2 ∗ ((Precision ∗ Recall)/(Precision+ Recall))

(4)

Accuracy = ((RelBugs)+ (RetBugs))/(TotalBugs) (5)

IV. RESULTS
This section presents results and a comparison of the pro-
posed model with the existing model [6]. The section is
organized as: Section IV-A presents evaluation metrics,
Section IV-B discusses experimental datasets, Section IV-C
presents a comparison and Section IV-D describes chapter
summary.

A. EVALUATION METRICS
Evaluation metrics are important parts of a research process
for assessment of the results. To evaluate results in this
research four types of matrices precision, recall, f-score, and
accuracy are used. The performance of our model can be
measured using the confusion matrix on a set of test data for
which the true values are known. There are four parameters of
the confusionmatrix, True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN). True positives
and true negatives are the correctly predicted values while
false positives and false negatives are the predicted values
having a conflict which actual values. These four parameters
are shown in Table 3.
True Positives (TP): These are the correctly predicted

positive values which mean that the class of a bug report is
‘‘P1’’ and the predicted class by the model is also ‘‘P1’’.

True Negatives (TN): These are the correctly predicted
negative values which mean that the actual class of a bug
report is ‘‘P2’’ and the predicted class is also ‘‘P2’’.

False Positives (FP):When the actual class of a bug report
is ‘‘P3’’ and the predicted class of a bug report is not ‘‘P3’’.

False Negatives (FN): When the actual class of a bug
report is ‘‘P2’’ but the predicted class of a bug report is
not ‘‘P2’’.

1) PRECISION
Precision is the ratio of correctly predicted positive bug
reports to the total predicted positive bug reports. Precision

215668 VOLUME 8, 2020

S. Iqbal et al.: Determining Bug Prioritization Using Feature Reduction and Clustering With Classification

TABLE 4. Experimental results for SVM and NB using single feature.

shows the usefulness of the system and is calculated through
the following equation:

Precision = ((RelBugs) ∗ 100) / (TotalRetBugs) (6)

2) RECALL
The recall is the ratio of correctly predicted bug reports in a
class to all bug reports in a class and is calculated through the
following equation:

Recall = ((Relevant Bugs) ∗ 100) / (Total Bugs) (7)

3) F SCORE
F Score is the weighted average of Precision and Recall.
Therefore, this score takes both false positives and false
negatives predictions and is calculated through:

F − Score = 2 ∗ (Recall ∗ Precision)/(Recall + Precision)

(8)

4) ACCURACY
Accuracy is the most intuitive performance measure and it
is simply a ratio of correctly predicted observation to the
total observations. The relevant bugs are denoted with Rel
Bugs while the retrieved bugs are presented by Ret Bugs. The
following expression computes the accuracy:

Accuracy = ((Rel Bugs)+ (Ret Bugs))/(Total Bugs) (9)

B. EXPERIMENTAL DATA SETS
Datasets used for experimental results are Chromium [42],
Eclipse [43], NetBeans [44], Mozilla [45], and Free Desk-
top [46]. Umer et al. [28], Choudhary [47], and many
other researchers used Eclipse in their research. Valdivia
Garcia and Shihab [1] used all the five datasets in their
research. Zanetti et al. [26] used Eclipse, NetBeans, and
Mozilla in their research. Overall Eclipse is the most pop-
ular dataset used by many researchers. All the experiments
were implemented in Python 3.6.4 Anaconda using the
SKlearn library in Microsoft Visual Studio 2015. SQL Server
2014 DBMS (DatabaseManagement System) is used for data

storage. All experiments were performed on a personal laptop
with Corei7 Quad-Core Processor having 16 GB RAM.

C. RESULTS
This section presents the comparison of the proposed bug
prioritization model with the existing bug prioritization
model [6]. First results are produced for the existing model,
then the proposed model results are produced and, in the end,
they are compared.

1) EXISTING MODEL RESULTS USING SINGLE FEATURE
The results of using Naive Bayes and SVM classifiers with a
single feature are shown in Table 4. In the second approach,
K-Mean clustering is applied to each dataset before classi-
fication while in the third approach X-Mean clustering is
applied to each dataset before classification. In the existing
model Naive Bayes performs better while adding SVM in the
existing model, SVM performs better than Naive Bayes.

Similarly, The experimental results of classification with
K-Mean and X-Mean clustering are shown in Table 4.3 and
4.4 respectively.

