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ABSTRACT Ensuring a reliable and stable communication throughout the mobility of User Equipment (UE)
is one of the key challenges facing the practical implementation of the Fifth Generation (5G) networks and
beyond. One of the main issues is the use of suboptimal Handover Control Parameters (HCPs) settings,
which are configured manually or generated automatically by certain self-optimization functions. This issue
becomes more critical with the massive deployment of small base stations and connected mobile users. This
will essentially require an individual handover self-optimization technique for each user individually instead
of a unified and centrally configured setting for all users in the cell. In this paper, an Individualistic Dynamic
Handover Parameter Optimization algorithm based on an Automatic Weight Function (IDHPO-AWF) is
proposed for 5G networks. This algorithm dynamically estimates the HCPs settings for each individual UE
based on UE’s experiences. The algorithm mainly depends on three bounded functions and their Automatic
Weights levels. First, the bounded functions are evaluated, independently, as a function of the UE’s Signal-
to-Interference-plus-Noise-Ratio (SINR), cells’ load and UE’s speed. Next, the outputs of the three bounded
functions are used as inputs in a new proposed Automatic Weight Function (AWF) to estimate the weight
of each output bounded function. After that, the final output is used as an indicator for optimizing HCPs
settings automatically for a specific user. The algorithm is validated throughout various mobility conditions
in the 5G network. The performance of the analytical HCPs estimation method is investigated and compared
with other handover algorithms from the literature. The evaluation comparisons are performed in terms of
Reference Signal Received Power (RSRP), Handover Probability (HOP), Handover Ping-Pong Probability
(HPPP), and Radio Link Failure (RLF). The simulation results show that the proposed algorithm provides
noticeable enhancements for various mobile speed scenarios as compared to the existing Handover Parameter
Self-Optimization (HPSO) algorithms.

INDEX TERMS Handover parameter optimization, mobility robustness optimization, self-optimization
algorithm, handover control parameters, Hysteresis, handover margin, Time-to-Trigger (TTT),
LTE-Advanced Pro, 5G networks.

I. INTRODUCTION
The Handover Parameter Self-Optimization (HPSO) is one of
the significant Self-Optimization Network’s (SON) functions
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that have been introduced by the 3rd Generation Partner-
ship Project (3GPP) in Fourth Generation (4G) and Fifth
Generation (5G) mobile technologies [1]-[8]. In the 4G sys-
tem, HPSO is also known as Mobility Robustness Optimiza-
tion (MRO) function, and it is heading to be more advanced
in 5G mobile systems [2]—[8]. This function aims to adjust the

VOLUME 8, 2020


https://orcid.org/0000-0003-0957-4468
https://orcid.org/0000-0003-0737-7575
https://orcid.org/0000-0002-5509-5735
https://orcid.org/0000-0002-4337-7057

I. Shayea et al.: Individualistic Dynamic HPSO Algorithm for 5G Networks Based on AWF

IEEE Access

Handover Control Parameters (HCPs) settings automatically
in order to solve handover problems [9]. Handover mainly
occurs when the User Equipment (UE) moves in between
two cells during connected mode. This is intended to pre-
serve the connection received by the UE [10]. The subopti-
mal settings of HCPs may consequently contribute to high
rates of Handover Probability (HOP), Handover Ping-Pong
Probability (HPPP) or Radio Link Failure (RLF), which will
collectively produce increased redundancy leading to wastage
of network resources. Therefore, it is important to highlight
the central objective of the HPSO algorithm, i.e. to reduce
the HOP, HPPP, and RLF that may be impacted from HCP
settings tuning. Therefore, issues associated with high HOP,
HPPP, and RLF settings should also be addressed and reduced
significantly by implementing efficient HPSO algorithms.

Consequently, several algorithms have been proposed in
the literature to optimize HCP settings [11]-[32]. Different
methodologies were used with these algorithms and investi-
gated in various environments. In [11], machine learning and
data mining techniques were proposed for optimizing han-
dover parameters. They were evaluated over the Long-Term
Evolution (LTE) system in a building environment. In [12],
a high mobility SON function was introduced to shorten
the multi-layer time in the LTE system. It performs opti-
mization by estimating user mobility behaviors based on
data measurements that were previously collected by users.
In [13], an algorithm was introduced to adaptively adjust the
Handover Margin (HOM) according to the position of the
user in the cell. As the user gets closer to the cell edge,
the HOM further decreases. In [14], Enhanced Mobility State
Estimation (EMSE) was introduced to optimize HCPs (i.e.
Time-To-Trigger (TTT) and HOM) based on handover types
and speed of users.

Moreover, the Fuzzy Logic Controller (FLC) was proposed
to adaptively modify the HOM level while a fixed value is set
for TTT [15]. The HOM level is adjusted by the FLC based
on two control input metrics: the Drop Call Probability (DCP)
and the Handover Ratio (HOR). Another gradient method
and cost function-based MRO scheme was also proposed
for LTE femtocell [16]. It performs optimization based on a
cost function consist of various metrics. The cost function
is calculated as a function of HPPP numbers, continuous
handover, too early handover, too late handover, and handover
to the wrong cell. In [17], the HCP settings are tuned accord-
ing to the average Handover Performance Indicator (HPI)
by Weighted Performance based on the Handover Parameter
Optimization (WPHPO) algorithm. The WPHPO algorithm
is evaluated as a function of Handover Failure Probability
(HFP), HPPP, and DCP. The studies in [18] and [24] pro-
posed SON algorithms, but only one HCP was considered
in their analysis. Whereas in [17] and [19], techniques in
modifying both the HOM and TTT were proposed, however,
the impact on the UE speed were not investigated. In [20]
and [23], the inter-system handover parameter optimization
was considered in the investigation. Finally, in [21] and [22],
investigations on some performances of intra-frequency LTE
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handovers are explained. However, no efficient handover
SON algorithms were in the papers mentioned can estimating
the optimal HCP settings.

Even though these algorithms contribute to enhance han-
dover performance, they are not robust nor ideal in selecting
appropriate HCP values in the 5G system. The existing algo-
rithms are inefficient due to various reasons. One of the main
reasons is that most of these algorithms were developed for
the 4G technology, which has different specifications and
requirements in comparison to the 5G technology. As aresult,
the existing algorithms developed for previous cellular net-
works may not be efficient to be implemented in 5G networks.
Thus, further investigations are required for 5G networks
with various mobility and deployment scenarios. Eventually,
efficient and validated algorithm(s) can be recommended for
further development or use in 5G networks. In addition, all the
earlier mentioned algorithms were designed to operate based
on a central optimization model. This means the optimization
operation is accomplished based on the performance of the
entire network, and not on the bases of individual user expe-
rience. The algorithm adjusts HCP settings at the Base Station
(BS) for the entire system and then the handover for all mobile
users is controlled by utilizing the same HCP settings. This
central optimization may lead to increased handover issues
for some users. This is because not all mobile users require
the optimization process at the same time and in the same
direction. Some users may require optimization at the current
time, while other users may need optimization at a different
time. Also, at time T, some users may require optimiza-
tion in the upper direction, while other users may need it
at a different direction. As a result, a central optimization
operation is a critical issue that must be addressed in 5G
networks. The issue becomes even more critical due to the
small coverage offered by 5G BS and the required support for
high mobility speeds (500 km/r). Moreover, the need for ultra-
reliable communication in 5G networks is necessary for some
remote-control users. Thus, central optimization will not be
the best solution for 5G networks. Another issue is the type of
HCPs considered for optimization. Some existing algorithms
do not optimize all HCPs. For example, some algorithms only
optimize one HCP (the HOM), such as in [15], [18], [24]. This
may cause an increased in handover as well. Utilizing a fixed
TTT may also lead to another handover issue which HPSO
aims to address. Therefore, more efficient HPSO algorithms
should be developed and validated for 5G networks.

