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ABSTRACT Detection and estimation of t-wave alternans (TWA) in presence of indispensable physiological
artifacts is still a challenging task, as in most of the cases, the signal of interest resides well below the noise
levels. In this paper, a generalized detection theoretic framework (GDFT) is proposed for the detection and
estimation of TWA from the stress test ECG signal. The analytical foundations, TWA signal modeling, and
finally simulations of nine TWA detectors and estimators belonging to median match filtering, empirical
mode decomposition (EMD) based match filtering, and generalized likelihood ratio test (GLRT) for GDTF
are presented. GLRT schemes require noise statistics for parameter estimation and are computationally
efficient. GLRT detectors outperform all the detectors including the benchmark spectral method by ≥ 2 dB
for a broad spectrum of SNR ranging from -15 dB to 30 dB under Gaussian noise. EMD based strategies
also outperform spectral method under Gaussian and Laplacian noise by ≥ 1 dB.

INDEX TERMS T-wave alternans, sudden cardiac arrest, spectral methods, empirical mode decomposition,
match filtering.

I. INTRODUCTION
Sudden cardiac death (SCD) is one of the leading causes of
death in countries, even with the most advanced health care
facilities. In the USA, for instance, approximately 50% of all
deaths result from cardiovascular diseases. SCD is clinically
defined as an unexpected death (within an hour of onset
of symptoms) attributed to cardiac causes that may occur
in a person with or without previous cardiac abnormalities.
Micro-volt T-wave alternans (TWA) has been identified as
a risk indicator for fatal cardiovascular arrhythmia includ-
ing SCD [1]. TWA is a measure of variation in amplitude,
shape, or phase of electrocardiogram (ECG) ST-T complex
occurring in every alternative beat, also known as ventricular
repolarization [2]. Macroscopic TWA phenomenon was dis-
covered back in 1909 [3], however, due to very low incidence,
macroscopic TWA only remained an ECG curiosity for some
decades. Subsequently, the phenomenon was attributed to
other clinical conditions as long QT syndrome, acute coro-
nary ischemia, and electrolyte imbalance [4].

In the literature, TWA alternans refers to micro-volt TWA
due to its linkages to ventricular arrhythmias leading to SCD.
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TWA linkage with the occurrence of ventricular tachycardia
has been progressive and rapid due to advancements in signal
processing techniques [5], [6]. TWA phenomenon can only
be witnessed at an increased heart rate through an ECG
stress test. Sensitive electrodes attached to the torso during
the stress test pick various artifacts beside micro-volt TWA
signals [7]. Due to these practical limitations, very low signal
to noise ratio is achieved in cardiac signal acquisition as
TWA is immersed in process noises [8]. Despite tremendous
development in sensors technology, computational and signal
processing techniques detection and estimation of TWA is
still challenging.

TWA detection and estimation remained research focus
and diverse methods have been proposed that can broadly
be classified into two categories i.e., signal processing based
methods and detection theoretic domains. Classical signal
processing approaches involve pre-processing of ECG signal,
subsequent transformation, detection of alternans, and finally
reconstruction of varying ST-T segment and estimation of
alternans voltage [9]. TWA are non-stationary because of
the varying nature of statistical parameters over time [10].
However, optimum detection and estimation requires the
signal to be stationary. Practically speaking, the signal is
assumed to be stationary for a fixed number of beats of
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ECG. Signal processing based techniques are further divided
into time-domain, frequency-domain, and nonlinear filter-
ing techniques. Prominent TWA detection schemes include
spectral method (SM) [11] and modified moving average
method (MMAM) [12]. The SM for quantitative analysis of
TWA was incorporated in commercial equipment (CH2000,
Bedford, MA, USA) for TWA clinical evaluation [4]. In [12],
an alternative approach to the SM in time domain processing
as MMAM is proposed that has been also incorporated
in commercial testing equipment for TWA (CASE-8000,
GEMedical Systems,Milwaukee,WI). SM andMMAMpro-
tocols have been approved by USA Food and Drug Admin-
istration (FDA) and are extensively used as benchmarks in
clinical studies and research [13].

