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ABSTRACT Heart rate variability (HRV) can be used as a common detection method for congestive
heart failure (CHF). Existing researches regarding HRV, including both linear indicators and nonlinear
characteristics, are mostly based on the RR intervals of the ECG signal. This article proposed a sequence that
can reflect the regulation of sympathetic and parasympathetic nerve on heart rate, and on this basis, conducted
multifractal detrended fluctuation analysis (MFDFA). We extracted multifractal features to quantitatively
compare the complexity of proposed sequence between the healthy and CHF groups. Results showed that
abnormal physiological and pathological conditions due to the weakening of autonomic nerve control can
reduce the complexity of the heartbeat signal. Estimate the separation performance of all features, the best
discrimination is obtained for the area under the mass index spectrum S1τ as providing 100% accuracy in
separating the Healthy Young and CHF groups, and 90.93% separation accuracy between the Healthy Elderly
and CHF groups. This work provide a good basis for the diagnosis of CHF with a novel perspective.

INDEX TERMS Congestive heart failure, heartbeat time series, multifractal detrended fluctuation analysis.

I. INTRODUCTION
Congestive heart failure (CHF) refers to a pathological state
due to the decrease in systolic and diastolic functions of
the heart, which in turn cannot meet the needs of systemic
tissue metabolism [1]. Despite the great progress in diag-
nosis and treatment, morbidity and mortality are still high,
and the prevalence is rising [2]. Around 26 million people
worldwide are affected by CHF [3], of which, the prevalence
is 1.5%-2.0% in developed countries, and more than 10% in
patients >70 years [4]. CHF is a progressive disease, early
diagnosis and intervention are extremely important to delay
the progress and improve the quality of patients’ life.

Heart rate variability (HRV) can be used as a diag-
nostic basis for abnormal rhythm or sinus arrhythmias in
patients with CHF [5], [6]. HRV conventionally refers to
the fluctuation of time intervals between adjacent heart-
beats, which is generated by the dual modulation of sinus
node by the sympathetic and parasympathetic nervous system
(SNS & PNS) [7]–[9]. The increase and decrease of heart
rate are respectively related to the excitement of the body’s
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sympathetic and parasympathetic nerves. The increase in
sympathetic tension is often associated with the occurrence of
severe arrhythmia, at which time HRVwill reduce to a certain
extent. Nonetheless, the increase in parasympathetic tone can
improve the threshold of arrhythmia, thereby reducing the
occurrence of arrhythmia. At this time, HRV appears as a
certain increase. Generally, HRV can monitor the tension bal-
ance of the sympathetic-parasympathetic nervous system and
is a prognostic indicator for evaluating autonomic nervous
function and related diseases.

Extensive researches have been carried out regarding HRV,
proposing both linear indicators and nonlinear characteris-
tics [10], [11]. Traditional analysis, linear or time-frequency
methods, are based on the Fourier transform (FT), which is
effective for the analysis of periodic and stationary signals,
but can not well reflect the local time-varying characteristics
of the signal. Although Wavelet Transform (WT) can focus
on any details of the signal, it is not sensitive enough to catch
the exact jump time of the frequency components with small
amplitude. In distinguishing deterministic ‘‘random’’ signals
like heartbeat, nonlinear dynamic parameters are more effec-
tive than time-frequency analysis methods. Multifractal anal-
ysis proved the chaotic characteristics of biomedical signals
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like EEG, ECG, etc. [12], [13], and has discovered the loss
of physiological complexity with CHF [14]. Multifractal is
actually a generalization of the fractal system when a single
scale exponent is not enough to describe the dynamics of the
object, and should be expressed as a continuous exponen-
tial spectrum (singular spectrum f (α) ∼ α). Improved for-
malisms have been developed around multifractal analysis,
such as the wavelet transform modulus maxima (WTMM)
method and the multifractal detrended fluctuation analysis
(MFDFA) method that does not require the modulus maxima
procedure. The comparison between these two methods was
concerned by Kantelhardt et al. [15], suggesting that the
results of MFDFA are slightly more reliable than those of
WTMM. Therefore, hereafter we will extract features on the
basis of MFDFA to characterize the complexity of heartbeat
sequence.

