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ABSTRACT Radio frequency fingerprint identification is a non-password authentication method based
on the physical layer hardware of the communication device. Deep learning methods provide new ideas
and techniques for radio frequency fingerprint identification. As a bridge between electromagnetic sig-
nal recognition and deep learning, the electromagnetic signal recognition method based on statistical
constellation still needs to go through data preprocessing and feature engineering, which is contrary to
the end-to-end learning method emphasized by deep learning. Moreover, in the process of converting
electromagnetic signal waveform data into images, there is inevitably information loss. Establishing a
universal radio frequency fingerprint recognition model suitable for wireless communication scenarios is
not only conducive to optimizing the communication system, but also can reduce the cost and time of
model selection. Therefore, how to design a deep learning radio frequency fingerprint recognition model
suitable for wireless communication is an important problem for researchers. Aiming at the problem that
the existing radio frequency fingerprint extraction and identification methods have low recognition rate
of communication radiation source individuals, a radio frequency fingerprint identification method based
on deep complex residual network is proposed. Through the deep complex residual network, the radio
frequency fingerprint feature extraction of the communication radiation source individual is integrated
with the recognition process, and an end-to-end deep learning model suitable for wireless communication
is established, which greatly improves the identification accuracy of the communication radiation source
individuals compared with typical constellation based methods.

INDEX TERMS Wireless communication, radio frequency fingerprint, constellation, deep learning, end-to-
end, deep complex residual network.

I. INTRODUCTION
Common wireless network signals include GSM, CDMA,
WCDMA, LTE, WiFi, WiMax, RFID, Bluetooth, ZigBee,
Z-Wave, etc. Information security issues brought about by
wireless communication networks continue to appear, espe-
cially issues such as user identity impersonation, replay
attacks, and device cloning [1]. How to accurately identify
and authenticate the objects of the Internet of Things is the
primary problem facing the Internet of Things, and it is also
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the basis of the application of the Internet of Things [2]. The
traditional authentication mechanism is implemented at the
application layer, using cryptographic algorithms to generate
numerical results that are difficult for third parties to counter-
feit, but this mechanism has the risk of protocol security loop-
holes and key leakage. Physical layer authentication is one of
the core technologies to ensure the security of wireless com-
munication [3]. The physical layer authentication technology
provides a broad platform for dealing with wireless commu-
nication security issues. At present, the research on physical
layer security authentication technology is still in its infancy,
and its basic theory has not kept up with the development
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FIGURE 1. A typical radio frequency fingerprint identification process.

speed of other wireless communication technologies. At the
same time, the abundant physical layer resources have not
been fully utilized, and they have huge research space and
application value. Radio frequency fingerprints generated by
wireless devices due to device tolerances have physical char-
acteristics that are difficult to clone. Using radio frequency
fingerprints to distinguish illegal devices from legitimate
devices is a new physical layer method to protect the security
of communication systems. Just as everyone has their own
unique biometric fingerprint characteristics, radio frequency
fingerprints of different devices are also different, so radio
frequency fingerprints can be used for physical identification
and access authentication of wireless devices. A typical radio
frequency fingerprint identification process is shown in fig.1.

Radio frequency fingerprint identification process extracts
the characteristics of the individual information of a specific
radiation source from the received signal time series for
classification and recognition, which is essentially a pattern
recognition problem. And the radio frequency fingerprint
identification process includes the following steps: i. The seg-
ment of the RF signal used to extract the radio frequency fin-
gerprint is intercepted and preprocessed. ii. After the signal to
be identified is obtained, the RFF can be obtained by various
transform domain methods such as frequency domain anal-
ysis, time-frequency analysis, fractal, high-order spectrum,
etc., or RFF can also be extracted in the modulation domain.
When the dimensionality of the radio frequency fingerprint
features is too high, dimensionality reduction processing is
needed, and finally the classifier is used for classification
and recognition. Such methods require an understanding of
signal types and features, which can be summarized as feature
engineering methods. iii. The deep learning method can also
be used to directly process the signal to be recognized. The
advantage is that it does not require manual feature design,
feature selection or feature dimensionality reduction, and
feature extraction and classifier design are integrated.