In this paper, a new algorithm is developed to adaptively
estimate the HCP settings for each UE independently. The
proposed algorithm estimates HCP settings based on the
Weight Function, which depends on three bounded functions
and the weight of each bounded function. The bounded func-
tions are evaluated as functions of Signal-to-Interference-
plus-Noise-Ratio (SINR), load, and UE speed. The weight
of each bounded function is calculated based on a proposed
dynamic mathematical function that depends on the output
of the three bounded functions. The proposed algorithm
was then investigated based on a simulation study using
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FIGURE 1. Self-Optimization functions and their relationship with network control parameters [33].

the MATLAB 2020a software. It is further compared with
three different algorithms from the literature. The results
indicate that the developed algorithm provides noticeable
enhancements compared to other algorithms, as illustrated
in the results section.

The rest of this paper is organized as follow: Section II
describes the proposed handover parameter self-optimization
algorithm. Section III presents the system model and the sim-
ulation scenario. Section IV discusses the key performance
indicators briefly. Section V discusses the simulation results.
Finally, Section VI concludes the paper.

Il. RESEARCH OVERVIEW AND MOTIVATION

The SON has been standardized and applied as a fundamental
feature in Fourth Generation (4G) and Fifth Generation (5G)
mobile technologies [6], [34]-[37]. This feature was intro-
duced by the 3GPP initially in LTE (Release 9 (Rel.9)). Then,
it had been developed further in LTE-Advanced (Rel.10 to
Rel.14) with the existing of Carrier Aggregation (CA) tech-
nique [38]-[41]. In 5G systems, (3GPP Rel.14 to Rel.17)
[2]-14], [42]-[46], the SON has become more advanced and
further developments are continuously ongoing. Rel.14 is
considered to be the first 5G standardization [47], while
Rel.15 was introduced as the first full set of 5G standards for
International Mobile Telecommunications 2020 (IMT-2020)
standard [48]. The main focus of SON is to maintain the
network quality and system execution with minimal manual
intermediation from the administrator [45]. SON is mainly
introduced to reduce the Operating Expenditure (OPEX) of
the network controlling functions. This feature has become
an automated technique that is necessary to be implemented
in future networks. This is due to the massive growth of
mobile connections and small BSs that will be deployed
in future which will lead to building ultra-dense cellular
networks. Such networks require more efficient, automatic
and robust management functions. Otherwise, the network
operation cost will be high, and the network performance
will not be at the desired level where future networks targets
to deliver. Thus, implementing advanced SNO functions
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are required to efficiently enhance network performance,
decrease the administrative needs by network operators,
as well as managing the complexity of network mainte-
nance and operation. The main function implemented by the
SON is to automatically adjusts network parameters based
on the measurements and performance of UE and evolved
NodeB (eNB).

In SON, several functions have been introduced to opti-
mize network parameters, as illustrated in Figure 1. Each
function performs specific optimizations to achieve different
objectives. However, two SON functions focus on optimizing
HCPs settings for different purposes. One function is known
as the HPSO function, while the other is known as the Load
Balancing Self-Optimization (LBO) function [5], [49]. The
HPSO function optimizes HCPs to address mobility issues,
while the LBO function optimizes HCPs to cater traffic
issues. Within this study we will only focus on the HPSO
function.

The HPSO function has been introduced by 3GPP as HOO
where it is also sometimes termed as MRO [1]-[8]. The
HPSO adjusts the HCPs automatically to address the issues
arising from users’ mobility [9]. The suboptimal settings of
HCPs may consequently contribute to high HOP, HPPP or
RLF, which will collectively produce increased redundancy
due to the wastage of network resources. Therefore, it is
important to highlight the central objective of the HPSO algo-
rithm: to reduce the number of HOP, HPPP, and RLF that may
arise by tuning HCP settings. The high HOP, HPPP, and RLF
should be addressed by implementing efficient HPSO algo-
rithms. There are several techniques that have been proposed
to perform the automatic optimization for the HCP settings
in the literature [11]-[32]. Each technique proposed different
method where investigation was performed in different envi-
ronments with different system settings and network scenar-
ios. Although these solutions have contributed in reducing the
mobility issues further, but to the best of our knowledge there
is no optimal solution available yet. This due to several factors
as explained in our previous survey paper [1]. Moreover, there
is a main issue that has not been addressed yet due to the
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FIGURE 2. Proposed IDHPO-AWF algorithm for dynamically estimating HCPs settings for each UE independently.

deficiencies of centralized optimization operation [1]. Also,
the existing solutions were developed for 4G technology,
which may not be efficient for 5G networks as it has different
specifications and requirements compared to the previous 4G
technology [1]. Moreover, the partial self-optimization oper-
ation and another outstanding issues need to be addressed [1]
to enable efficient solutions for 5G networks.

IIl. PROPOSED SOLUATION

The proposed function aims to automatically adjusting HCPs
settings automatically and dynamically for each UE individ-
ually. This will contribute significantly for estimating more
appropriate HCPs for each UE based on its experiences inde-
pendently. Also, it will contribute significantly for avoiding
the negative impact on the other UEs those are not requiring
any change to their HCPs settings. This will enhance the
RSRP, reduce the HPPP and RLF. That in turn lead to a sig-
nificant enhancement in offering more stable communication
during UEs’ mobility.

This section describes the proposed Individualistic
Dynamic Handover Parameter Optimization algorithm based
on an Automatic Weight Function (IDHPO-AWF), as illus-
trated in Figure 2. The proposed algorithm explained in
details in two main subsections. The first subsection explains
the proposed Weight Function with the bounded functions
and the automatic estimator weight model. The second
subsection illustrates the dynamic estimation for HCPs
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(HOM and TTT) based on the Weight Function illustrated
in the first subsection.

A. PROPOSED WEIGHT FUNCTION

An IDHPO-AWF algorithm is proposed to dynamically esti-
mate suitable HCP values for each independent UE. It con-
siders several influencing factors (metrics) such as SINR,
cell load, and UE speed. These three factors are selected
due to their direct impact on making handover decision. The
handover decision is usually made based on the received
signal level (Reference Signal Received Power (RSRP) or
SINR) and the load conditions of both the serving and tar-
get BSs. The mobile velocity change has a direct impact
on the SINR levels. As a consequence, the HCPs must be
adjusted accordingly. Thus, the proposed IDHPO-AWF algo-
rithm adjusts HCP settings based on the variations of these
three metrics. Since the selected metrics have different varia-
tions and impacts, formulating them in one Weight Function
will provide more accurate and diverse results based on the
variation and weight of each considered factor. However,
formulating different metrics in one Weight Function must
be represented in a form that provides bounded results for all
input metrics. Therefore, the three main input metrics in the
proposed Weight Function formula must be formulated in a
type of boundary function, f;. The boundary function means
that the output of each bounded function must be between a
defined range; for example, f, € [—1, 1]. This is because they
will be used in one weight formula. Therefore, the Weight

214395



IEEE Access

1. Shayea et al.: Individualistic Dynamic HPSO Algorithm for 5G Networks Based on AWF

Function will be calculated as a function of three bounded
sub-functions. Since each bounded function may provide a
different impact, the weight of each bounded function must
be considered. Therefore, Weight Function is calculated as a
function of three bounded sub-functions and their weights.
These three bounded sub-functions can be represented by
SINR f(y), Load f(L), and UE’s speed f(v). Their weights
are represented by w) , @y, and w,, respectively. Thus, the pro-
posed Weight Function is mathematically expressed by Eq.1:

Jwr (v, L,v) =oyf () + orf (L) + of (V) ey

For simplicity, Eq.1 can be divided into two parts. The first
part is the boundary sub-functions {f (y),f (L), &f (v)},
while the second part is the weight of each sub-function
{a)y, oL, wv}. These two parts (i and ii) are illustrated in the
following subsections:

1) THE BOUNDED FUNCTIONS
This section explains the formulation of the three bounded
functions.

a: BOUNDED SINR FUNCTION

Switching the connection from one BS to another is per-
formed by making a handover decision at the serving BS.
This is accomplished by using a handover decision algorithm.
Several handover decision algorithms are presented in the
literature. They were designed according to different metrics
and diverse conditions. The most usable algorithm is based
on the received signal strength. This algorithm makes the
decision based on the differences between the received signal
strength of the serving and selected target BSs and the specific
handover margin. The signal strengths are measured at the
user’s side and then reported to the BS, which then decides to
initiate the handover preparation. This occurs when the target
received signal strength becomes greater than the serving
received signal strength by the handover margin level in a
specific period of time (TTT).