Previous studies on HRV have been based on the RR inter-
vals of ECG signal. Next, we will propose a sequence that
helps reflect the alternation of the increase and decrease of
heart rate due to the sympathetic and parasympathetic nerve
regulation, which will provide powerful diagnostic basis for
predicting the physiological and pathological changes.

In this article, we adopted the MFDFA method to analyze
the heartbeat signal of CHF patients, and the specific process
is as follows: Based on the regulation of heart rate by the
autonomic nerve, we first constructed a sequence, that is,
the monotonous increase to monotonous decrease amplitude
ratios as derived from RR intervals. Then the complexity of
the sequence is quantified by multifractal features, includ-
ing the width of multifractal spectrum, the area under the
mass index spectrum and the multifractal spectrum area.
Finally, we compared the separation performance of different
features.

II. METHODS AND RESULT
A. DATA
There is no obvious limitation in the age of onset of CHF,
so both healthy young people and healthy elderly people
were selected as the control group. The ECG recordings used
herein were from the PhysioNet [16], which is a repository
of freely-available medical research data and managed by the
MIT Laboratory for Computational Physiology. Recordings
of 14 CHF patients (NYHA class 3-4) (aged 22-71) were
from the BIDMC Congestive Heart Failure Database [17],
which is 20 hours in duration, and sampled at 250 Hz. The
original analog electrical signals were made with ambu-
latory ECG recorders (bandwidth 0.1-40Hz). Recordings
of 19 healthy young (aged 21-34) and 15 healthy elderly peo-
ple (aged 68-85) were from the Fantasia database [18]. They
underwent rigorous screening and had ECG taken during 2
hours of continuous supine rest. The signals were digitized at
250 Hz. To ensure accuracy, annotation files of both patients
and healthy subjects were detected by an automated detector
and additional manual checks.

FIGURE 1. The construction process of AR sequence.

B. PREPROCESSING
Based on the regulation of heart rate by the autonomic nerve,
an amplitude-ratio sequence AR was constructed (Fig. 1).
Thereinto, Fig. 1(a) is a segment of ECG signal where RR(n)
is the time interval between peaks Rn and Rn+1; Fig. 1(b)
is the extracted RR(n) sequence; Fig. 1(c) shows the con-
struction process of AR (Eq. 1), where m+i represents the
trough position of RR(n), and as the sequence grows, m−i and
m+i+1 are the nearest peak and trough, respectively. IA(i) rep-
resents the amount of monotonous increase in the heartbeat
intervals, indicating the activation of parasympathetic nerve.
Correspondingly, DA(i) represents the increased sympathetic
regulation. Therefore, AR can reflect the balance of cardiac
autonomic nerve.

AR(i) =
IA(i)
DA(i)

=
RR(m−i ))− RR(m

+

i )

RR(m−i )− RR(m
+

i+1)
. (1)

Fig. 2 shows the probability density function of (a) the
RR interval exhibiting a normal distribution, and (b) the AR
sequence presenting a power-law distribution. All subjects in
the database show similar results.

Once a certain power-law distribution is found, we can
deduce whether this is due to the existence of fractals.

C. METHODS
Based on the MFDFA proposed by Kantelhardt et al. [19],
we extracted the multifractal features of AR sequence in i)
healthy young people, ii) healthy elderly people and iii) CHF
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FIGURE 2. The probability density function of (a) RR intervals, (b) AR
sequence.

patients, and compared the differences between them. The
following are the important steps involved in this method:

1) Calculate the cumulative sum of the de-averaged time
series

Y (i) =
i∑

k=1

[x(k)− xave], i = 1, 2, 3, . . .N , (2)

where xave is the average of non-stationary time series x(i).
2) Use the box of size s to divide Y (i) in order, and discard

the parts that cannot be divided, then Ns non-overlapping
boxes can be obtained. In order to make full use of the series,
repeat the above segmentation for inverted Y (i). Ultimately,
2Ns boxes will be obtained altogether.