Table 5 presents the experimental results using precision,
recall, f-score, and accuracy for K-Mean clustering with
SVM and Naive Bayes classification. The columns show the
precision, recall, f-score, and accuracy of both approaches
i.e. K-Mean with SVM and K-Mean with Naive Bayes.
Whereas, the rows of the table show the datasets used.
From Table 5 it can be observed that K-Mean with SVM
approach outperformsK-MeanwithNaive Bayes. It improves
the accuracy for all the datasets by a minimum 5.8% to a
maximum 22.79%.

Table 6 presents the experimental results using precision,
recall, f-score, and accuracy for X-Mean clustering with
SVM and Naive Bayes classification. The columns show the
precision, recall, f-score, and accuracy of both approaches
i.e. X-Mean with SVM and X-Mean with Naive Bayes.
Whereas, the rows of the table show the datasets used. It can
be observed that X-Mean with SVM approach outperforms
X-Mean with Naive Bayes. It improves the accuracy for all
the datasets by a minimum 4.8% to a maximum 21.4%.

VOLUME 8, 2020 215669

S. Iqbal et al.: Determining Bug Prioritization Using Feature Reduction and Clustering With Classification

TABLE 5. Experimental results for K-Mean with SVM & K-Mean with NB using single feature.

TABLE 6. Experimental results for X-Mean with SVM & X-Mean with NB using a single feature.

FIGURE 5. SVM comparison for chromium of existing model.

Figure 5 presents the precision, recall, f-score, and accu-
racy of different algorithmic approaches for chromium. It can
be seen from Figure 5 that K-Mean + SVM approach has
outperformed X-Mean + SVM an SVM approach.
Figure 6 presents the comparison of different algorithmic

approaches for the eclipse. It can be seen from Figure 6
that X-Mean + SVM approach has outperformed K-Mean+
SVM and SVM approach.

Figure 7 presents the comparison of different algorithmic
approaches for free desktop. It can be seen from Figure 7
that K-Mean + SVM approach has outperformed X-Mean+
SVM and SVM approach.

Figure 8 presents the comparison of different algorithmic
approaches for Mozilla. It can be seen from 8 that X-Mean+
SVM approach has outperformed K-Mean+ SVM and SVM
approach.

FIGURE 6. SVM comparison for Eclipse of the existing model.

FIGURE 7. SVM comparison for free desktop of the existing model.

Figure 9 presents the comparison of different algorithmic
approaches for Net Beans. It can be seen from Figure 9
that K-Mean + SVM approach has outperformed X-Mean+
SVM and SVM approach.

215670 VOLUME 8, 2020

S. Iqbal et al.: Determining Bug Prioritization Using Feature Reduction and Clustering With Classification

FIGURE 8. SVM comparison for Mozilla of the existing model.

FIGURE 9. SVM comparison for NetBeans of the existing model.

2) RESULTS OF THE PROPOSED MODEL USING THREE
FEATURES
In the proposed model three features are used for clustering
and classification. The results are divided into two main sec-
tions. Each section is further divided into three subsections.
• Classification on all features

– Direct Classification on all bug reports
– Classification on K-Mean clustered bug reports
– Classification on X-Mean clustered bug reports

• Classification on reduced features
– Direct Classification on all reduced features bug

reports
– Classification on K-Mean clustered bug reports
– Classification on X-Mean clustered bug reports

Classification on all features: Results of classification on
all features for Chromium, Eclipse, Free Desktop, Mozilla
and NetBeans with and without clustering using Naive Bayes
and SVM Classifier are shown in Tables 7, 8 and 9. Compar-
ison of direct classification, classification with K-Mean and
X-Mean of each dataset are shown in Figures 10, 11,12,13,
and 14 respectively.

Figure 10 presents the comparison of different algorithmic
approaches for Chromium. It can be seen from Figure 10
that K-Mean + SVM approach has outperformed X-Mean+
SVM and SVM approach.

Figure 11 presents the comparison of different algorithmic
approaches for Eclipse. It can be seen from Figure 11 that
X-Mean + SVM approach has outperformed K-Mean +
SVM and SVM approach.

Figure 12 presents the comparison of different algorith-
mic approaches for the Free Desktop. It can be seen from

FIGURE 10. SVM comparison for Chromium of the proposed model.

FIGURE 11. SVM comparison for Eclipse of the proposed model.