The best parameter to represent the received signal strength
is the SINR since it includes the noise and the interferences
in its calculations. For that reason, the SINR is considered
as an input metric in the proposed Weight Function. Thus,
the boundary SINR function can be expressed as the differ-
ences between the serving and target SINR levels. Since the
SINR is used in Weight Function, its output must be bounded
between [—1, 1]. To achieve this target, the differences of
SINR should be divided by the maximum SINR expected
level. That will make the output of f (y) to be between two
bounded values: f (y) € [—1, 1]. Thus, the bounded SINR
function f (y) in Eq.1 can be calculated as a function of the
target and serving SINR (y) ratios, as expressed in Eq.2:

f(y>=<”>—<”)e[—1,1] 2)
YMax YMax

where, ys and yr represent the SINR over the serving and
target carriers, respectively, while yj,, represents the maxi-
mum SINR expected to be received at the UE side. Since the
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acceptable SINR level ranges between -10 to 30 dB, the max-
imum SINR value is assumed to be 30 dB (yy4x = 30) in this
study.

b: BOUNDED LOAD FUNCTION

The load function is another significant metric that must be
considered. The justification of considering the load as an
input metric in the Weight Function (Eq.1) is due to two main
reasons. First, after the handover decision is made and the
handover request is sent to the target BS, it will decide to
either accept or deny the handover request based on the -
availability of its resources. Second, balancing load between
cells is one cause for making the handover. That means some
of the users at the cell boundaries are allowed to switch their
connections to neighboring cells in order to balance the load
between cells. Therefore, the cell load becomes a significant
metric in the proposed Weight Function. It will be used in the
form of a boundary function.

The load boundary function can be evaluated as a function
of serving and target cell loads. Since the equalization of the
minimum and maximum borders of all boundary functions
is required in Eq.1, we must divide the load differences by
the maximum cell load capacity. This is needed to limit the
output of f (L) between two bounded levels: f (L) € [—1, 1].
Thus, the bounded load function, f (L), can be represented as
the difference between the target and serving load ratio. The
target load ratio is defined as a ratio of the target cell’s load
to the maximum cell’s Load capacity (L,,,,). Similarly, the
serving load ratio is defined as a ratio of the serving cell’s load
to the maximum cell’s Load capacity (L ). Thus, the cell
boundary function, f (L), in Eq.1 can be represented by Eq.3:

_ Lt Lg
f(L)—(Lmax>—<Lmax>€[—1,1] (3)

where L7 and Lg represent the target and serving cell loads,
respectively.

¢: BOUNDED SPEED FUNCTION

Mobile speed is a significant metric that influences the
handover performance. This is because high mobile speed
linearly increases the handover probability. As a result,
the mobile speed is considered as an input metric in the
proposed Weight Function. The bounded speed function
expressed by f (v) in Eq.l can be evaluated as a func-
tion of the UE’s movement speed, v. Since the output of
f(y) and f (L) € [—1, 1], is bounded, the output of f (v)
must be similarly bounded f (v) € [—1, 1]. To formulate this
target in a mathematical formula, the logarithm function was
used. Thus, after empirical investigations of the logarithm
function, the bounded speed function, f (v), in Eq.1 is rep-
resented by Eq.4:

f(v)=2-log2<l+ Y )—le[—l,l] @)

Vmax

where v,,,qy represents the maximum expected speed of UE,
which is assumed to be constant (v, = 140 km/hour) in
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this study. In scenarios where the maximum mobile speed is
expected to exceed this limit (140km/hr), the constant speed
value can then be changed accordingly.

2) THE PROPOSED AUTOMATIC ESTIMATOR WEIGHT
MODEL

This sub-subsection illustrates the second part of Eq.1, which
is the weight of each boundary function. In the literature
[17], [50], the Weight Function was used in different forms
with various applications. To the best of our knowledge,
all functions employed static weight values. A fixed value
was manually defined for each weight. Previous studies
had assigned different constant weight values. Unfortunately,
there is no formulated mathematical expression to automati-
cally estimate the weight of each factor (metric) considered
in any weight or cost function in the literature [17], [50].
Since our proposed bounded functions adaptively estimate
different results based on the performance evaluation of the
user, assigning a constant value cannot yield an accurate
weight value for each function. In other words, the move-
ment of the user leading to a rapid and continuous change
in the user’s experience with different impacts from the
three input parameters considered in the Weight Function.
Therefore, assigning static weight settings all the time will
lead to inaccurate dynamic optimization. For that, proposing
an automatic function that leading to estimating the weight
of each parameter automatically based on its instantaneous
impact is the optimal solution. Therefore, a mathematical
model is needed to automatically estimate the weight value
for each bounded function. As a result, a mathematical model
defined as Automatic Weight Function (AWF) is formulated
in this paper to estimate the weight of each bounded function
dynamically. The AWF model is evaluated as a function of
the three bounded functions: f (y), f (L), and f (v). This is
because the total weight of all metrics must be equal to one.
Therefore, the proposed AWF model will produce a weight
value of w, € [0, 1] for each metric, and their total sum is
equal to 1. The last AWF formula is finalized after several
empirical tests have been performed to determine the validity
of this proposed model. Thus, the AWF model is formulated
in Eq.5:

1 — f(xn)

=1 5)
S =)

where

o wy represents the weight of function n, which can be a
function of y, L, or v; therefore,w,can be w, , wr, or w,.

o f (xp) is the corresponding bounded function n that need
to evaluate its weight.

e F is a metric factor that represents the total number
of metrics considered for adapting HCP values. In this
study, F is set to 3 since there are only three factors
considered (y, L, and v).

o f (x;) is the function of x that corresponds to i, and
i varies from 1 to F. F indicates the total number of
metrics used as inputs to the function fwr (y, L, v) at
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Eq.1, and they are three: SINR, Load, and Speed. For
simplicity, f(x1) is f (), f (x2) isf (L), and f (x3) is f (V).
Accordingly, the AWF model (Eq. 5) can estimate the
weight of each bounded function proposed in Eq.1. Next,
Eq.1 is applied to evaluate the weight level that can be used
to estimate the HCPs, as illustrated in the next sub-section.

B. DYNAMIC ESTIMATION FOR HANDOVER CONTROL
PARAMETERS

This subsection demonstrates the dynamic estimation for
HCPs. The estimation is individually performed for each user,
based on Eq.1. That means the formula of Eq.1 will be applied
to measure the three-input metrics: SINR, L, and V. Next,
the output will be used to dynamically estimate the HCP
settings for each individual user. The considered HCP settings
in this study are two: HOM and TTT. Both will be formulated
in the following two sub-subsections.

1) HANDOVER MARGIN LEVEL

The handover margin is one of the main and signifi-
cant parameters used for controlling the handover decision
[39], [51], [52]. This is because low and high handover mar-
gin settings may lead to a high HPPP effect and high RLF.
Any inappropriate handover margin settings between low and
high may also lead to similar issues. This is not satisfactory
in wireless systems. The case becomes more critical with 5G
networks and beyond. This is due to the use of the mm-wave,
which provides very small coverage. In addition, adjusting
the entire handover margin may create one of these issues as
well. The entire handover margin means the handover margin
setting for the cell, which means all users within the cell
will use the same handover margin. Therefore, an automatic
model is needed to estimate the handover margin settings for
each user individually. But the adjustment of the handover
margin is extremely sensitive, thus, it must be performed
carefully. To achieve this target, the proposed model must
define a threshold handover margin level and carefully make
an adjustment around this threshold. Based on this assump-
tion, a new model is proposed to dynamically estimate the
appropriate handover margin settings for each user individ-
ually. The model consists of two parts: Part I and Part II.
Part I is the threshold handover margin level which can be
defined as a fixed value. Part II is the dynamic and continuous
adjustment for each individual user. Thus, the total handover
margin will be the summation of the fixed threshold and the
adjusted part. Let us represent the threshold handover margin
level as Hy,,, and the adjusted part as (AM). The dynamically
adjusted handover margin is mathematically represented
in Eq. 6:

HOM = Hy,, + AM (6)

The Hy;,, can be defined as a fixed value > or it can be calculated
as an average handover margin setting, M, which is evaluated
in Eq.7:

Hipy = M = (Mpmax — Mpin) /2 @)
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where M, and M,,;, are the maximum and minimum han-
dover margin values. These values are assumed to be 10 dB
and 0.0 dB, respectively [51], [52]. The average HOM setting
can be changed in the real system. It is assumed in this
simulation study to avoiding too early and too late handover
probabilities. This is because the use of a very low average
value will increase the too early handover occurrence, while
the high average HOM values will increase the too late han-
dover occurrence. Both cases will lead to high probabilities
occurrence of HPPP and RLF, respectively.