A diverse range of TWA analysis procedures based
on advanced signal processing have also been reported.
The prominent methodologies includes complex demodu-
lation (CD) method [14], correlation method (CM) [15],
Karhunen-Loève transform (KLT) [16], capon filtering (CF)
method [17], Poincaré mapping (PM) method [18], and
periodicity transform (PT) method [19]. In [9], the concise
overview of these methods can be traced. In [20], Phys-
ioNet in collaboration with Computers in Cardiology (CnC)
presented annual challenge to measure TWA in a dataset
of 100 electrocardiograms. The study presented an open
source implementation of benchmark SM, analytical review
of classical, and novel TWA analysis schemes, proposed
improvement in existing methods and explored newmethods.
For the evaluation purpose, PhysioNet provided a dataset
for experimentation including ECGs with reference rankings
of TWA content. Critical analysis of top scoring algorithms
suggested that a hybrid approach exploiting potentials of
multiple approaches yields better sensitivity for detection and
estimation of TWA. Recently, the detection theoretic domain
has considerably evolved for TWA detection and estimation
as a result of development in signal processing and computa-
tional sciences [21]. Research studies have shown that noise
and signal probability density-based methods can improve
TWA detection and estimation under varied noise scenar-
ios [22]. TWA signal acquisition has a poor signal-to-noise
ratio (SNR) due to various process noises, transient outliers,
and physiological artifacts (e.g., electrode movement and
muscular activity). Detection theoretic approaches are based
on signal and noise assumptions viz-a-viz statistical parame-
ter estimation. These methods primarily rely on noise mod-
eling and signal probability density function (pdf) besides
signal amplitude or energy. Detection theoretical approaches
include maximum likelihood estimation (MLE), generalized
likelihood ratio test (GLRT), and matched filtering.

In [22], the ECG noise statistics with a focus on the
non-Gaussian nature of electrode movement and muscular
activity noises are explored. Statistical analysis revealed
that ECG noise and artifacts are heavily tailed and contain
impulsive noise. Due to the leptokurtic distribution of elec-
trode movement and muscular activity noises data, Lapla-
cian distribution is assumed for noise realizations. Laplacian

density function intrinsically presented robust statistics for
electrode movement and muscular activity noises of ECG.
Based on the Laplacian distribution assumption for process
noises, a GLRT for TWA detection and estimation was
derived. Simulation results showed that the GLRT detector
based on Laplacian noise distribution outperformed SM.
In [23], TWA detection under noise is further explored
to account for non-stationary of electrode movement and
muscular activity noises. During the course of experimen-
tations, GLRT detector for TWA immersed in noise fol-
lowing Gaussian and Laplacian density functions have been
tested for a broad spectrum of noise. Detection and estima-
tion results of simulated TWA in real noise environments
have proved the importance of prior knowledge of signal
and noise probability densities for parameter settings of a
good detector. Gaussian is a general assumption for any
random process based on center limit theorem whereas the
Laplacian model for noise is based on statistical analysis
and experimental studies. Studies reveal that TWA detectors
based on the Laplacian model caters for non-stationarity of
noises and is more robust to outliers. In [24], the detec-
tion of signals with unknown parameters in the Gaussian
noise of known covariance is analytically studied. The study
revealed the asymptotic relation between GLRT test statistics
and universally most powerful test (UMPT) for the Gaus-
sian signal as the number of observations tends infinity or
false alarm approaches zero. Studies in detection theoretic
focused on matched filter based non-parametric bootstrap
test, spatial filtering augmented Laplacian likelihood ratio
method, and heart rate-adaptive filtering methods for TWA
analysis [25]–[27].

In [28], the statistics and distributions of ECG noises
of electrode movement and muscular activity are further
explored. A statistical study of ECG noise recording from
MIT BIH noise stress database revealed that the Laplacian
model compromises the asymmetric nature of the probability
distributions for electrode movement and muscular activity.
Thorough statistical analysis presented bi-exponential distri-
bution for modeling of electrode movement and muscular
activity noises to cater for the leptokurtic as well as the asym-
metric characteristics. Comparative analysis of the Laplacian
model and bi-exponential model based on visual inspection,
the goodness of fit, and Monte Carlo simulations prove the
effectiveness of themodel. Themodel achieves the bestmatch
of 99.14% and 98.13% for electrode movement and muscular
activity as compared to a Laplacian fit of 95.20% and 93.84%,
respectively. EMD based correlation methods, flutter detec-
tion in ECG, and template matched filter based on EMD
methods have reported ECG and TWA analysis under a wide
range of noise windows (-15 dB to 30 dB) [29], [30]. Hybrid
techniques in detection theoretic employ EMD, correlation,
and cross correlation-based signal processing algorithms for
achieving the best of the two domains. Hybrid techniques
in the detection theoretic also incorporate robust statistics
for enhanced performance in the signal under noise. These
schemes evolved considerably due to performance in a broad
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FIGURE 1. Schematic representation of various stages of the generalized detection theoretic framework.

spectrum of noise and consistency of performance under
noise [31].

Analytical study in the detection theoretic domain for TWA
analysis and related cardiac anomaly detection reveals that it
caters for optimum detection under broader noise windows.
To the best of our knowledge, there is a need to define a gener-
alized detection theoretic framework for TWA analysis under
noise, analytical foundations for signal and noise, param-
eter estimation for designing optimal detector, and finally
performance evaluation strategy. In this paper, a generalized
detection theoretic framework (GDTF) is presented based on
signal under noise, statistical and probabilistic properties of
signal to investigate realistic TWA acquisition under various
physiological process noise artifacts. TWA of known ampli-
tude is presented with a broad spectrum of realistic noise
components to study the behavior of detection and estima-
tion under different scenarios of process artifacts. Detection
statistics and estimation have been worked out based on sta-
tistical signal theoretical foundations for a detector, estimator
under various statistical parameters conditions. An analytical
and holistic approach for the detection theoretic is presented
with performance evaluation. SM and MMAM have been
employed as benchmark for evaluation of TWA analysis.
The major contribution of this study includes the proposal
of a framework in detection theoretic context i.e., GDTF for

TWA, reformulation of relevant existing techniques within
the proposed framework, comprehensive analytical founda-
tions for TWA detectors and estimator in GDTF, and perfor-
mance evaluation of these detection theoretic approaches.