FIGURE 12. SVM comparison for free desktop of the proposed model.

Figure 12 that X-Mean + SVM approach has outperformed
K-Mean + SVM and SVM approach.
Figure 13 presents the comparison of different algorithmic

approaches for Mozilla. It can be seen from Figure 13 that
X-Mean + SVM approach has outperformed K-Mean +
SVM and SVM approach.

Figure 14 presents the comparison of different algorithmic
approaches for Net Beans. It can be seen from Figure 14
that X-Mean + SVM approach has outperformed K-Mean+
SVM and SVM approach.

Table 7 presents the experimental results for SVM and
Naive Bayes. Table 8 presents the experimental results of
SVM and Naive Bayes with K-Mean clustering while Table 9
presents the experimental results of SVM and Naive Bayes
with X-Mean clustering. Overall in all three approaches,
SVM outperformed Naive Bayes in terms of precision, recall,

VOLUME 8, 2020 215671

S. Iqbal et al.: Determining Bug Prioritization Using Feature Reduction and Clustering With Classification

TABLE 7. Experimental results for SVM & Naive Bayes employed on three features.

TABLE 8. Experimental results for K-Mean + SVM & K-Mean + NB using three features.

TABLE 9. Experimental results for X-Mean + SVM & X-Mean + NB using three features.

f-score, and accuracy. In Table 7 minimum 6.41% and max-
imum 26.38% accuracy is improved. In Table 8 minimum
4.5% and maximum 35.57% accuracy is improved while
in Table 9 minimum 4.51% and maximum 22.07% accuracy
is improved.

Classification on Reduced Features: PCA and NMF are
applied to each dataset for feature reduction. Each dataset
features are reduced to 1 and 10 features. Results of clas-
sification on reduced features for Chromium, Eclipse, Free
Desktop, Mozilla and NetBeans with and without clustering
using Naive Bayes and SVM Classifier are shown in the

Tables 10, 11, 12, 13 and 14. Comparison of direct classi-
fication on reduced features, classification on K-Mean and
X-Mean clustered data reduced with PCA and NMF of each
dataset are shown in Figures 10 11 12 13 14 respectively.

Table 10 represents NMF feature reduction followed by
SVM and Naive Bayes classifier. Each dataset features are
reduced to 1-feature and 10-features using NMF feature
reduction and then SVM and NB classifiers are applied
(i.e NMF-SVM and NMF-NB). Overall SVM classifier per-
formed better than the Naive Bayes classifier in terms of
Precision, Recall, F Score, and Accuracy.

215672 VOLUME 8, 2020

S. Iqbal et al.: Determining Bug Prioritization Using Feature Reduction and Clustering With Classification

TABLE 10. Experimental results for SVM and Naive Bayes using NMF feature reduction.

TABLE 11. Experimental results for SVM and Naive Bayes using PCA feature reduction.

FIGURE 13. SVM comparison for Mozilla of the proposed model.

Table 11 represents PCA feature reduction followed by
SVM and Naive Bayes classifier. Each dataset features are
reduced to 1-feature and 10-features using PCA feature

FIGURE 14. SVM comparison for NetBeans of the proposed model.

reduction and then SVM and NB classifiers are applied (i.e.
PCA-SVM and PCA-NB). Overall SVM classifier performed
better than the Naive Bayes classifier in terms of Precision,
Recall, F Score, and Accuracy. When features are increased

VOLUME 8, 2020 215673

S. Iqbal et al.: Determining Bug Prioritization Using Feature Reduction and Clustering With Classification

TABLE 12. Experimental results of NMF + K-Mean + SVM & NMF + K-Mean + Naive Bayes.

TABLE 13. Experimental results of NMF + X-Mean + SVM & NMF + X-Mean + Naive Bayes.

from one to 10, NB performance decreases as compared to
SVM.

Table 12 represents NMF feature reduction with K-Mean
clustering followed by SVM and NB classifier. Each dataset
features are reduced to 1-feature and 10-features using NMF.
After feature reduction K-Mean clustering is applied on
reduced features and at the end SVM and NB classifiers are
applied on reduced clustered data. Overall SVM classifier
performed better with NMF andK-Mean as compare to Naive
Bayes classifier in terms of Precision, Recall, F Score and
Accuracy.