The next part of Eq.6 is the dynamically adjusted handover
margin setting, which must be carefully estimated. This is
because any quick or large change in the handover margin
setting may lead to an early or late handover depending on
the changed direction. Thus, to avoid this issue, the change
must be very smooth and scalable based on the variation of
Weight Function in Eq.1. That means the adjusted level in
the handover margin must be defined carefully; not too low
and not too high. To control this dynamic change, the HOM
threshold level is proposed as a central scale, and the dynami-
cal change is adjusted around this level. This can be achieved
by multiplying the HOM threshold level by Weight Function
in Eq.1. Thus, the dynamic change in the HOM setting (AM)
is expressed in Eq.8:

AM =M fwr (v, L,v) ®)

However, Eq.8 is not valid for use when the yr <y
and ys > yry. This is because Eq.8 will produce a very low
HOM setting in this particular condition, which may cause a
very early handover. This will subsequently lead to making
a handover to the wrong cell and increasing HPPP. Eq.8 is
also not valid for use when the ys < yth and YT > YThr.
This is because Eq.8 will produce a very high HOM setting
in this particular condition which may lead to a very late
handover that will increase the RLF. To avoid these two
scenarios, the change in the HOM level (AM) is formulated
by Eq.9 instead of Eq.8.

M fwr (v, L, v) if yr.s < ¥Yrnr

o YT < VThr
ap— | MU Faf Wroson g T
M (=1 +arf (L) +of ) if 75 =7
YT = VThr-
©)

Thus, the HOM level can be automatically estimated using
Eq.6, which relies on Eq.7, Eq.9, and Eq.1.

2) TTT INTERVALS

Another significant HCP would be the TTT. The range
of TTT intervals has been specified by 3GPP in [53],
Section 6.3.5. The specified TTT (T') intervals vary from
0.00 to 5.120 seconds. However, assigning higher or lower
TTT intervals may lead to a high RLF or high HPPP, respec-
tively. Thus, the automatic adjustment based on user and net-
work performances is the best solution that can be provided.
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On the other hand, adjusting the TTT for the entire system
(all users in the cell) may lead to critical issues for some
users since they have different experiences. Some users may
have the worst experiences at cell boundaries, while others
may have good experiences. Thus, the best solution is to
individually adjust the TTT for each user. The adjustment
must be carefully performed. Therefore, we propose to adjust
the TTT up or down by adding or reducing the threshold
TTT with a specific interval defined as p. The performed
adjustment is based on the variation of fiyr in Eq.1. In case
the fiypr increases, the TTT will be increased by p interval
of time. On the other hand, if the fyyr decreases, the TTT will
be decreased by p interval of time. The instantaneous fypr
level is usually compared to the previous fipr record. In order
to avoid unnecessary adjustment of TTT, we defined the
threshold level for the fyr variation as ¢. If the instantaneous
fwr is greater than the previous fyr record by ¢ level, the
system can perform the adjustment, otherwise, no adjustment
can be done. This is mathematically represented in Eq.10.

T—p if fwr <fwr +Q

= . (10
T+p if fwr = fwr +Q

where,

AT  The instantaneously adjusted TTT

T The threshold TTT level, initially defined as a
fixed proper interval, then T willbe equal to AT in
the second adjustment and onwards

Q  level of optimization step

P level of optimization interval

However, Eq.10 cannot be implemented in two cases. The
first case is when the T reaches Zero. The TTT cannot be neg-
ative (it cannot go below the minimum TTT level defined by
3GPP). The second case is when the T reaches the maximum
TTT defined by 3GPP. A specific formula must be devised
for each of these two special cases. For the first case, the TTT
cannot be adjusted up; while for the second case, the TTT can-
not be adjusted down. Thus, for these two cases, the adjusted
TTT is formulated by Eq.11 and Eq.12, respectively.

ATy = T l:ffWF <fwr+Q (11
T+p if fwr>fwr+Q
And
AT e = T—p l:ffWF <fwr+Q (12)
T if fwr = fwr +Q

From Eq.10 to Eq.12, the TTT interval can be dynamically
adjusted based on the variation of Weight Function in Eq.1.
Accordingly, the adaptive TTT (AT) intervals can be deter-
mined by Eq.13:

AT if Toin < T < Tinax

ATmin lf T = Tmin (13)
AT jax lf T = Tiax

AT =

VOLUME 8, 2020



I. Shayea et al.: Individualistic Dynamic HPSO Algorithm for 5G Networks Based on AWF

IEEE Access

The constants, p and Q, are meant to adjust the resolution
in which the TTT intervals are updated. If these constants are
selected to be small, higher resolution of TTT is achieved.
However, if too high, the TTT resolution may impose high
computational complexity and delays to the system. Thus, for
simplicity, the values of p and Q are selected to be 0.04 s and
0.1s throughout the simulation. It can be further noticed that
when the updated value is saturated at 75,45 OF Ty, n0 further
updates are considered. The T, or Ty, are determined
from the 3GPP recommendations as 0.0 sand 5.12s, respec-
tively. The initial value of TTT for all implemented HPSO
algorithms is assumed to be 100 milliseconds.

IV. SYSTEM AND SIMULATION MODELS

The simulation model of this study is developed to simulate
the real 5G network. The network is modeled according
to LTE-Advanced Pro 3GPP Rel.16 specifications that are
explained by 3GPP in [2]-[8], [46], [50]. The network is
deployed by considering several small hexagonal cell layout
models, parts of which are illustrated in Figure 3. The number
of hexagonal cells can be automatically increased based on
the simulation time interval defined in the simulation. Each
hexagonal cell is built with an inter-site distance of cell radius
R (in meter) and one eNB located at its center, as illustrated
in Figure 3. Each hexagonal cell also consists of three sector
antennas. As for frequency planning, a unity frequency reuse
factor is assumed for all cells.

5G Network
600 A

400 ¢

200 [

-200

eNB-to-UE Y location [m]

-400

-600

o 500 1000 1500 2000 2500
eNB-to-UE X location [m]

FIGURE 3. System model with several hexagonal cells, each consist of
three sectors.

In each hexagonal cell, a number of mobile users are
generated with random coordinates within the cell hexagonal
boundaries. Initially, 200 users are generated and randomly
distributed inside each hexagonal cell. Throughout the sim-
ulation cycles, the number of users is randomly and period-
ically changed in each cell. That means the load traffic for
each eNB is automatically and periodically changed from
time to time to represent the real network environment. This is
considered in the developed simulation model so as to mimic
arandom generation of load traffic throughout the simulation
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and to fully enable the admission control functionality at
the target cell through the mobility of users. Each user is
equipped with an Omni-directional antenna to communicate
with the serving network.

The radiation pattern of each antenna matches those
described by 3GPP in [50], [54]-[56], and it is mathemati-
cally exemplified as:

9 \2
A (0)=—min 12(—) LA where — 180 <6 <180
034

(14)

where, A (0) exemplifies the gain of antenna (dBi) in the
direction of 6, which is the angle among the steering direction
of the antenna and the direction of interest; 6343 denotes
the 3dB beam width which corresponds to 65 degrees; and
A, denotes the maximum attenuation which corresponds to
20 dB (A,, = 20 dB) with three sectors in each cell.