The rest of the paper is organized as follows. Section II
presents the proposed GDTF, signal modeling for GDTF,
theoretical foundation for generalized detector design fol-
lowed by GLRT detector under various noise conditions, and
match filtering with multiple templates. Section III deals with
implementation strategy with mathematical foundations for
optimal detection for GLRT detectors and templates based
match filtering for signal under noise. Section IV is ded-
icated to results, performance comparison, and discussion.
Section V concludes with elucidating future dimensions and
potentials of GDTF.

II. GENERALIZED DETECTION THEORETIC FRAMEWORK
A. OVERVIEW
Statistical modeling of signal and noise is imperative for
signal detection and estimation under noise. The GDTF for
TWA analysis incorporates three stages i.e., pre-processing,
data reduction, and TWA analysis as illustrated in Fig. 1.
The input to GDTF is a raw ECG signal and output from
the framework is detection information i.e., verdict about
presence H1 or absence H0 of TWA, as well as amplitudeOa
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of alternans. The details of each stage in GDTF are discussed
in the following subsections.

1) PRE-PROCESSING
Pre-processing is standard practice for preparing the signal
for posterior processing. Denoising is focused to minimize
the process noises like baseline wander, electrode movement,
and muscular activity. Baseline wander is a low-frequency
artifact caused due to respiration, body movements, and
electrode movement. Standard signal processing techniques
like low-pass filtering and cubic spline interpolation are
used to remove the baseline wander [32]. QRS detection is
accomplished through a well establish Pan Hopkins algo-
rithm [33], followed by ST onset and offset determination
for the extraction of T-waves. Fiducial point determination is
essential for using a reference for the measurement of T-wave
alternans voltage. Ectopic beats are replaced with a null or
moving average of neighboring beats. The outcome of the
pre-processing stage is Xp, which is a N ×M matrix of ST-T
segments.

2) BEAT SELECTION AND DATA REDUCTION
In the case of multi-lead TWA analysis, peak values of ST-T
segments among multiple leads are calculated and subse-
quently sorted based on median and mean leads. Beat align-
ment is followed by leads selection. In the case of single lead
analysis, if TWA amplitude is below a certain threshold value
then the next set of beats is selected. Threshold is based on
QRS complex detection and subsequent T-wave amplitude
based on moving average. Beat alignment of valid beats and
rejection of invalid beats is crucial for reducing the proba-
bility of false alarms. Beat alignment involves the selection
of ECG lead for TWA, the establishment of fiducial point,
and finally adjustment of fiducial point based on template
beat selection. The template beat is usually the beat that is
considered acceptable if the correlation on ST-T segment is
higher than 0.8. In case of more than 10% of beats rejection,
template beat is re-evaluated and the procedure is repeated for
template beat selection.

For real-time ECG analysis using pattern recognition and
machine learning, there is a need to pass only relevant features
to the computational stage. In TWA detection and estimations
schemes based on signal processing and detection theoretic
domains, mostly data reduction is not employed as processing
sample signal is maximum of 128 beats. However, in prog-
nosis health management (PHM) systems based on real-time
online data analysis require data reduction for efficient uti-
lization of signal processing and storage resources of portable
devices. Recent research on PHM involves high-dimensional
datasets, multiple features set from multiple data sources,
hence dimension reduction is a must step. Common data
dimension reduction techniques use principal component
analysis (PCA), linear discriminant analysis (LDA), canon-
ical correlation analysis (CCA), and non-negative matrix
factorization (NMF) [34]. Data reduction provides room for
reducing the number of beat-to-beat series without loosing

any information about TWA. It also reduces data redundan-
cies in TWA as a signal is mostly concentrated between
0.3 Hz and 15 Hz. Data reduction transformations can be
employed for the reduction of the coefficient vector. In some
simple analytical schemes, no data reduction scheme is
required [35], [36]. Data reduction can focus on the most rel-
evant features by eliminating inefficient features. The output
of this stage is a reduced data matrix i.e., X.

3) TWA ANALYSIS
TWA analysis is a core and unique stage of GDTF where
signal under noise is analyzed based on probabilistic and
statistical signal models. The first null hypothesis is framed,
where only the noise is assumed to be present. Subsequently,
an alternative hypothesis is modeled, where both the signal
and noise are taken into considerations. Statistical parameters
of signal like mean, variance viz-a-viz noise probabilistic
modeling help to predict the presence or absence of signal
based on thresholding. Unknown signal parameters are sub-
stituted withmaximum likelihood estimations for generalized
statistics.