Table 13 represents NMF feature reduction with X-Mean
clustering followed by SVM and NB classifier. Each dataset
features are reduced to 1-feature and 10-features using NMF.
After feature reduction, X-Mean clustering is applied to
reduced features, and at the end, SVM and NB classifiers

are applied to reduced clustered data. Overall SVM classifier
performed better with NMF and X-Mean as compare to the
Naive Bayes classifier in terms of Precision, Recall, F Score,
and Accuracy.

Table 14 represents PCA feature reduction with K-Mean
clustering followed by SVM and NB classifier. Each dataset
features are reduced to 1-feature and 10-features using PCA.
After feature reduction, K-Mean clustering is applied to
reduced features, and at the end, SVM and NB classifiers
are applied to reduced clustered data. Overall SVM classifier
performed better with PCA and K-Mean as compare to the
Naive Bayes classifier in terms of Precision, Recall, F Score,
and Accuracy. From the experimental results, it is cleared
that Naive Bayes does not perform better in high dimension-
ality. Naive Bayes performs better on 1-feature as compare
to 10-features.

215674 VOLUME 8, 2020

S. Iqbal et al.: Determining Bug Prioritization Using Feature Reduction and Clustering With Classification

TABLE 14. Experimental results of PCA + K-Mean + SVM & PCA + K-Mean + Naive Bayes.

TABLE 15. Experimental results of PCA + X-Mean + SVM & PCA + X-Mean + Naive Bayes.

In Table 15 represents PCA feature reduction with X-Mean
clustering followed by SVM and NB classifier. Each dataset
features are reduced to 1-feature and 10-features using PCA.
After feature reduction, X-Mean clustering is applied to
reduced features, and at the end, SVM and NB classifiers
are applied to reduced clustered data. Overall SVM classifier
performed better with PCA and X-Mean as compare to the
Naive Bayes classifier in terms of Precision, Recall, F Score,
and Accuracy.

D. IMPROVEMENT COMPARISON
Comparison is divided into the following categories.
• Existing Model vs Proposed Model all features
• Existing Model vs Proposed Model reduced features

• ProposedModel all features vs ProposedModel reduced
features.

1) EXISTING MODEL VS PROPOSED MODEL (ALL FEATURES)
Experimental results are divided into three categories.
Improvement in Direct classification, improvement in Clas-
sification with K-Mean clustering, and improvement in
classification with X-Mean clustering. Overall SVM clas-
sifier achieved the highest accuracy with X-Mean and
K-Mean clustering. Dataset wise improvement is shown
in Tables 16, 17 and 18.

Table 16 represents proposed model direct classification
improvement from the existing model. Maximum 34.67%
accuracy is improved by SVM.

VOLUME 8, 2020 215675

S. Iqbal et al.: Determining Bug Prioritization Using Feature Reduction and Clustering With Classification

TABLE 16. Improvement in direct classification.

TABLE 17. Improvement of classification with K-Mean.

TABLE 18. Improvement of classification with X-Mean.

TABLE 19. Improvement in direct classification.

Table 17 represents the proposed model with K-Mean
clustering improvement from the existing model. Maximum
24.99% accuracy is improved by K-Mean + SVM.

Table 18 represents the proposed model with X-Mean
clustering improvement from the existing model. Maximum
28.42% accuracy is improved by X-Mean + SVM.

2) EXISTING MODEL VS PROPOSED MODEL (REDUCED
FEATURES)
Experimental results are divided into three categories.
Improvement in Direct classification, improvement in
Classification with K-Mean clustering and improvement in
classification with X-Mean clustering. Table 4.17 represents
proposed model improvement from the existing model using
PCA + SVM. Maximum 34.54% accuracy is improved with
PCA + SVM.

Table 20 represents proposed model using NMF
(1-Feature) + K-Mean clustering followed by SVM classi-
fier, improvement from the existingmode.Maximum 34.71%
accuracy is improved.

Table 21 represents the proposed model using NMF
(1-Feature)+ X-Mean clustering followed by the SVM clas-
sifier, an improvement from the existing model. A maximum
38.71% accuracy is improved.

Table 22 represents proposed model using NMF
(10-Feature) + K-Mean clustering followed by SVM
classifier. Maximum 41.01% accuracy is improved using
NMF (10-Feature) + K-Mean + SVM.

TABLE 20. Improvement in classification with NMF (1-Feature) +

K-Mean + SVM.