3) Fit the series in each box by least squares and calculate
the corresponding variance. For v, v = 1, 2, 3, . . . ,Ns,

F2(s, v) =
1
s

s∑
i=1

{Y [(v− 1)s+ i]− yv(i)}2, (3)

and for v, v = Ns + 1,Ns + 2,Ns + 3, . . . , 2Ns, there is

F2(s, v) =
1
s

s∑
i=1

{Y [N − (v− Ns)s+ i]− yv(i)}2, (4)

where yv(i) is the fitting polynomial of the series in the v-th
box.

4) Calculate the q-th order fluctuation function

Fq(s) = {
1

2Ns

2Ns∑
v=1

[F2(s, v)
q
2 ]}

1
q . (5)

Here, order q can be any real value except 0. For q = 0, F0(s)
can be calculated by a logarithmic averaging procedure

F0(s) = exp{
1

4Ns

2Ns∑
v=1

ln[F2(s, v)]} ∼ sh(0). (6)

5) Vary box size s and repeat the step 2)∼ 4) above.
Obviously, Fq(s) will increase as s goes up. For long-range
correlated series, Fq(s) will be a power function of s

Fq(s) ∝ sh(q). (7)

In general, the value of exponent h(q) may depend on q. For
stationary time series, h(2) is identical to the well-known
Hurst-exponent H . Thus, h(q) can be called the generalized
dimension Dq. For q > 0, the box v with large variance
F2(s, v) may dominate the fluctuation function Fq(s). In this
case, h(q > 0) basically describes the scaling behavior of
boxes with large fluctuations. Accordingly, h(q < 0) repre-
sents the scaling behavior of boxes with small fluctuations.
While for monofractal time series, h(q) is constant for all
values of q. Thereinto, 0.5 < H < 1 indicates a (positively)
long-range correlated series; H = 0.5 corresponds to a
random walk series; and 0 < H < 0.5 demonstrates that
the series is long-range anti-correlated, that is, the future
increment is negatively correlated with the past increment,
and the series has abrupt jump reversal.

6) Mass index τ (q) can be calculated by the following
relationship with h(q)

τ (q) = qh(q)− 1. (8)

Obviously, for a monofractal time series with unique h(q),
τ (q) will grow linearly with respect to q, and for a multifractal
time series, τ (q) will depend nonlinearly on q. The greater
the curvature of curve τ (q) ∼ q, the more complicated the
series is.

Singularity strength α and singularity spectrum f (α) can
be obtained by Legendre transformation

α = h(q)+ qh′(q), (9)

f (α) = q[α − h(q)]+ 1, (10)

where α represents the fractal dimension of subset series in
a box, called the local fractal dimension. Due to the large
number of boxes, a sequence of different dimensions can be
obtained. And f (α) is used to describe the frequency of the
dimension. The width of spectrum1α = αmax −αmin can be
used to denote the range of fractal dimensions and can provide
the complexity information of the fractal body. A larger 1α
represents a greater complexity.

D. RESULTS
The multifractal features of AR sequence in i) healthy young
people, ii) healthy elderly people and iii) CHF patients were
extracted based on MFDFA method. Thereinto, the sequence
length of AR was uniformly intercepted as N = 1249 in
accordance with the minimum of all subjects. Research on
the MFDFA of nonstationary time series [19] shows that,
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FIGURE 3. Curves of the generalized dimensions Dq ∼ q for the order of
the detrending polynomial fitting functions varying from 1 to 3.

FIGURE 4. Multifractal curves of AR sequence. Plot of (a) generalized
dimension Dq, singularity strength α and singularity spectrum f (α) vs.
order q, (b) mass index τ (q) vs. order q and (c) multifractal spectrum f (α)
vs. α for one subject each of three groups.

systematic deviations from the scaling behavior in Eq. 7 will
occur for s < 10. Additionally, fluctuation function Fq(s)
will become statistically unreliable for large sizes s > N/4.
Thus, in this article, it is an adequate range for s varying from
10 to 200. Moreover, we chose q ∈ [−5, 5] to ensure the
effectiveness and stability.