B. SIGNAL MODEL FOR TWA ANALYSIS
The signal of interestX is an N×M matrix of ST-T segments
and is depicted as,

X = [x0, · · · , xM−1]T , (1)

where xm = [xm[0], · · · , xm[N − 1]]; m = 0, · · · ,
M − 1 is the mth ST-T complex and N represents the number
of data samples in each ST-T segment. For signal process-
ing, an L beat analysis window of TWA extracted from M
ST-T complexes, where L ≤ M can have following matrix
notation,

S = X+W, (2)

whereW ∈ RN×L contains all types of process noises present
in TWA.

The even and odd beats of ST-T segment are denoted as
E,O ∈ RN×L2 respectively, and xl,wl ∈ RN×1 represents
the l th column of X and W. We take the difference between
j = 0, 1, · · · ,L2 − 1 pairs of consecutive ST-T segments as
D = [d0, · · · , dL2−1], where each column dj is an N sample
vector with nth sample computed as a difference of jth even
and odd pair as,

dj(n) =
∣∣oj(n)− ej(n)∣∣ . (3)

AssumingW to be an uncorrelated additive white Gaussian
process, we can write,

dj = uj + wj, (4)

where uj is the alternant waveform for jth pair of ST-T seg-
ments and wj is the vector of residue noise.
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FIGURE 2. Detection theoretic based on probability densities of signal
and noise viz-a-viz design parameters of detector.

C. DETECTOR DESIGN
1) THEORETICAL PRELIMINARIES
The standard hypothesis-testing problem for detecting jth

alternant signal is

H0 : dj = wj, (5)
H1 : dj = uj + wj, (6)

whereH0 is the conditionwhen detector only confronts noise,
and H1 is the alternative scenario of alternans signal being
embedded in the noise.

Based upon the probability of detection, the decision
between H0 and H1 is taken by mapping the observed sam-
ples [dj[0], · · · , dj[N −1]] onto a decision regions R0 and R1
respectively as shown in Fig. 2. The probability of detection
(PD) of the jth alternant waveform is computed as,

PD =
∫
R1
p(dj;H1)dx. (7)

The detector compares the observed value with a threshold
τ and maximizes the PD, whereas minimizes the probability
of false alarm (PFA), which is calculated as,

PFA =
∫
R0
p(dj;H0)dx. (8)

Neyman Pearson (NP) detector [37] maximizes the PD by
constraining PFA to a fix value and decidesH1 as,

ZLRT =
p(dj;H1)
p(dj;H0)

> τ (9)

The NP detector also termed as likelihood ratio test (LRT)
works as a trade-off betweenPD andPFA. In case the detection
performance is poor, the threshold can be adjusted as τ́ to fur-
ther improve the detection. PD and PFA can then be calculated
in terms of a monotonically decreasing function Q [38] as,

PFA = Q

 τ́√
σ 2

N

 , (10)

PD = Q

 τ́ − A√
σ 2

N

 , (11)

where

τ́ =

√
σ 2

N
Q−1(PFA). (12)

Contrary to NP detection, the Bayesian detection approach
[39] takes in to account the prior and conditional probability
P(H1|H0).H1is decided if,

ZML =
p(dj|H1)
p(dj|H0)

>
P(H0)
P(H1)

> τ. (13)

Like NP detector, test statistics is compared to a threshold,
which is calculated from the prior probabilities. In case of
TWA detection as a binary hypothesis testing, prior probabil-
ities are equal or insignificant and detector decidesH1 if,

p(dj|H1) > p(dj|H0). (14)

This detector is termed as maximum likelihood (ML)
detector as it chooses the condition with the larger conditional
likelihood alternatively termed as maximum conditional like-
lihood detector (MCLD). NP detector compares the condi-
tional probability to a threshold and decide H1. This also
implies that

P(H1|dj > P(H0|dj). (15)

The hypothesis is true for which the posterior probability is
maximum and this type of detector is termed as maximum-
a-posteriori (MAP). However, for equal prior probabilities
MAP reduces to ML detector.