TABLE 21. Improvement in classification with NMF (1-Feature) +

X-Mean + SVM.

TABLE 22. Improvement in classification with NMF (10-Feature) +

K-Mean + SVM.

TABLE 23. Improvement in classification with NMF (10-Feature) +

X-Mean + SVM.

TABLE 24. Improvement in classification with PCA (1-Feature) +

K-Mean + SVM.

Table 23 represents proposed model using NMF
(10-Feature) + X-Mean clustering followed by SVM clas-
sifier. Maximum 39.42% accuracy is improved using NMF
(10-Feature) + K-Mean + SVM classifier.
Table 24 represents proposed model using PCA

(1-Feature) + K-Mean clustering followed by SVM
classifier. Maximum 33.03% accuracy is improved using
PCA (1-Feature) followed by K-Mean and SVM classifier.

Table 25 represents proposed model using PCA
(1-Feature) + X-Mean clustering followed by SVM clas-
sifier. Maximum 42.52% accuracy is improved using PCA
(1-Feature) followed by X-Mean and SVM classifier.

Table 26 represents proposed model using PCA
(10-Feature) + K-Mean clustering followed by SVM
classifier. Maximum 34.53% accuracy is improved using
PCA (10-Feature) followed by K-Mean and SVM classifier.

215676 VOLUME 8, 2020

S. Iqbal et al.: Determining Bug Prioritization Using Feature Reduction and Clustering With Classification

TABLE 25. Improvement in classification with PCA (1-Feature) +

X-Mean + SVM.

TABLE 26. Improvement in classification with PCA (10-Feature) +

K-Mean + SVM.

TABLE 27. Improvement in classification with PCA (10-Feature) +

X-Mean + SVM.

Table 27 represents proposed model using PCA
(10-Feature) + X-Mean clustering followed by SVM clas-
sifier. Maximum 38.91% accuracy is improved using PCA
(10-Feature) followed by X-Mean and SVM classifier. Over-
all SVM classifier performed better or equivalent than
Naïve Bayes in every combination of feature reduction and
clustering algorithms.

3) PROPOSED MODEL (All FEATURES) VS PROPOSED
MODEL (REDUCED FEATURES)
Overall ‘‘reduced features’’ proposedmodel performed better
than ‘‘all features’’ proposed model. In both, approaches
SVM performed outclass than Naïve Bayes. With ‘‘all fea-
tures’’ SVM performed better with K-Mean and X-Mean
clustering. On average K-Mean + SVM performed better.
With ‘‘reduced features’’ SVM performed better with NMF
(1-feature) + X-Mean, NMF (10-feature) + X-Mean, PCA
(1-feature) + X-Mean and PCA(10-feature) + K-Mean.
From the experimental results, it is clear that the reduced
feature proposed model performed better than all feature
proposed models. Which reduced features execution time
algorithms are minimum.

V. CONCLUSION
This research focuses on predicting the priority of reported
bugs with the help of data mining algorithms. For this
research, we proposed certain changes in the existing model
by adding two new features, classification algorithm, and
feature reduction techniques.

This research is mainly focused on two aims, the first one
is to determine the limitations of the existing bug prioritiza-
tion model, and the second aim is to solve these limitations
by introducing a new improved bug prioritization model.

In order to accomplish these two aims, we have defined two
objectives of this research, which are given below:

Objective 1: To propose an improved model for bug prior-
itization using clustering with classification. For the purpose
of achieving this objective X-Mean and K-Mean algorithm
are used for clustering and then the SVM algorithm is applied
for classification. Experiments show that the proposed model
produced amuch better result than the existingmodel in terms
of precision, recall, f score, and accuracy.

Objective 2: To evaluate the impact of features reduction
techniques on the bug prioritization model. For feature reduc-
tion, two algorithms are used PCA and NMF. Experiments
show that the feature reduction techniques improved results
in terms of precision, recall, f score, and accuracy. Eclipse
and FreeDesktop performed better with NMF reduction while
Mozilla and NetBeans performed better with PCA reduction
which ultimately improved the running time of classifica-
tion and clustering algorithms. Summary of research contri-
butions The SVM classifier is proposed for predicting the
priority of a bug report. SVM classifier performs outclass in
high dimensional data. Two new feature ‘‘component’’ and
‘‘severity’’ are added for the classification of the bug report.
Also, feature reduction techniques are added for dimensional
reduction to improve the running time of algorithms. This
research is focused on improving the quality of the bug
prioritization model. In this regard, the research contributions
are summarized as follows:
• Three features (component, severity, and summary) are
used for predicting the priority of bug reports.