Radio frequency fingerprint identification is a non-
password authentication method based on the physical layer
hardware of the communication device. It does not need to
consume additional computing resources or embed additional
hardware. And it is a very promising technology to build a
low-cost, simpler and safer identification and authentication
system. The radio frequency fingerprint recognition tech-
nology based on the waveform domain uses signal samples
from the time domain as the basic processing block, which
provides the greatest flexibility at the cost of complexity. The
waveform domain method uses the time-domain waveform
of the signal to be identified to extract features, and uses the
fractal dimension of the waveform and the duration of the
transient signal as fingerprint features directly. It can also

perform various domain transformations on the signal to be
identified before extracting the features, for example, Fourier
transform, wavelet transform, Hilbert–Huang transform [4],
bispectral transform, inherent time scale decomposition, syn-
chrosqueezing wavelet transform [5], improved fractal box
dimension [6], [7] and other methods. The transform domain
method attempts to transform the time domain signal to other
domains to maximize individual differences, but the features
extracted by the transform domain method will vary with
the changes in the transmitted data. In order to avoid the
feature extraction method from being affected by the trans-
mission data of the signal to be identified, radio frequency
fingerprint extraction methods based on steady-state signals
mostly use preamble sequences that appear repeatedly in the
signal as the signal segment to be identified. Electromag-
netic signals are affected by transmitter defects. These factors
that cause damage to the signal include carrier frequency
offset, power amplifier nonlinearity, quadrature modulator
imbalance, and DC offset. The influence of the defects of
the transmitter on the signal will also be manifested in the
modulation domain of the signal, which makes it possible to
construct the radio frequency fingerprint of the transmitter
in the modulation domain [8]. The quadrature modulation
method is widely used in current communication signals, and
almost all digital communications will use it. The modula-
tion domain features currently used include carrier frequency
offset, modulation offset, I/Q offset, constellation trace fig-
ure [9], and differential constellation trace figure [10]. The
modulation domain method uses I/Q signal samples as the
basic processing unit, and uses the signal structure forced
by the modulation scheme, which makes it easier to identify
the specific attributes of the signal transmitter. In addition,
somemodulation schemes use this design to protect data from
unfavorable factors such as channels. The symbols in the
modulation domain are less affected by factors such as noise
that distort the original waveform, and do not require receiver
with an excessively high sampling rate. The requirements
on the receiver are also lower, and feature extraction can be
completed by using a low-cost receiver.

In the identification and authentication stage, according
to the different classifiers, it can be divided into finger-
print identification technology based on traditional machine
learning and fingerprint identification technology based on
deep learning. Classifier design is one of the key process-
ing modules after the use of feature engineering methods
to extract radio frequency fingerprints. There are currently
a large number of mature classifiers available, such as k
nearest neighbor, support vector machine, neural network,
gray relation algorithm [11], and extreme learning machine
and so on. Related research has shown that it is best to
combine feature selection, feature dimensionality reduction
and classifiers together, so that correlation analysis can be
performed better, and radio frequency fingerprint features
that are more conducive to classification can be obtained.
In addition, by combining multiple classifiers by strategy,
better classification performance can be obtained than that of
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a single classifier. This is the idea of ensemble learning classi-
fiers. Deep learning methods have been successfully applied
in image recognition, speech recognition, autonomous driv-
ing and other fields. Scholars continue to try to introduce deep
learning methods into the field of radio frequency fingerprint
recognition to solve the difficulties of poor adaptive ability
in radio frequency fingerprint recognition [12], [13]. Deep
learning methods provide new ideas and technologies for
radio frequency fingerprint recognition [14]. However, many
deep learning models currently used in the communication
field are designed based on general models. For example,
convolutional neural networks are usually used for image
classification problems, and recurrent neural networks usu-
ally used in the field of natural language processing (NLP).
Although the current general models in the field of computer
science can be applied to the communication field, in actual
communication engineering projects, establishing a general
model suitable for communication scenarios not only helps to
optimize the communication system, but also reduces the cost
and time of model selection. Therefore, in the communication
framework based on deep learning, how to design a deep
learning model suitable for wireless communication is also
an important issue for researchers.