2) GENERALIZED LIKELIHOOD RATIO TEST (GLRT)
TWA signal is acquired in a stress test in which the patient
is made to run on a treadmill or exercise on cycling while
detectors pick the signal from the patient’s body. During
this test, the patient heart rate is increased from normal rate
and various artifacts like muscular activity noise and elec-
trode movement are also coupled with the acquired TWA
signal. As the statistical properties of TWA and noise char-
acteristics are unknown, therefore, Bayesian estimation is
not feasible. The scenario is known as composite hypoth-
esis testing, where parameter values are unknown. In this
case, GLRT can be used as a locally most powerful (LMP)
detector. The detector design with signal and its parameters
constraints under binary and composite hypothesis testing is
shown in Fig. 3.
Statistical parameters of TWA are usually unknown and

need to be assessed for GLRT processing using the MLE
procedure. The method selects the set of values of the
model parameters that maximize the likelihood function. The
estimation is dependent on assumptions about signal pdf
and noise characteristics. The estimated parameter values
improve as the number of observations increases. The mean
and variance of TWA can be estimated by taking mean and
variance as parameters and finding particular parameter val-
ues that make the observed result most likely for a given
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FIGURE 3. TWA detector design with signal parameter constraints in binary and composite hypothesis testing.

model. Let ZGLRT is the likelihood ratio of the two probability
distributions and is written as,

ZGLRT =
p(dj; θ̂1H1)

p(dj; θ̂0H0)
> τ (16)

where θ̂1 and θ̂0 are maximum likelihood estimates of
unknown parameters of TWA.

MLE is used to estimate the amplitude of the detected
TWA based on the assumption that noise is embedded in the
signal. Let n be the independent and identically distributed
observations of TWA samples dj[0], · · · ,dj[N−1] following
probability distribution function p, where θ is a vector of
unknown parameters and referred as the true value of the
parameter vector. The joint distribution p(dj : θ ) for all
observations is calculated as,

p(dj : θ̂ )=p((dj[0], · · · ,dj[N − 1])=
N∏
i=1

p(dj; θ̂0). (17)

This function p(dj : θ̂0) is likelihood function of X . The
maximum likelihood estimate is the value that maximizes
p(dj : θ ). θ is a vector of p components θ = (θ1, θ2, . . . θp)

and grad operator is defined as,

∇θ =



∂

∂θ1
∂

∂θ2
...
∂

∂θp


(18)

For ease of analytical evaluation and calculation, log likeli-
hood function is defined as,

l(θ ) = ln p(dj; θ ). (19)

As logarithm is a monotonically increasing function, there-
fore, maximizing log likelihood function also maximizes θ
as,

θ̂ = arg maxθ l(θ ). (20)

The multiplication of n joint probabilities is simplified due to
logarithmic property as,

l(θ̂ ) =
k=n∑
k=1

ln p(dj; θ ), (21)

where parameters set θ̂ is referred unbiased once its mean
value is true value of unknown parameter. As MLE for every
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TABLE 1. TWA detection statistics and estimation for various schemes in GDTF.

data set N converges mean values to true value of unknown
parameters, therefore, MLE is asymptotically unbiased. MLE
also holds the property of asymptotically consistent as it is
probable that the estimate is close to true value for large N .

D. TWA ESTIMATION
TWA estimation in the presence of process noises is a more
tedious task as compared to its detection because of numerous
challenges. Some of these challenges faced during TWA anal-
ysis include, very small alternans magnitude (1.9µV is clini-
cally significant) to be detected and estimated, physiological
artifacts including electrode movement and muscular activity
distort the ECG signals, baseline wander causes the entire
ECG signal to shift from its normal base, and artifact data
(respiration and electrode movement) introduced into actual
cardiac activity. As signals are recorded during exercise and
if ST-T segmentation based on QRS detection have errors
then it results in wrong detection or prior estimation results.
Moreover, no gold standard exists for evaluation of TWA
detection and estimation. As estimator is a function of prob-
ability distribution of observations set, therefore, estimation
accuracy improves as the number of realization are increased.
For GDTF, a generalized TWA estimator is a function of pdf
of data observations immersed in noise as,

â = ∇(uj,wj) (22)

where ∇ (·) is the maximum likelihood estimate of alternant
waveform dj. In GDTF scenario, parameters worked out for
evaluation of estimation accuracy include standard deviation
σ , estimation bias β, and mean square error ξ , which are
calculated as,

σ =

√√√√√√
n∑
i=0

(ai − ā)

n
, (23)

β =

n∑
i=0

(ai − a)

n
, (24)

ξ =

n∑
i=0

(ai − a)2

n
, (25)

where n is the total umber of trails, a actual alternans mag-
nitude, ā is mean of estimated mean, and ai is the estimated
value in ith trial.

III. GDTF IMPLEMENTATION
The methods, assumptions, detection theoretic, and estima-
tion statistics for implementation within GDTF are presented
in TABLE 1. The steps followed to implement GDTF is
presented as Algorithm 1.

Algorithm 1 Algorithm for TWA Analysis in GDTF
Input : Raw ECG x[n]
Output: Detection statistics H0 or H1and Estimation statis-
tics: â
1) Extract raw ECG vector x[n]
2) Denoise ECG: Bandpass filtering, 50 Hz notch

filter, cubic spline interpolation for baseline
correction

3) Check for missing beat and replace with mean
value of previous n beats

4) Delineate ECG, detect R peaks, onset of S, peak
of T, offset of T

5) Process dimension reduction and ECG lead
selection for multiple leads ECG input

6) Extract L beats of ST-T segments as matrix X
7) Add noise from MIT-BIH Arrhythmia database
8) Apply detection and estimation statistics (H0 orH1 and

â) G
9) Estimate error and evaluation of results
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A. OPTIMAL DETECTION - GLRT UNDER VARIOUS
NOISE ASSUMPTIONS
In statistical modelling of TWA immersed in noise, the most
generic assumption as per statistical signal processing is
Gaussian and Laplacian, which are discussed in following
subsections.