• Feature Reduction Techniques are added to improve
running time.

• We have replaced Naive Bayes with the SVM classifier
to predict the priority of bug reports.

Future directions: Since our proposed model is a com-
bination of feature reduction techniques, clustering, and
classification algorithms and it produced significantly bet-
ter results. We have used five different datasets for our
research. The samemodel can be applied to other datasets like
Open Office, Maemo, and GNOME, etc. The same approach
of clustering with classification can be used in other research
areas as well to improve their results. Besides, research can
be conducted in the following directions as well:
• In our proposed work three features (problem title, com-
ponent, and severity) are used, new features can also be
incorporated to enhance the results. There are a lot of
other features related to a bug report.

• Neural networks can be incorporated into the proposed
model to further improve the results.

• We have used feature reduction techniques which are
time-consuming. In the future instead of feature reduc-
tion, the feature selection approach can be applied.

• We have applied feature reduction followed by clus-
tering algorithms, which is further followed by clas-
sification algorithms for bug prioritization. The same
approach can also be applied for Predicting bug sever-
ity, identifying valid, invalid, and duplicate bug reports,

VOLUME 8, 2020 215677

S. Iqbal et al.: Determining Bug Prioritization Using Feature Reduction and Clustering With Classification

assigning experienced developers to newly reported bug
reports, and finding blocking bug reports.

• The same approach of clustering with classification can
be used in security systems.

• This approach may also be helpful in the bioinformatics
area.

• The same approach can also be applied to the image
processing field.

REFERENCES
[1] H. Valdivia Garcia and E. Shihab, ‘‘Characterizing and predicting blocking

bugs in open source projects,’’ in Proc. 11th Work. Conf. Mining Softw.
Repositories, 2014, pp. 72–81.

[2] J. Anvik and G. C. Murphy, ‘‘Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,’’ ACM Trans. Softw.
Eng. Methodol., vol. 20, no. 3, pp. 1–35, Aug. 2011.

[3] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, ‘‘Comparing
mining algorithms for predicting the severity of a reported bug,’’ in Proc.
15th Eur. Conf. Softw. Maintenance Reeng., Mar. 2011, pp. 249–258.

[4] J. Kanwal and O. Maqbool, ‘‘Bug prioritization to facilitate bug report
triage,’’ J. Comput. Sci. Technol., vol. 27, no. 2, pp. 397–412, Mar. 2012.

[5] A. Nigam, B. Nigam, C. Bhaisare, and N. Arya, ‘‘Classifying the bugs
using multi-class semi supervised support vector machine,’’ in Proc.
Int. Conf. Pattern Recognit., Informat. Med. Eng. (PRIME), Mar. 2012,
pp. 393–397.

[6] N. Goyal, N. Aggarwal, and M. Dutta, ‘‘A novel way of assigning software
bug priority using supervised classification on clustered bugs data,’’ in
Advances in Intelligent Informatics. New York, NY, USA: Springer, 2015,
pp. 493–501.

[7] J. Uddin, R. Ghazali, M. M. Deris, R. Naseem, and H. Shah, ‘‘A survey
on bug prioritization,’’ Artif. Intell. Rev., vol. 47, no. 2, pp. 145–180,
Feb. 2017.

[8] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, ‘‘Characterizing
and predicting which bugs get fixed: An empirical study of Microsoft
windows,’’ in Proc. 32nd ACM/IEEE Int. Conf. Softw. Eng., vol. 1, 2010,
pp. 495–504.

[9] R. Vilalta, M.-K. Achari, and C. F. Eick, ‘‘Class decomposition via clus-
tering: A new framework for low-variance classifiers,’’ in Proc. 3rd IEEE
Int. Conf. Data Mining, 2003, pp. 673–676.

[10] L. Candillier, I. Tellier, F. Torre, and O. Bousquet, ‘‘Cascade evaluation of
clustering algorithms,’’ in Proc. Eur. Conf. Mach. Learn. New York, NY,
USA: Springer, 2006, pp. 574–581.

[11] S. Kim and M. D. Ernst, ‘‘Prioritizing warning categories by analyzing
software history,’’ in Proc. 4th Int. Workshop Mining Softw. Repositories
(MSR:ICSE Workshops), May 2007, p. 27.