Six different user speeds are considered during the simula-
tion study. The considered speeds range between 40 km/hour
and 140 km/hour. These speeds are applied to assess the
influence of different mobile speeds on network performance.
They represent the characteristics of vehicle speeds in urban
and suburban areas and are therefore accepted for theoretical
investigations. The specific mobile speeds considered in the
simulation are presented in Table 1.

A Directional Mobility Model (DMM) is proposed for all
measured mobile users throughout the network. Mobile users
are allowed to move in only one direction with the range
of [0°], as illustrated in Figure 3. The measured users are
initially generated in the cell that is numbered one in Figure 3.
Next, the users only move in one direction between the solid
pink lines, as illustrated in Figure 3. Since users are initially
generated at random coordinates, their movements will be in
different parallel paths to each other. That means all users will
move parallel to each other in one direction. That will enable
us to consider additional and diverse handover scenarios and
probabilities since users are moving parallel over different
paths within the cells. This will further increase the accuracy
of results as well. The users’ movements are periodically
updated in the simulation. The periodical interval is identi-
fied as 50 ms. The movement distance is matched with the
periodical interval.

In this study, 15 users are chosen to investigate the per-
formance of the proposed algorithm so as to compare with
other algorithms from the literature. The 15 users are ran-
domly generated inside cell#1 in the first simulation cycle.
Therefore, each user initially has a different coordinate in the
cell. Since the mobility of users is directed to one direction,
each user has a different path that is parallel to the other
measured users. Next, the performances of the 15 users
are measured in every simulation cycle (which is 50 ms)
during their mobility within the cells. The measurement was
conducted to illustrate the performance of wireless networks
based on different HPSO algorithms. The average values
of RSRP, HOP, HPPP, and RLF are calculated in every
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TABLE 1. System and simulation parameters [38], [50]-[52], [57]-

Network Parameter

Assumption

Environment

Cellular Layout

No. of Hexagonal Cells
No. of Sectors per cell

Interference Model

Path Loss Model

Shadow Fading Model

Fast Fading Model
eNBs antenna height
Cell radius(d)
Carrier frequency
Total eNB TX Power
Shadowing (o)

White Noise Power
Density (Nt)

eNBs Noise Figure
Thermal Noise Power

(Np)
Number of tested UEs

UE Noise Figure
UE height

UE’s Antenna Gain
UE’s Antenna
Mobility Model

UE’s speeds

Resource Distribution
System Bandwidth
Cyclic Prefix length
Number of PRBs
Modulation Scheme
Resource Distribution
HO Decision Algorithm
Q_rxlevmin
Handover Margin
TTT

T311 interval

Micro cells, Urban areas, 5G
Rel.16System
Hexagonal grid,
Dynamically changed based on
simulation time
3 Sectors
Co-Channel Interference (CCI) from the
first tier
L =588+ 37.6 xlog,o(d)
+21 logso(fo)
Gaussian-distributed random variable
with zero mean and o4p standard
deviation in dB [57, 58]
Rayleigh fading model [59]
I5m
200m
28 GHz
46 dBm
8 dB
-174 dBm/Hz.
5dB
Np =Nt + 10 log (BW x106) dB
15 UE:s distributed initially randomly at
Cell#1
9dB
1.5m
0dB
1 (Omni-directional)
DMM

Ranging from 40 to 140 km/hour in steps
of 20 km/hour

evenly over all the active UEs
500 MHz

Normal

2500 PRBs

AMC scheme

evenly over all the active UEs
RSRP; > RSRPr + HOM
-101.5 dBm

Adaptive

Adaptive (0 ms to 5120 ms)
10s

No.: Number

Q_rxlevmin: Minimum required RX level in the cell (dBm) [3GPP TS 36.304]

simulation cycle. Thus, the presented results are the average
values for all 15 users.

The simulation commenced based on previous illustrated
settings. It began with identifying the required network
parameters, followed by building the entire simulated net-
work environment. Next came the mobility model. During
simulation, the users’ directions and positions are periodi-
cally updated, and their Euclidian distances from the eNB
in the network are calculated in a distance matrix. From this
distance matrix, the experienced path losses on the signal
are estimated in addition to the log-normal shadowing and
Rayleigh fading in multipath scenarios. The RSRP and SINR
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perceived by each UE are then calculated over each car-
rier received signals. Each eNB in the network updates the
RLF and Ping-Pong report during the simulation. Moreover,
the eNB updates the load report and transmits its load infor-
mation to another eNB in the network. From the perspective
of the UE, the average SINR and RSRP over the carrier is
measured by each UE and then transmitted to the respective
eNB for the optimization process. The eNB performs the
Modulation and Coding Scheme (MCS) selection accord-
ing to the received SINR and RSRP reports, as illustrated
in Table 2. The self-optimization process is then executed.

TABLE 2. MCS in LTE-advanced system [60].

. Coding SINR
CQI index MCSs MSs Rate Threshold

[dB]

1 MCS-01 QPSK 1/8 -6.5
2 MCS-02 QPSK 1/5 -42
3 MCS-03 QPSK 1/4 -35
4 MCS-04 QPSK 1/3 -1.5
5 MCS-05 QPSK 172 0.5
6 MCS-06 QPSK 2/3 2.0
7 MCS-07 QPSK 4/5 4.5
8 MCS-08 QPSK 12 6.1
9 MCS-09 16-QAM 2/3 8.1
10 MCS-10 16-QAM 4/5 10.9
11 MCS-11 16-QAM 2/3 12.5
12 MCS-12 64-QAM 3/4 13.5
13 MCS-13 64-QAM 4/5 16.0

Upon the completion of the self-optimization process,
the serving eNB performs the handover decision accord-
ing to the Measurement Report (MR) and estimated HCPs
by executing the handover procedure sequence in 3GPP
[51], [52]. If the serving eNB provides satisfactory signal
quality, the connection with the UE will be maintained.

The radio link connection condition is regularly monitored
and updated in the serving eNB. In the case of RLF detection,
the Radio Resource Control (RRC) re-establishment proce-
dure will be initiated. In this procedure, the UE scans the
received signals from all neighboring cells, and then selects
the target cell that can fulfill the minimum required signal
level. The UE will select the cell that provides the strongest
signal quality (if multiple cells satisfy the criteria). Upon the
selection of the cell by the UE, the RRC re-establishment
procedure is initiated to configure the connection within
T311 interval. Conversely, if none of the cells satisfy the min-
imum requirements, the Non-Access Stratum (NAS) recov-
ery procedure is enabled. The UE continues to identify a
suitable cell in the target eNB throughout the NAS recovery
procedure. The search is repeated until a suitable cell is
identified and reconnection takes place. Finally, the system
performance is evaluated at the end of each simulation cycle.
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The simulation model is used to investigate various han-
dover self-optimization algorithms from the literature. It also
implemented the developed algorithm to validate its perfor-
mance in the system. The simulation’s performance results
for the developed algorithm are then analyzed and compared
to the performance of various HPSO algorithms with different
mobile speeds. The essential 5G parameters defined in the
3GPP specifications (Rel.16) are considered in this simula-
tion, as listed in Table 1.