1) GLRT-GAUSSIAN
Let TWA of unknown amplitude is immersed in process
noises and further assume noise as white Gaussian i.e.,
dj ∼N (µ, σ ).MLE technique can be used to estimate ampli-
tude â of TWA using Eq. (20) as,

θ̂ = arg maxθ
{
p(dj; â)

}
(26)

The Gaussian function can be expended as,

θ̂ = arg maxθ

×

{
1

(2π )N/2(σ )N/2
exp

{
−

1
2(σ )2

N−1∑
n=0

(dj[n]− âuj[n])2
}}
(27)

For simplification of analytical function, logarithmic func-
tion can be used as,

ln(θ̂) = arg maxθ ln
[{

1
(2π )N/2(σ )N/2

× exp

{
−

1
2(σ )2

N−1∑
n=0

(dj[n]− âuj[n])2
}}]

(28)

Maximizing the above function can maximize ln(θ̂ ) over â
or alternatively minimize exponent function as,

κ(â) =
1

2(σ )2

N−1∑
n=0

(dj[n]− âuj[n])2. (29)

For minimum value of κ(â) setting ∂κ(a)
∂ â = 0 results in

â =
1
N

N−1∑
n=0

(dj[n]uj[n])
(uj[n])2

. (30)

By using Eq. (16) to find test statistics ZGLRG to decide H1
as,

ZGLRG

=

1
(2π)N/2(σ )N/2

exp
{
−

1
2(σ )2

∑N−1
n=0 (dj[n]−âuj[n])

2
}

1
(2π)N/2(σ )N/2

exp
{
−

1
2(σ )2

∑N−1
n=0 (dj[n]

} > τ

(31)

By taking logarithm and simplifying ZGLRG can be written
as,

ZGLRG=−
1

2(σ )2

N−1∑
n=0

(−2âuj[n]dj[n]+ 2a2u2j[n]) > τ

(32)

By using value of â from (Eq. (30)), test statistics to decide
can be written as,

ZGLRG =
N−1∑
n=0

(dj[n]uj[n])2 > τ. (33)

2) GLRT-LAPLACIAN
The Gaussian model based on center limit theorem simplifies
the analytical detection. However, it does not represent the
realistic assumptions due to outliers in real ECG noises. The
presence of outlier and the statistical investigation reveals that
the Laplacian distribution is more viable for noise assump-
tions [22]. If we compare Gaussian and Laplacian models,
the first two moments have similarities as both have zero
mean. The Laplacian noise produces spikes of very high
amplitudes and outliers that need to be catered for a good
TWA detector. The comparison reveals that the Laplacian
detectors have very high amplitude around mean values also
referred as spikes. The detection of TWA is very critical and
if the detector fails to tackle these non-linearities, it may
mislead the physicians. The degree of non-Gaussian of a
zero-mean pdf is characterized in terms of its kurtosis relative
to Gaussian pdf as,

ψ2 =
E(w4[n])
E(w2[n])

. (34)

For Gaussian pdf kurtosis ψ2 values lies around zero and
for Laplacian it is greater than zero. Let TWA is to be detected
in white noise following Laplacian distribution, for the same
model Eq. (4)) can be represented as,

p(dj; a,H1) = (
1

2σ 2 )
N
2 exp

(√
−

2
σ 2

N−1∑
n=0

∣∣dj[n]−âuj[n]∣∣)
(35)

For MLE of unknown amplitude â, minimum value of,

θ =
∣∣dj[n]− âuj[n]∣∣ (36)

N is assumed to be even for simplicity of derivation
and also note that θ (â) is differentiable except at points
[d0,d1 . . . ,dN−1]. Excluding these points we have,

∂θ (â)
∂ â
= −

N−1∑
n=0

sgn(dj[n]− âuj[n]) (37)

As sgn(dj[n] − âuj[n]) = 1, if â < dj[n] and sgn(dj[n] −
âuj[n]) = −1, if â> dj[n]. Therefore, it can be shown that
∂θ (â)
∂ â = 0, if it is chosen as median of the data samples.