[12] S. Kim and M. D. Ernst, ‘‘Which warnings should i fix first?’’ in Proc. 6th
Joint Meeting Eur. Softw. Eng. Conf. ACM SIGSOFT Symp. Found. Softw.
Eng., 2007, pp. 45–54.

[13] T. Kremenek and D. Engler, ‘‘Z-ranking: Using statistical analysis to
counter the impact of static analysis approximations,’’ in Proc. Int. Static
Anal. Symp. New York, NY, USA: Springer, 2003, pp. 295–315.

[14] J. Anvik, L. Hiew, and G. C. Murphy, ‘‘Who should fix this bug?’’ in Proc.
28th Int. Conf. Softw. Eng., 2006, pp. 361–370.

[15] J. Anvik and G. C. Murphy, ‘‘Determining implementation expertise from
bug reports,’’ in Proc. 4th Int. Workshop Mining Softw. Repositories
(MSR:ICSE Workshops), 2007, p. 2.

[16] G. Murphy and D. Cubranic, ‘‘Automatic bug triage using text categoriza-
tion,’’ in Proc. 16th Int. Conf. Softw. Eng. Knowl. Eng., 2004, pp. 1–6.

[17] S. N. Ahsan, J. Ferzund, and F. Wotawa, ‘‘Automatic software bug triage
system (BTS) based on latent semantic indexing and support vector
machine,’’ in Proc. 4th Int. Conf. Softw. Eng. Adv., Sep. 2009, pp. 216–221.

[18] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, ‘‘Predicting the
severity of a reported bug,’’ in Proc. 7th IEEE Work. Conf. Mining Softw.
Repositories (MSR), May 2010, pp. 1–10.

[19] K. K. Chaturvedi and V. B. Singh, ‘‘Determining bug severity using
machine learning techniques,’’ in Proc. CSI 6th Int. Conf. Softw. Eng.
(CONSEG), Sep. 2012, pp. 1–6.

[20] Y. Yao, Y. Liu, Y. Yu, H. Xu, W. Lv, Z. Li, and X. Chen, ‘‘K-SVM: An
effective SVM algorithm based onK-means clustering,’’ J. Comput., vol. 8,
no. 10, pp. 2632–2639, Oct. 2013.

[21] M. Sharma, P. Bedi, K. K. Chaturvedi, and V. B. Singh, ‘‘Predicting the
priority of a reported bug using machine learning techniques and cross
project validation,’’ in Proc. 12th Int. Conf. Intell. Syst. Design Appl.
(ISDA), Nov. 2012, pp. 539–545.

[22] M. Y. Javed and H. Mohsin, ‘‘An automated approach for software bug
classification,’’ in Proc. 6th Int. Conf. Complex, Intell., Softw. Intensive
Syst., Jul. 2012, pp. 414–419.

[23] A. Kaur and S. G. Jindal, ‘‘Text analytics based severity prediction of
software bugs for apache projects,’’ Int. J. Syst. Assurance Eng. Manage.,
vol. 10, no. 4, pp. 765–782, Aug. 2019.

[24] A. Kukkar, R. Mohana, A. Nayyar, J. Kim, B.-G. Kang, and
N. Chilamkurti, ‘‘A novel Deep-Learning-Based bug severity classification
technique using convolutional neural networks and random forest with
boosting,’’ Sensors, vol. 19, no. 13, p. 2964, Jul. 2019.

[25] L. A. F. Gomes, R. D. S. Torres, and M. L. Côrtes, ‘‘Bug report severity
level prediction in open source software: A survey and research opportu-
nities,’’ Inf. Softw. Technol., vol. 115, pp. 58–78, Nov. 2019.

[26] M. S. Zanetti, I. Scholtes, C. J. Tessone, and F. Schweitzer, ‘‘Categorizing
bugs with social networks: A case study on four open source software
communities,’’ in Proc. 35th Int. Conf. Softw. Eng. (ICSE), May 2013,
pp. 1032–1041.

[27] M. Alenezi, K. Magel, and S. Banitaan, ‘‘Efficient bug triaging using text
mining,’’ J. Softw., vol. 8, no. 9, pp. 2185–2190, Sep. 2013.