In order to select the adequate order of the polynomial
fitting function, we applied the MFDFA, varying the order
from 1 to 3. Fig. 3 shows the results of generalized dimension
Dq ∼ q. The curves are just slightly different from each other.
In terms of simplicity of calculation, we adopted detrending
polynomial fitting functions of order 1 in the MFDFA.

Fig. 4 is the results of MFDFA for the healthy and CHF
groups. Fig. 4a shows the change of generalized dimension
Dq, singularity strength α and singularity spectrum f (α) with
order q. α decrease monotonically with q, indicating that
AR is multifractal characterized in all groups. Fig. 4b gives

FIGURE 5. The multifractal features for one healthy young subject. Plot of
(a) the area under the mass index spectrum S1τ , and (b) the area under
the multifractal spectrum S1f .

TABLE 1. Statistical Results of Multifractal Features: The Width of
Multifractal Spectrum 1α, Area Under the Mass Index Spectrum S1τ , and
the Multifractal Spectrum Area Sf & S1f .

the mass index curve τ (q) ∼ q. It can be concluded from
Eq. 8 that, the linear dependence of τ (q) on q indicates a
monofractal characteristic, and that more complex AR will
correspond to greater curvature. Fig. 4c exhibits the relation
between singularity spectrum f (α) and singularity strength
α, where1α is a typical quantitative indicator of multifractal
degree. From the three subplots showed in Fig. 4, conclusion
about the degree of complexity that healthy young > healthy
elderly > CHF patients can be obtained.

Next, we extracted four features from Fig. 4 that can char-
acterize the degree of multifractality, and performed quanti-
tative comparison between different groups:

1) The width of multifractal spectrum 1α(Fig. 4c).
2) Area under the mass index spectrum S1τ (Fig. 5a),

which is enclosed by the curve τ (q) ∼ q (blue solid line)
and its end-to-end connection (black dotted line). S1τ con-
tains the two-dimensional space information of mass index
spectrum.

3) The classical multifractal spectrum area S(f ) =∫
f (α)dα. Integration of f (α) and α contains all dimension

information of AR sequence.
4) Area under the multifractal spectrum S1f (Fig. 5b) pro-

posed byWang et al. [20]. S1f is enclosed by curve f (α) ∼ α
(blue solid line) and its end-to-end connection (black dot-
ted line). S1f effectively avoids the deviation caused by the
movement of curve position, and can better reflect the non-
linear nature of AR sequence.

The higher the nonlinear complexity of AR, the greater
the features above. Table 1 lists the statistical results of four
features, suggesting that the complexity of AR sequence is
more in healthy groups than those with CHF groups, and that,
data of young people are more complex than the elderly. Sig-
nificant difference between the healthy and CHF groups (p <
0.01) can be obtained in all features (Fig. 6), among which,
Sf (Fig. 6c) can effectively distinguish between healthy young
people and healthy elderly people (p < 0.05).
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FIGURE 6. Comparison of 1α, S1τ , Sf and S1f between the healthy
young, healthy elderly and CHF groups. Thereinto, ’∗∗’ represents
p < 0.01, and ’∗’ represents p < 0.05.

For data with small samples, we adopt the following mea-
sures to estimate the separation performance between healthy
and CHF groups.

1) The ratio η

η =
(µ1 − µ2)2

σ 2
1 + σ

2
2

, (11)

where µ1, µ2 and σ1, σ2 are respectively the means and
standard deviations of the features of the two groups being
compared. For a good discrimination, difference between the
means is much greater than the standard deviation, which will
result in η � 1.
2) Statistical distance d2, which represents the ‘‘distance’’

from the means of the ‘‘boundary’’ that minimizes incorrect
classification for both groups.

d2 = (
µ1 −

σ1×µ2+σ2×µ1
σ1+σ2

σ1
)2. (12)

Similarly, the larger the d2 the better the discrimination pro-
vided by the method.