Exclusion of the data points from minimization can be justi-
fied due to convexity of the system. MLE of a, â = dj[n]med
and GLRT decidesH1 as,

2ln(θ) = ln
p(dj[n];d[n]med ,H1)

p(dj[n];H1)
, (38)

2ln(θ) = −2

√
2
σ 2

N−1∑
n=0

∣∣dj[n]− d[n]med − dj[n]
∣∣ > lnγ

(39)
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To simplify the test statistics, the data samples can be
arranged in ascending order than median between dj[N2 − 1]
and d[N2 ], which can be represented as,

dmed =
d[N2 − 1]+ d[N2 ]

2
(40)

As the sum of numbers is independent of ordering soGLRT
test statistics can be written as,

2ln(θ ) =

√
8
σ 2

N
2 −1∑
n=0

(
∣∣dj[n]∣∣

+ (dj[n])+

√
8
σ 2

N−1∑
n=N

2

(
∣∣dj[n]∣∣− (dj[n]) (41)

In the above equation, if d[n]med > 0 than all the data
samples have positive values and sum of second portion is
zero. Similarly, in the case of negative values the first potion
of above equation is zero. Based on this observation, test
statistics ZGLRL can be further simplified as,

ZGLRL =


√
32
σ 2

∑
n:0<dj<dmed

dj[n] if dmed > 0

−

√
32
σ 2

∑
n:0<dj<dmed

dj[n] if dmed < 0.

(42)

B. TEMPLATE BASED MATCHED FILTERING (TMF)
The match filtering technique is an optimal linear filter that
maximizes the SNR in the presence of known stochastic
noise. We employ this method to detect the presence of
TWA in known noise statistics. The template of the signal
is very critical for maximizing SNR at the output for optimal
detection. The test statistics ZTMF can be represented as,

ZTMF = uTj gi, (43)

where uTj represents the transpose operation of given vector
and finite impulse response of the equation gives maximum
SNR at the output to ensure the optimal detection of TWA.
The match filter test statistics directly depends on the product
of difference of even and odd beats uj and residual noise wj.
The residual noise is in a way directly related as minimiz-
ing its effect shall increase the detection. The TWA wave-
form is although deterministic, however generally unknown,
therefore the proposed detector (Eq. (43)) is classically not
optimal. In GDTF, gi has a direct bearing on the detection
statistics of the matched filter. Template based match filtering
utilizing mean and median of TWA as suggested in [40] has
also been included in performance evaluation.

C. EMD BASED MATCHED FILTERING (TMFEMD)
EMD is a recently developed technique for decomposing a
signal into its basic constituents. It works in the time domain
and is a purely data-driven empirical method. EMD has been
explored to reveal the physics behind the non-linear and
non-stationary natural signals like ECG. The technique is

at par with analytical techniques like Fourier transform and
wavelet decomposition. Moreover, it does not require any
prior information or non-stationary assumptions as required
in Fourier transform and wavelet-based methods. It works
on the fact that any complicated dataset can be transformed
into small and simple data subsets known as intrinsic mode
functions (IMFs). The IMFs are extracted based on a process
known as sifting process, which first identifies local maxima,
connects through a cubic spline to trace the upper envelope.
The process is repeated with minima points in test data to
trace minima points of the lower envelope. [42].

In our problem of TWA signal X, EMD decomposition
involves the identification of all local maxima and minima
points of a test signal. To trace the data, need to join the
maxima and minima points through a cubic spline. Let the
locus of the upper envelope traced by maxima points be
represented as µ[n] and minima points function as η[n]. The
mean of the two functions is represented as,

φ[n]1 =
µ[n]+ η[n]

2
. (44)

TWA signal’s first proto-IMF ξ1(n) is obtained by subtracting
mean value from as,

ξ (n) = (uj[n]+ wj[n])− φ[n]1 (45)

The process iteration yields n number of IMFs i.e., ξ1(n) to
ξn(n), and a residue function γ [n]. Finally, TWA signal is
represented as,

y[n] =
n∑
j=1

ξj(n)+ γ [n]. (46)

EMD is an iterative process, stoppage criteria set the
threshold between alternative iterations for determination of
IMF. The normalized squared difference after each iteration is
compared to a pre-set threshold for evaluation of IMFs. Each
IMF represents the oscillatory component of TWA andHjorth
descriptors, which are used as a measure of spectral purity
index (SPI) of IMF. The pure sine function is assigned the
maximum value of SPI i.e., 1. Based on individual SPI indices
of each IMF, the TWA signal is reconstructed by discarding
the noise components. The Hjorth descriptors represent the
power spectral moments of the signal under noise i.e., TWA.
SPI indices are evaluated as,

SPI =
1

1+ (λ2/λ1)2
, (47)

where λ1, λ2 represents mobility and complexity parameters
of Hjorth descriptors.

IV. EXPERIMENTAL RESULTS
In this work, we have implemented three approaches, which
are as follows.
• In EMD signal reconstruction using SPI, parameters set
including activity, mobility, and complexity used as a
criterion for distinguishing signal from noise [43]. SPI
indices are evaluated from Hjorth descriptors and gives
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an insight into the spectral moments of the power spec-
trum in the time domain. A pure sine wave is a spectral
benchmark for SPI indices as it holds maximum value.
SPI of all decomposed signals with EMD and residue
of the signal are evaluated based on the SPI index and
signal is reconstructed and noise IMFs are discarded.