V. KEY PERFORMANCE INDICATORS

Four Key Performance Indicators (KPIs) are used to evaluate
network performance. The KPIs have been selected due to
their significance. They are main criteria usually used in eval-
uating wireless network performance during user mobility.
The four KPIs are explained below:

o RSRP: Received Signal Strength has been defined by
3GPP in LTE/LTE-Advanced as a RSRP. It is a signifi-
cant KPI that is usually employed for measuring wireless
network performance during user mobility. This is due
to the rapid changes in the received RSRP level during
the movement of users within the cells. Also, it is the
main factor that has a direct impact on the total system
performance in terms of SINR, throughput, and outage
probability.

e« HOP: HOP is the Handover Probability (sometimes
presented as a handover rate) that may occurs during
user mobility. It is a significant KPI that is usually used
for evaluating wireless network performance during
the mobility of users within the cells. This is because
the mobility of users can lead to a rapid change in the
received signal strength, prompting the need for switch-
ing connection handover) from one cell to another so
as to provide better service. The communication link
switches from an old BS to a new one that provides
better continuous signal with enough bandwidth. This
handover rate can be changed with the implementation
of different HPSO algorithms. Therefore, HOP is the
main indicator for studying the performances of differ-
ent HPSO used.

o HPPP: HPPP, Handover Ping-Pong Probability, is the
probability of unnecessary handover that can result
through the mobility of users. This may occur due to var-
ious reasons such as unsuitable settings in the HCP set-
tings or inaccurate handover decision. If this case arises
during user mobility, it leads to an unstable connection
with bad communication quality. Since this is a critical
issue in wireless networks, the HPPP becomes one of the
main KPIs that are usually used for evaluating wireless
network performance during the mobility of users within
the cells. Therefore, it is considered in this study.

e RLF: The RLF, Radio Link Failure, is recorded com-
munication dropping rate during user mobility due to
a deterioration in the RSRP level. It is recorded when
the serving RSRP goes below a specific threshold level
before the mobile switches the connection to a new BS.

VOLUME 8, 2020

The threshold level is usually defined by a standard
which differs from one system to another. It is consid-
ered as a significant KPI that are commonly used to cal-
culate the performance of wireless networks throughout
user mobility. This is because the mobility of users can
lead to a rapid change in the received signal strength.
This may cause a call to get dropped before the connec-
tion switches to a new cell due to poor signal quality
or no resources available (in some cases). This issue
sometimes occurs due to unsuitable settings in the HCP
settings or incompatible handover decision algorithm.
Thus, RLF is a necessary KPI that should be considered
for evaluating wireless network performance during user
mobility.

Based on these performance indicators, the results are

presented and discussed in the next section.

VI. RESULTS AND DISCUSSION

This section presents the collected results from the simulation
study. The performance results of the proposed algorithm are
discussed and later and compared to three other algorithms
selected from the literature. All considered algorithms have
been investigated with six different mobile speed scenarios
to illustrate their performance in various conditions. The
algorithms are assessed and validated based on simulations
using the 5G network. All presented results are average val-
ues taken from thel5 users considered in the measurements.
Performances are independently measured for each user in
every simulation cycle (which is 50 ms). Next, the average
value is taken over all measured users in every simulation
cycle. Thus, the presented results are the average values over
all 15 users.

The results of the proposed algorithm are compared to the
HPSO based on distance (Dis) [2]-[8], WPHPO (labeled as
HPI in the figures)[17], and FLC [15] algorithms. The Dis,
HPI, and FLC algorithms are chosen from the literature since
they mostly focus on developing the HPSO function. They
are also clearly explained as compared to other algorithms.
Accordingly, the presented results illustrate the effect of the
developed algorithm on the RSRP, HOP, HPPP effect, and
RLF. Based on these KPIs, the results are presented and
discussed in four subsections, as illustrated in the following.

A. REFERENCE SIGNAL RECEIVED POWER (RSRP)

In this subsection, the results of the received signal strength
(RSRP) are presented and discussed. Figure 4 displays the
RSRP in the form of Cumulative Distribution Function
(CDF) as the average for all measured users. The presented
results demonstrate the performance of various automatic
self-optimization algorithms with different mobility speed
scenarios. The results also indicate that there is no specific
algorithm that can provide the highest RSRP level with all
mobile speed scenarios. For 40 kmph, 60kmph, and 80kmph,
no significant improvement was achieved by the proposed
algorithm as compared to the benchmark algorithms. For
the highest mobile speed scenarios (100-140 kmph) the
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FIGURE 4. Average CDF of RSRP with various mobile speed scenarios.

proposed algorithm and the Dis algorithm provide notice-
able enhancements compared to the benchmark algorithms.
However, the mean values of the enhancements are not
so high, especially if the HPI algorithm is ignored due to
its - worst performance for 140 kmph. The mean varia-
tions between the performances of various algorithms range
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between 2.3 dBm to 4.6 dBm without considering the HPI
algorithm for 140 kmph. If HPI is considered, the exact mean
variations between the minimum and maximum levels are
3.4dBm, 3.3 dBm, 3.3 dBm, 4.6 dBm, 2.3 dBm, and 49 dBm
for 40 kmph, 60 kmph, 80 kmph, 100 kmph, 120 kmph, and
140 kmph, respectively. The HPI provides the worst results
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FIGURE 5. Average RSRP overall simulation time with various mobile speed scenarios.

for 140 kmph. Therefore, if the HPI is ignored, reasonable
results and small differences are achieved. It can be fur-
ther noted that the Dis, FLC, and the proposed algorithm
have achieved very similar RSRP results with only a small
variation. The differences between the mean performances
attained by these three algorithms are 1.3 dBm, 2.4 dBm,
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3.3 dBm, 4.6 dBm, 2.3 dBm, and 1.7 dBm for 40 kmph,
60 kmph, 80 kmph, 100 kmph, 120 kmph, 140 kmph,
respectively.

Figure 5 presents the average RSRP over all measured
users and over all simulation times for each independent
mobile speed scenario. The results indicate that the minimum
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FIGURE 6. Average RSRP overall mobile speed scenarios.

achieved RSRP level is greater than -75dBm for all the
algorithms with all mobile speed scenarios, except HPI with
140 kmph. The results further demonstrate the performance
of the proposed algorithm in comparison to other algo-
rithms. In the case of lower mobile speed scenarios (40kmph,
60kmph, and 80kmph), the proposed algorithm provides a
lower RSRP level with an average of 1.7 dBm. However,
in the case of higher mobile speed scenarios (100 kmph,
120 kmph, and 140 kmph), the proposed algorithm produces
better results than HPI and FLC. It outperforms the Dis, FLC,
and HIP algorithms for the mobile speed of 100 kmph by
1.15dBm, 3.4dBm, and 3.15dBm, respectively. Moreover,
it outperforms the FLC and HIP algorithms for 120 kmph by
-1.45 dBm and 1.4 dBm, respectively. In the case of140 kmph,
the proposed algorithm outperformed the FLC and HIP
algorithms by 31.7 dBm and 0.6 dBm, respectively. Even
when it was less than the Dis algorithm (with 120 kmph and
140 kmph), it was only lower by around 1 dBm.

Figure 6 presents the average RSRP over all measured
users and over all mobile speed scenarios. The results in
Figure 6 (a) illustrate the average RSRP over all measured
users and over all mobile speed scenarios in the form of
CDF. While Figure 6 (b) presents the average RSRP over all
measured users taken over all simulation times and then taken
over all mobile speed scenarios. Both Figures demonstrate
that the proposed algorithm provides noticeable enhance-
ments, especially when compared to HPI and FLC. Even
though it was lower than the Dis algorithm, it was only lower
by 1 dBm. Nevertheless, the performance of the proposed
algorithm is better than the Dis algorithm based on the other
KPIs, as will be seen later.

These results provide two indications. First, the Dis, FLC,
and the proposed algorithm can be considered as candidate
algorithms for the 5G network, yet further investigations
are needed before recommendations. Second, the proposed
algorithm presented noticeable achievements, making it a
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promising solution as long as its performance is noticeable
based on the other KPIs.

B. HANDOVER PROBABILITY (HOP)

Figures 7 and 8 present the average handover probability
results based on the considered algorithms. In Figure 7,
the handover probability is presented as the average rate
over all measured users with various mobile speed scenarios.
While in Figure 8, the handover probability is presented
as an average rate over all measured users and over all
mobile speed scenarios. The results generally indicate that
at the initial operation period, the handover probability is
high. This is more apparent for lower mobile speed scenarios
below 100 kmph and for the average handover probability
over all mobile speed scenarios (Figure 8 (b)). This phe-
nomenon occurs because the network operation begins in
accordance with the initially defined HCP settings. After
a while, the HCP settings are automatically optimized and
updated by the considered algorithms. That leads to a differ-
ent impact on the handover probability which varies based
on the reaction and robustness of the operating optimization
algorithm. The proposed and HPI algorithm have shown that
they react more with mobile speed scenarios and optimiza-
tions updated with time. However, the performances of Dis
and FLC did not present significant reactions with different
mobile speed scenarios or even with optimizations updated
with time. This is usually due to the robustness design of the
optimization algorithm.