In this paper, a radio frequency fingerprint identification
method based on deep complex residual network is proposed,
which is an end-to-end deep learning model suitable for
wireless communication. First, collect the radio frequency
baseband signal of the individual communication radiation
source through the receiver, which can be used as the radio
frequency fingerprint of the transmitter, as the biggest advan-
tage of the complex network over the real network is that
it can fully extract the correlation information between the
in-phase component and the Quadrature component of the
radio frequency baseband signal. And after offline training,
the deep complex residual network can identify the radio
frequency fingerprint of the transmitter, which can greatly
improve the identification accuracy of the communication
radiation source individuals.

II. PROBLEM DESCRIPTION OF TYPICAL
CONSTELLATION BASED METHODS
The constellation diagram is a vector diagram obtained by
drawing the endpoints of the modulation signal under a spe-
cific base vector projection on the two-dimensional coordi-
nates with I and Q as the horizontal and vertical axes. Each
vector endpoint (also called a symbol point) can express two
basic information of the amplitude and phase of the signal
relative to the carrier at a certain moment, and its projection
on the two coordinate axes is the two baseband signals at
the current moment. The number of symbol points of the
digital modulation signal is limited, and all symbol points are
represented in the same vector diagram to form a constellation
diagram [15], [16].

In 2018, S.Peng et al. first proposed a deep learning recog-
nition method based on the statistical graph domain of mod-
ulated signals [17]. This method pointed out the statistical

FIGURE 2. Typical constellation based radio frequency fingerprint
identification method.

FIGURE 3. Contour stellar based radio frequency fingerprint identification
method.

characteristics of electromagnetic signals, such as amplitude
imbalance, quadrature error, correlation interference, phase
and amplitude noise, phase error and so on, can be character-
ized by the constellation diagram, seen in fig.2.

However, because the constellation diagram is a binary
diagram, the statistical features will be overwhelmed by noise
under low signal-to-noise ratio. The contour stellar [18] can
recover the lost statistical characteristics of the constellation
diagram under a certain low signal-to-noise ratio through the
point density feature, thereby improving the performance of
the recognition algorithm, seen in fig.3.

As a bridge between electromagnetic signal recognition
and deep learning, the electromagnetic signal recognition
method based on statistical graph domain still needs to go
through data preprocessing and feature engineering, which
is contrary to the end-to-end learning method emphasized
by deep learning. What’s more, in the process of converting
electromagnetic signal waveform data into images, there is
inevitably information loss. Deep learning methods provide
new ideas and technologies for radio frequency fingerprint
recognition. However, many deep learning models currently
used in the communication field are designed based on gen-
eral models. For example, convolutional neural networks are
usually used for image classification problems, and recurrent
neural networks usually used in the field of natural language
processing. Although the current general models in the field
of computer science can be applied to the communication
field, in actual communication engineering projects, estab-
lishing a general model suitable for communication scenarios
not only helps to optimize the communication system, but
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also reduces the cost and time of model selection. Therefore,
in the communication framework based on deep learning,
how to design a deep learning model suitable for wireless
communication is also an important issue for researchers.

III. THE PROPOSED METHOD
In view of the above problems, this paper will study the elec-
tromagnetic signal recognition method based on the complex
waveform domain. In 2016, O’Shea et al. first proposed a
two-channel real number network for the identification of
electromagnetic signal waveforms in the complex number
domain [19]. In their subsequent work in 2018, they pointed
out that although the two -channel real number network
solved the input problem of complexwaveform signals, it was
unable to dig deeper into the I/Q related information in the
electromagnetic signal [20]. A. Hirosc et al. proved in [21]
that the complex network can effectively extract the I/Q
related information in the electromagnetic signal waveform
through the I/Q fusion channel, thereby effectively improv-
ing the recognition accuracy of the electromagnetic signal.
To this end, this paper will design a complex network recog-
nition model to accurately identify electromagnetic signal
categories.