3) The total separation rate TSR

TSR = 1−
1
2
× [L/(2× σ1)+ L/(2× σ2)], (13)

which ranges in [0,1]. Thereinto, L denotes the length of the
overlap of standard deviations between the healthy and CHF
groups. TSR = 1 means a clear separation and that the feature
can separate subjects into two nonoverlapping groups.

Table 2 shows the performance of 1α, S1τ , Sf and S1f in
the discrimination between healthy and CHF groups. It can be
obtained that S1τ performs better, and provides 100% accu-
racy in separating the Young and CHF groups, and 90.93%
accuracy in separating the Elderly and CHF groups.

III. DISCUSSION
The multifractal phenomenon in heartbeat dynamics is an
inherent characteristic of its control mechanism, which does

TABLE 2. Separation Performance of 1α, S1τ , Sf and S1f Between the
Healthy (Young, Y; Elderly, E) and Patient (CHF, C) Groups.

not simply change with other factors, such as external stimuli,
intensity of physical activity, and changes in body posture.
In fact, aging and disease can lead to a decrease in the
body’s autonomic control, which in turn affect the degree
of nonlinearity in the electrocardiographic system. However,
there is no definite mathematical equation to describe such a
complex nonlinear dynamic system, so it is very necessary to
simulate its complexity through experiments.

In this article, we first proposed a sequence that is derived
from ECG signals and can reflect the regulation of autonomic
nerve to heart rate. Next, for subjects with different phys-
iological and pathological conditions, we used MFDFA to
analyze complexity for the proposed sequence. The following
conclusions can be obtained:

1) AR sequence, which is derived from RR intervals, can
reflect the alternating changes of heart rate due to the regu-
lation of sympathetic and parasympathetic nerves. Different
from a typical normal probability distribution showed by RR
sequence, AR presents a power-law distribution with long
tail. The emergence of power-law distribution allows us to
speculate whether this is due to the existence of fractals.

2) The multifractal analysis of AR sequence confirms the
conclusion that aging and disease are often accompanied by
a decrease in HRV. Additionally, quantitative results of the
complexity of cardiac dynamics for each group are shown
as, healthy young > healthy elderly > CHF patients. The
decrease in the nonlinear complexity of the electrocardio-
graphic system may be caused by changes in the self-similar
structure of the heart tissue.

3) Features extracted from MFDFA, 1α, S1τ , Sf and S1f ,
are all sensitive to the difference between the healthy and
CHF groups. Thereinto, the best discrimination is obtained
for S1τ as providing 100% accuracy in separating the Young
and CHF groups, and 90.93% separation accuracy between
the Elderly and CHF groups.

Existing studies associated with heart failure have exhib-
ited high discriminating performance. Hu et al. compared the
discrimination of different indicators for genders. The AUC
(area under the receiver operating characteristic curve) cor-
responding to heart rate deceleration capacity, acceleration
capacity, left ventricular ejection fraction, triangle index and
SDNN, are: Male, 0.88, 0.84, 0.98, 0.77, 0.78; Female, 0.97,
0.92, 0.95, 0.80, 0.81, respectively [21]. In flexible analytic
wavelet transform framework, Kumar et al. used accumulated
entropies to detect CHF based on short-term HRV signals,
and achieved an accuracy of greater than 97.71% [22]. Addi-
tionally, according to the previous literatures, only two men-
tioned the use of MFDFA to analyze the complexity of RR
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sequence in CHF patients [23], [24], and the results showed
only differences in the width of the multifractal spectrum1α.
Therefore, we believe that this article has great advantages
and contributions in the research of CHF detection based on
MFDFA.

In this article, we provide a good basis for the diagnosis
of CHF in different ages. Besides, the presentation of AR
sequence is noteworthy as it relates the regulation of cardiac
autonomic nerve to the multifractal complexity of body’s
heartbeat signal, which provides a novel perspective for the
detection of CHF disease.
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