In Figure 7, the results demonstrate that the proposed
algorithm with the mobile speed below 100 kmph produces
lower handover probability, which is further reduced with
time. However, with mobile speed scenarios equal to or
above 100 kmph, the proposed algorithm produced change-
able handover probabilities that rapidly fluctuate with time.
In Figure 8, the results show that the proposed algorithm
provides a noticeable reduction gain in the handover rate,
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FIGURE 8. Average handover probability overall mobile speed scenarios versus time.

especially when compared to the Dis and FLC algorithms.
The HPI still offers the lowest average handover rate over all
mobile speed scenarios. Accordingly, the average reduction
gains achieved by the proposed algorithm are around 9% and
24% lower than the Dis and FLC algorithms, respectively.
However, the highest or the lowest handover probability is
not always considered as bad or good indicators. The most
significant performance indicators are the Ping-Pong effect
and RLF, which will be discussed in the next two subsections.

C. HANDOVER PING-PONG PROBABILITY (HPPP)

The handover Ping-Pong probability is the unnecessary
handover that may occur due to suboptimal HCP settings.
Suboptimal HCP settings can be statically defined or auto-
matically estimated. In the static case, HPPP occurs if the
HCP settings are manually defined at minimum levels. In the
automatic case, HPPP occurs if inappropriate HCP - settings
are estimated by an automatic HPSO algorithm. In both cases,
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the suboptimal HCP settings that cause HPPP usually take
place when the HCP settings are at minimum levels. That
leads to early handover before it is needed. This, in turn,
may lead to increased HPPP in some situations, especially for
mobile users located at the cell edges. Moreover, the increase
in mobile speeds further increases the HPPP probability. This,
in turn, increases network resource wastage and degrades
network performance. Therefore, HPPP should be reduced
as much as possible to preserve network resources.

Figures 9 and 10 present the average handover Ping-
Pong probability results based on the different algorithms
considered. In Figure 9, the HPPPs are presented as the
average rate over all measured users with various mobile
speed scenarios. While in Figure 10, the HPPPs are presented
as the average rate over all measured users and over all
mobile speed scenarios. Similar to the handover probabil-
ity, the results show that at the initial operation period,
the HPPPs are high. The case is more apparent with lower
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FIGURE 10. Average handover ping-pong probability over all mobile speed scenarios versus time.

mobile speed scenarios below 100 kmph as well as with the
average HPPP probability over all mobile speed scenarios
(Figure 10 (b)). The occurrence of this phenomenon can
be explained using the same justification mentioned in the
previous subsection. The results further indicate that the
proposed algorithm and the HPI algorithm react more with
mobile speed scenarios and optimizations updated with time.
However, the performances of Dis and FLC did not present
significant reactions with different mobile speed scenarios or
with optimizations updated with time.

In Figure 9, the results indicate that the proposed algo-
rithm with mobile speeds below 100 kmph produces lower
HPPP compared to the Dis and FLC algorithms. However,
when the mobile speed scenarios are equal to or above
100 kmph, the proposed algorithm produces changeable
handover probability that rapidly fluctuates with time.
In Figure 10, the results show that the proposed algorithm
provides a noticeable reduction gain in the HPPP rate,
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especially when compared to the Dis and FLC algorithms.
The HPI still offers the lowest handover rate regarding the
average over all mobile speed scenarios, but this is not a
good indication for HPI (as illustrated in the next subsection).
Accordingly, the average reduction gains achieved by the
proposed algorithm are around 9% and 24% lower than the
Dis and FLC algorithms, respectively. However, the lowest
HPPP rate can sometimes be considered as a bad indicator.
This is because there is a tradeoff between the HPPP and RLF,
which is further explained in the following subsections.

D. RADIO LINK FAILURE (RLF)

The RLF is another significant indicator for evaluating net-
work performance. Similar to the HPPP with a different
direction, the suboptimal HCP settings can be statically
defined or automatically estimated. In the static case, the RLF
occurs if the HCP settings are manually defined at maximum
levels. In the automatic case, the RLF occurs if inappropriate
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HCP settings are estimated by an automatic HPSO algorithm.
In both cases, the suboptimal HCP settings that cause RLF
usually happen when the HCP settings are at maximum levels.
That leads to late handover which may subsequently lead
to increased RLF in some situations, especially for mobile
users located at cell edges or those moving with high mobile
speeds. This, in turn, will increase network resources wastage
and degrade network performance. Therefore, RLF should be
reduced as much as possible to preserve network resources.

Figures 11 and 12 present the average RLF probabil-
ity recorded based on the different algorithms considered.
In Figure 11, the RLFs are presented as the average rate
over all measured users with various mobile speed scenarios.
While in Figure 12, the RLFs are presented as an average
rate over all measured users and mobile speed scenarios. The
results generally indicate that the RLFs are changeable with
time for all mobile speed scenarios. The results further reveal
that all algorithms continuously react with time.
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In Figure 11, the results indicate that there are no clear
differences between these algorithms. However, in Figure 12,
the proposed algorithm presents a noticeable reduction gain
in the RLF rate compared to the other algorithms. The HPI
causes the highest RLF rate as an average over all mobile
speed scenarios. Accordingly, the average reduction gains
achieved by the proposed algorithm are around 6%, 17%,
and 62% lower than the Dis, FLC, and HPI algorithms,
respectively. This is a significant achievement reached by the
proposed algorithm.

E. DISCUSSION
In previous subsections, the performances of different algo-
rithms are discussed based on four KPIs. The results show
that a tradeoff is present between the performances achieved
due to the different KPIs.

It can be stated that the RSRP levels achieved by
the Dis, FLC, and the proposed algorithm are above the
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acceptable level by more than 26.15dBm, the considered
threshold level in the 5G system is around — 120 dBm. On the
other hand, the HPI algorithm provided lower results (below
—101.5dBm), specifically with 140 kmph. The proposed
algorithm also offers the best results compared to the HPI
and FLC algorithms. The Dis algorithm is better than the
proposed algorithm, but the difference is only by 1 dBm.
Thus, the presented results indicate that the Dis, FLC, and
the proposed algorithm have the capability to support stable
communication in 5G networks, making them suitable for
implementation in 5G networks. However, this does not mean
that they are all efficient for use in 5G networks without
further investigations that consider more scenarios and KPIs.
These results also indicate that the final conclusion should be
stated based on the performance of Dis, FLC, and the pro-
posed algorithms, while primarily ignoring the performance
of the HPI algorithm.

According to the handover probability, the proposed algo-
rithm (concerning the final average over all users, mobile
speed scenarios, and simulation times) achieved a lower rate
than the Dis and FLC algorithms. The HPI still attained an
even lower rate than the proposed algorithm, but it has an
issue regarding the RSRP and RLF performances. Offering
lower handover rate is not always a good indication. This
is because with the implementation of handover parameters
self-optimization algorithms, the impact of HCPs in reducing
the handover probability can be due to two main reasons.
First, the high-level selection in the HCP settings leads to
delayed handover. This, in turn, leads to an increase in RLF,
which is a bad indicator. Second, the implementation of effi-
cient handover parameters self-optimization algorithm leads
to the selection of optimal HCP settings. This usually leads to
improved network performance in general. Therefore, it can
be noted that even the proposed algorithm contributes to
reducing the handover rate, but the reduction in handover rate
is not always considered as an advantage. Thus, the HPPP and
RLF must be investigated to establish a final conclusion.

For the handover Ping-Pong rate, the proposed algorithm
performed lower than the Dis and FLC algorithms in the final
average. The HPI also performed lower than the proposed
algorithm, but it has an issue concerning the RSRP and
RLF performances, as previously illustrated. Offering a lower
handover Ping-Pong rate is not always a good indication.
This is because the utilization of higher HCP settings leads
to a reduction in the HPPP rate. This simultaneously leads to
delayed handover which, in turn, leads to an increase in RLF.
However, a reduction in the HPPP rate is sometimes a good
indication. This is due to the use of efficient handover param-
eters self-optimization algorithms that estimate the optimal
HCP settings. The proposed algorithm contributes to reduc-
ing the handover Ping-Pong rate, yet that reduction is not
always considered as an advantage. The tradeoff between
HPPP and RLF illustrates the performance more clearly.