Compared with real-valued neural networks, complex neu-
ral networks are easier to optimize and generalize, and have
better learning potential. For complex convolution, consider
a typical real-valued 2D convolution layer that has N feature
maps such that N is divisible by 2; to represent these as
complex numbers, we allocate the first N /2 feature maps
to represent the real components and the remaining N /2 to
represent the imaginary ones. Thus, for a four dimensional
weight tensor W that links Nin input feature maps to Nout
output feature maps and whose kernel size ism×m, we would
have a weight tensor of size (Nout ×Nin×m×m)/2 complex
weights.

In order to perform the equivalent of a traditional real-
valued 2D convolution in the complex domain, we convolve
a complex filter matrix W = A+iB by a complex vector
h = x+iy where A and B are real matrics and x and y are
real vectors.

W ∗ h = (A ∗ x − B ∗ y)+ i (B ∗ x + A ∗ y) (1)

If we use matrix notation to represent real and imaginary
parts of the convolution operation, we have:[

< (W ∗ h)
= (W ∗ h)

]
=

[
A −B
B A

]
∗

[
x
y

]
(2)

And an illustration of the complex convolution operator
can be seen in fig.4.

The biggest advantage of the complex network over the
real network is that it can fully extract the correlation infor-
mation between the in-phase component and the quadrature
component of the radio frequency baseband signal, which
means it can fully extract the nonlinear characteristics of radio
frequency fingerprints of the transmitter. In addition, this
paper uses residual learning to solve the problem of difficult

FIGURE 4. An illustration of the complex convolution operator.

FIGURE 5. A radio frequency fingerprint identification method based on
deep complex residual network.

training of deep complex convolutional neural network mod-
els and a radio frequency fingerprint Identification method
based on deep complex residual network is proposed, seen
in fig.5.

The proposed radio frequency fingerprint identification
method based on deep complex residual network is an end-
to-end deep learning model suitable for wireless communi-
cation. First, collect the radio frequency baseband signal of
the individual communication radiation source through the
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FIGURE 6. Experimental test scheme.

FIGURE 7. One raw sample for one WiFi network card device.

receiver, which can be directly used as the radio frequency
fingerprint of the transmitter. And after offline training, the
deep complex residual network can be used to identify the
radio frequency fingerprint of the transmitter.

IV. APPLICATION AND ANALYSIS
The specific implementation scheme takes as an example
the identification of 20 WiFi network card devices of the
same manufacturer, the same type, and the same batch, seen
in fig.6.

Among them, the radio frequency baseband signal acqui-
sition equipment adopts FSW26 spectrum analyzer. The col-
lection environment is a laboratory line-of-sight (LOS) scene.
Collect 50 samples per device; The signal acquisition band-
width is 80MHz, and each acquisition is 1.75ms, that is,
140,000 points per sample (take a single channel as an exam-
ple, seen in fig.7).

The effective data transmission section excluding the chan-
nel noise section is 80,000 points (all are steady-state signals).

FIGURE 8. One new sample for one WiFi network card device.

FIGURE 9. A radio frequency fingerprint identification method based on
deep complex convolutional neural network.

And then slice the effective data transmission section, and
take 1000 points as a new sample, and there is a total
of 80,000 samples for these 20 WiFi network card devices.
After processing for each new sample, randomly selects
3200 samples for each device to be used for the training
of the deep complex residual network, and the remaining
800 samples are tested for recognition. And one new sample
for one WiFi network card device is seen in fig.8.

And the deep complex residual network structure is unified
as shown in Table 1.

In order to illustrate the effectiveness of the method pro-
posed in this paper, compare it with the radio frequency fin-
gerprint identification method based on contour stellar (seen
in fig.3), and the radio frequency fingerprint identification
method based on deep complex convolutional neural network
(seen in fig.9). And the deep complex convolutional neural
network structure is unified as shown in Table 2 and the deep
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TABLE 1. The deep complex residual network structure.