[28] Q. Umer, H. Liu, and Y. Sultan, ‘‘Emotion based automated priority
prediction for bug reports,’’ IEEE Access, vol. 6, pp. 35743–35752, 2018.

[29] P. Hooimeijer and W. Weimer, ‘‘Modeling bug report quality,’’ in Proc.
22nd IEEE/ACM Int. Conf. Automated Softw. Eng., Nov. 2007, pp. 34–43.

[30] U. Erra, S. Senatore, F. Minnella, and G. Caggianese, ‘‘Approximate tf–idf
based on topic extraction from massive message stream using the gpu,’’
Inf. Sci., vol. 292, pp. 143–161, Jan. 2015.

[31] J.-C. Chen, ‘‘The nonnegative rank factorizations of nonnegative matri-
ces,’’ Linear Algebra Appl., vol. 62, pp. 207–217, Nov. 1984.

[32] S. L. Campbell and G. D. Poole, ‘‘Computing nonnegative rank factoriza-
tions,’’ Linear Algebra Appl., vol. 35, pp. 175–182, Feb. 1981.

[33] D. D. Lee and H. S. Seung, ‘‘Learning the parts of objects by non-negative
matrix factorization,’’ Nature, vol. 401, no. 6755, pp. 788–791, Oct. 1999.

[34] A. Cichocki and A.-H. Phan, ‘‘Fast local algorithms for large scale non-
negative matrix and tensor factorizations,’’ IEICE Trans. Fundamentals
Electron., Commun. Comput. Sci., vol. 92, no. 3, pp. 708–721, 2009.

[35] J. Li and J. M. Bioucas-Dias, ‘‘Minimum volume simplex analysis: A fast
algorithm to unmix hyperspectral data,’’ in Proc. IEEE Int. Geosci. Remote
Sens. Symp. (IGARSS), vol. 3, Jul. 2008, pp. III-250–III-253.

[36] D. D. Lee and H. S. Seung, ‘‘Algorithms for non-negative matrix factor-
ization,’’ in Proc. Adv. Neural Inf. Process. Syst., 2001, pp. 556–562.

[37] A. K. Ch, S. M. Dias, and N. J. Vieira, ‘‘Knowledge reduction in formal
contexts using non-negative matrix factorization,’’ Math. Comput. Simul.,
vol. 109, pp. 46–63, Mar. 2015.

[38] K. Huang, N. D. Sidiropoulos, and A. Swami, ‘‘Non-negative matrix fac-
torization revisited: Uniqueness and algorithm for symmetric decomposi-
tion,’’ IEEE Trans. Signal Process., vol. 62, no. 1, pp. 211–224, Jan. 2014.

[39] R. Divya, C. A. Kumar, S. Saijanani, and M. Priyadharshini, ‘‘Deceiving
communication links on an organization email corpus,’’Malaysian J. Com-
put. Sci., vol. 24, no. 1, pp. 17–33, 2017.

[40] C. O. S. Sorzano, J. Vargas, and A. P. Montano, ‘‘A survey of dimension-
ality reduction techniques,’’ 2014, arXiv:1403.2877. [Online]. Available:
http://arxiv.org/abs/1403.2877

[41] Support Vector Machine, Introduction to Machine Learning
Algorithms. Accessed: Sep. 30, 2018. [Online]. Available:
https://towardsdatascience.com/support-vector-machine-introduction-
to-machine-learning-algorithms-934a444fca47

[42] Chromium. Chromium Bugs Dataset. (May 2020). [Online]. Available:
https://bugs.chromium.org/p/chromium/issues/list

[43] eclipse. (May 2020). Eclipse Bugs Dataset. [Online]. Available:
https://bugs.eclipse.org/bugs/

[44] Netbeans. (May 2020). Netbeans Bugs Dataset. [Online]. Available:
https://netbeans.org/bugzilla/query.cgi?format=advanced

[45] Mozilla. (May 2020). Mozilla Bugs Dataset. [Online]. Available:
https://github.com/ansymo/msr2013-bug_dataset/tree/master/data

[46] Free Desktop. (May 2020). Free Desktop Bugs Dataset. [Online]. Avail-
able: https://bugs.freedesktop.org

[47] P. A. Choudhary, ‘‘Neural network based bug priority prediction model
using text classification techniques,’’ Int. J. Adv. Res. Comput. Sci., vol. 8,
no. 5, pp. 1315–1319, 2017.

215678 VOLUME 8, 2020