For the RLF rate, the proposed algorithm performed lower
in the final average compared to the Dis, FLC, and HPI
algorithms. However, a reduction in the RLF rate is not
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always a good sign. This is because the utilization of lower
HCP settings leads to a reduction in the RLF rate. This will
simultaneously lead to early handover which, in turn, causes
an increase in HPPP. Sometimes, the reduction in the RLF
rate is a good indication as it is due to the use of efficient han-
dover parameters self-optimization algorithms that estimate
the optimal HCP settings. Thus, the final conclusion should
be stated based on the tradeoff performance between HPPP
and RLF.

The presented results show that, the proposed algorithm
provides noticeable enhancements on average compared to
other algorithms. As previously illustrated, the proposed
algorithm provides distinct improvements in terms of RSRP,
HOP and HPPP compared to the Dis and FLC algorithms. The
HIP algorithm offered lower HOP and HPPP compared to
the proposed algorithm, but its RLF was significantly higher.
That means the tradeoff between HPPP and RLF achieved
by the proposed algorithm is better than what is achieved by
the HPI. Moreover, the proposed algorithm provides notice-
able enhancements in terms of RLF when compared to all
algorithms. This indicates that the proposed algorithm con-
tributes to significant improvements in comparison to other
investigated algorithms.

These enhancement gains also lead to considerable
advancements in network performance with different mobile
speed scenarios. They reinforce system performance by
increasing connection continuity and reliability, especially
through high mobility speeds. They ensure that the radio
link connection will be maintained between the served UE
and the serving network. This leads to a seamless con-
nection, making it reliable through the mobility of the UE
within the cells. Accordingly, the results demonstrate that
the proposed algorithm achieves higher gains than all other
algorithms with different mobile speed scenarios. Thus, the
proposed algorithm provides the best reduction gains when
compared to other algorithms. This is attributed to the
robustness of the proposed algorithm in estimating suitable
HCP values.

These enhancement gains are attributed to the influences
of three considered factors (SINR, UE’s speed, cell load)
and the individual estimation for each UE. The proposed
algorithm independently performs the optimization for each
UE based on the UE’s SINR, speed, and cell loads. This
leads to the estimation of suitable HCP values for each
UE, independently, without affecting other UEs in the cell.
It allowed the UE to connect to the best cell continuity without
any retraction from the serving network, which means that
the proposed algorithm discharges the central control in the
optimization process. On the other hand, the other algorithms
from previous works performed the optimization process
centrally by the eNB. This central control causes restriction
to the UEs. This adjustment is useful for some UEs, but can
simultaneously affect others. The proposed algorithm is more
robust than the existing algorithms in the literature. Thus,
the proposed algorithm can be considered as one of the robust
HPSO algorithms for 5G systems.
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VII. FUTURE DIRECTIONS

Handover Parameter Self-Optimization is one of the signif-
icant functions that have been introduced in 4G and 5G
networks to automatically optimize HCPs. The automatic
self-optimization operations characteristic will enable this
technology to be part of Sixth Generation (6G) mobile
networks with further improvements as well. Also, some
new technology will be introduced and other factors will
be used. In this section will give a brief and general
guidance for future works that need to be conducted in
future.

« Mobility with the integration of 6G and satellite net-
works:The integration between 6G and satellite tech-
nologies will be one of the targets that need to be
achieved in future wireless networks [61]-[63]. The
aim is to enable Enhanced Mobile Broadband (eMBB)
services to be available everywhere and anytime with
excellent service quality. But, 6G and some satellite
systems operate based on mm-wave bands. That will
raise mobility issues [64]-[66]. Therefore, studying
self-optimization techniques with such networks will be
one of the significant research targets that need to be
conducted in future.

« Optimization with Mobile Communications Growth:
The number of mobile communications will massively
increase in the future leading to ultra-dense networks.
That, in turn, will lead to a significant increase in the
need for load balancing operation. That means further
self-optimization operation will be conducted to bal-
ancing load between cells. Optimization operations and
signaling overhead may increase too, thus, studying
handover-self optimization with such a system is a sig-
nificant part that needs to be addressed.

« Investigating Further Algorithms: There are several
algorithms that have been proposed in the literature to
automatically optimize HCPs with different scenarios.
But there is no comprehensive study that can investi-
gate all algorithms utilizing the same simulation envi-
ronments to find out which models perform better.
Thus, further algorithms from the literature need to be
investigated to broaden the investigation further and
find out the most suitable algorithms available in the
literature.

« Enabling Machine Learning (ML):Enabling ML to
be part of the solution 5G networks is one of the tar-
geted tasks that need to be achieved. There are some
works are conducted now by the International Telecom-
munication Union (ITU) that focusing on AI/ML in
5G Challenge [67]. Also, standardization organizations,
universities and developers are working on that to
enabling ML and Al technologies to be incorporated in
addressing the challenges of 5G networks. Focusing on
handover self-optimization based on ML will be one of
the interesting research areas.
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VIil. CONCLUSION

In this study, a new algorithm was proposed to dynamically
estimate the HCP settings based on the WPFE. The WPF
estimated the optimization values according to the UE’s SINR
level, cell loads, and UE’s speed. Furthermore, the proposed
algorithm provides freedom to the serving network by inde-
pendently adjusting the HCP values for each UE. Thus,
each UE acquires different HCPs settings than other UEs.
These HCP optimization settings were validated over various
mobile speed scenarios in the 5G network. The performances
were assessed in terms of RSRP, HOP, HPPP, and RLF. The
simulation results have shown that the proposed algorithm
achieved noticeable enhancements compared to the Dis, FLC,
and HPI algorithms. As a result, the proposed algorithm can

TABLE 3. List of abbreviations in alphabetical order.

Item Description

3GPP 3rd Generation Partnership Project
4G Fourth Generation

5G Fifth Generation

6G Sixth Generation

AWF Automatic Weight Function

BS Base Statio

CA Carrier Aggregation

CCI Co-Channel Interference

CDF Cumulative Distribution Function
DCP Drop Call Probability

DMM Directional Mobility Model

¢eMBB enable Enhanced Mobile Broadband

EMSE Enhanced Mobility State Estimation

eNB evolved NodeB

FLC Fuzzy Logic Controller

HCPs Handover Control Parameters

HFP Handover Failure Probability

HOM Handover Margin

HOP Handover Probability

HOR Handover Ratio

HPI Handover Performance Indicator

HPPP Handover Ping-Pong Probability

HPSO Handover Parameter Self-Optimization
Dynamic Handover Parameter Optimization

IDHPO-AWF algorithm based on an Automatic Weight Function

IMT-2020 International Mobile Telecommunications 2020

ITU International Telecommunication Union

KPIs Key Performance Indicators

LBO Load Balancing Self-Optimization

LTE Long Term Evolution

MCS Modulation and Coding Scheme

ML Machine Learning

MR Measurement Report

MRO Mobility Robustness Optimization

NAS Non-access stratum

OPEX Operating Expenditure

Rel. Release

RLF Radio Link Failure

RRC Radio Resource Control

RSRP Reference Signal Received Power

SINR Signal-to-Interference-plus-Noise-Ratio

SON Self-Optimization Network

TTT Time-to-Trigger

UE’s User Equipment

WF Weight Function

WPHPO Handover Parameter Optimization
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be recommended for implementation in 5G networks. Further
investigations for proposed algorithm are needed to validate
its performance. Moreover, additional investigations of the
benchmark algorithms are also required to clearly show the
high performance of our proposed algorithm. This will be
more apparent when enabling other algorithms (found in the
literature and with accurate central optimization operations)
in the developed simulation model. Further investigations
with other algorithms from the literature, new scenarios, and
additional improvements to the simulation model will be
conducted in our future study.

APPENDIX
See Table 3.
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