FIGURE 10. The recognition results of the individual communication
radiation source based on the contour stellar.

convolutional neural network structure for contour stellar is
shown in Table 3.

Finally, through the recognition and authentication, the
recognition results of the individual communication radia-
tion source by these three methods are obtained respectively,
as shown in fig.10, fig.11 and fig.12.

Note: The effective data transmission section excluding
the channel noise section is 80,000 points (all are steady-
state signals). And then slice the effective data transmission
section, and take 10,000 points as a new sample, and there
are a total of 8,000 samples for these 20 WiFi network card
devices. After generating a contour stellar for each new sam-
ple, randomly selects 320 samples for each device to be used
for the training of the deep convolutional neural network, and
the remaining 80 samples are tested for recognition.

TABLE 2. The deep complex convolutional neural network structure.

FIGURE 11. The recognition results of the individual communication
radiation source based on deep complex convolutional neural network.

From fig.10, we can see, the overall recognition success
rate of a total of 1600 test samples from 20 WiFi network
card devices is 90.4%. And a total of 6 devices are fully
recognized correctly. And there are 5 devices with a recog-
nition rate of below 87.5%, which are device#5, device#6,
device#9, device#16, and device#18, and the recognition rate
of device#18 is the lowest, only 57.5%.

From fig.11, we can see, although only device#3 is fully
recognized correctly, the overall recognition success rate of
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TABLE 3. The deep convolutional neural network structure.

FIGURE 12. The recognition results of the individual communication
radiation source based on the proposed method.

a total of 16000 test samples from 20 WiFi network card
devices is 94.8%. And there are 3 devices with a recogni-
tion rate of below 87.5%, which are device#7, device#9 and
device#20, and the recognition rate of device#7 is the lowest,
only 79.9%.

From fig.12, we can see, the overall recognition success
rate of a total of 16000 test samples from 20 WiFi network
card devices can reach 99.56%. And a total of 12 devices
are fully recognized correctly. The recognition rate of

TABLE 4. Recognition performance comparison.

device#14 is the lowest, still as high as 97%, which shows
the proposed method has the best recognition performance
compared with other two typical methods.

And the comparison of the recognition performance of
these three methods is shown in Table 4.

From figures 10 to 12, and Table 4, we can see that,
because the constellation-based method needs to first convert
a one-dimensional signal into a two-dimensional image, the
required length of the collected data is longer. However,
in the process of converting electromagnetic signal wave-
form data into images, there is unavoidable information loss.
The complex network can effectively extract the I/Q related
information in the electromagnetic signal waveform through
the I/Q fusion channel, thereby effectively improving the
identification accuracy of the electromagnetic signal with
better real-time performance.

V. CONCLUSION
The radio frequency baseband signal (including the in-phase
component and the Quadrature component of the radio fre-
quency baseband signal) of the individual communication
radiation source is mathematically complex signal in nature,
that is, each signal point is a symbol on the complex plane that
contains amplitude information and phase information. The
complex convolutional neural network can effectively learn
the RF fingerprint of each RF baseband signal that contains
the essential characteristics of the physical layer of the trans-
mitter (communication radiation source individual), so the
identification of communication radiation source individual
can be realized. On this basis, this paper further proposes
an end-to-end deep complex residual network model suitable
for wireless communication. In the case of using the same
training sample and test sample, compared with the radio
frequency fingerprint identification method based on contour
stellar (with the overall recognition success rate of 90.4%),
and the radio frequency fingerprint identification method
based on deep complex convolutional neural network (with
the overall recognition success rate of 94.8%), The method
proposed in this paper can greatly improve the accuracy
of radio frequency fingerprint recognition with the overall
recognition success rate of 99.56%. Through the proposed
method in this paper, even if the carrier frequency deviation
and phase deviation of the receiver are not estimated and
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compensated, the shorter steady-state radio frequency base-
band signal collected (compared to the typical constellation
based methods) can be used to achieve high radio frequency
fingerprint recognition accuracy rate.
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