• In a cross-correlation approach for the TWA signal with
decomposed components of EMD for the identification
of signal and noise components, the signal is more cor-
related with individual IMFs. Whereas noise does not
correlate as it has a different origin. In the case of TWA,
the main sources of noise are a relative movement of
electrodes attached with the body, variation in sensor
conductivity due to preparation, and EMG noise due
to muscular activity. The cardiac signal originates from
pacemaker cells in the sino-atrial node has a different
origin than noise.

• In other variants of EMD decomposition and reconstruc-
tion of TWA signal component and rejection of noise is
achieved with the help of Hurst exponents. This param-
eter is known as an index of dependence as it quantifies
the relative tendency of a time series to the mean value.
It is designated byH and value in range 0.5-1 indicates a
positive correlation. TWA signal and noise components
are segregated based on H index [31].

A. SETUP FOR EXPERIMENT AND SIMULATION
Background ECG signal is generated from heartbeat streams
arbitrarily obtained from ECG signals of MIT-BIH arrhyth-
mia database publicly accessible from MIT Physionet [44].
To validate the performance of TWA detection and estimation
under generalized and realistic scenarios, real ECG signals
with Gaussian and Laplacian noise are also synthesized.
Fig. 4 illustrates the simulated TWA signal detection and
estimation for the SNR range of -15 dB to 30 dB under GDTF.

A simplified simulated problems of TWA detection under
noisy environment is also considered. For this purpose,
TWA is simulated as a Hamming window of unit amplitude
immersed in WGN. As for null hypothesis Eq. (5) and alter-
native hypothesis Eq. (6) in a scenario of binary detection
problem. Contrary to classical signal processing framework
like SM [41], MMAM [12], and CM [15] where decision
is based on complet set of beats of TWA, in the proposed
GDTF, each beat is mapped onto a decision regions R0 or
R1 based on a threshold that maximizes Eq. (8). Conversely,
Eq. (8) constrains defines a boundary for partition of data
space Eq. (1) into R0 = {X : decide H0 or reject H1}

or R1 = {X : decide H1 or reject H0}. In such statistical
problems, various probabilistic solutions exits that satisfies
R0 or R1, however the optimum is the one that maximizes
Eq. (7). The detection problem transforms into a mapping
criterion based on signal and noise parametric assumptions
viz-a-viz detection strategy. GDTF design cycle begins by
setting a PFA as per Eq. (8) and increasing threshold reduces
PFA. The second critical parameterPD can be related toPFA as
Q function ismonotonically decreasing function since 1−Q is

FIGURE 4. ECG signal synthesis for TWA analysis (a). Raw ECG signal with
process noises (b) ECG PQRTS wave delineation after denoising
(c) Extraction of T-wave and alignment of waves(d) Signal with TWA
alternans as test signal for experimentations.

FIGURE 5. (a) Simulated TWA in Gaussian noise (b) Probability of
detection and false with deflection coefficient (c) Probability of detection
and false alarm tuning (d) Receiver operating curve.

a cumulative distribution function (CDF) and monotonically
increasing function. Detection performance is also charac-
terized by deflection coefficient d2, which is dependent on
signal mean value and inversely related to the variance of
noise as depicted in Fig. 5 (b). Finally, Fig. 5 (d) explains
the DTF strategy for optimum parameters, which returns the
receiver operating characteristics curve (ROC).

B. PERFORMANCE ANALYSIS UNDER GAUSSIAN NOISE
Detection and estimation of TWA in white Gaussian i.e.,
dj ∼N (µ, σ ) has been evaluated for a set of template-based
matched filters, match filtering using EMD using SPI and
correlations [31]. Monte Carlo simulation results for the
entire noise band from −15 dB to 30 dB for detection under
Gaussian noise are presented in Fig. 6. Estimation bias, mean
square error, and relative estimation bias results are depicted
in Fig. 6(b), Fig. 6 (c), and Fig. 6 (d) respectively. TMF
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FIGURE 6. GLRT detectors performance for 10 µV TWA under Gaussian noise, (a) Detection (b) Estimation (c) Mean square error
(d) Relative estimation bias.

based on mean and median works for SNR ≥ 15 dB as
detection is based on template formed from signal under
noise. EMD decomposition and correlation-based strategies
provide better TWA signal detection than TMF based on
mean and median. These variants also outperform detection
by SM. The GLRT estimators outperform all estimators in
GDTF and follow the trend of benchmark SM estimator in
performance.

C. PERFORMANCE ANALYSIS UNDER LAPLACIAN NOISE
The statistical study of TWA acquisition process noises due
to muscular activity and electrode movement reveals that
the Laplacian model is more realistic than Gaussian approx-
imation [22]. Monte Carlo simulation for TWA detection
and estimation under Laplacian noise is also conducted,
which is shown in Fig. 7. EMD strategies based on cor-
relation outperform all other approaches including GLRT
based approaches. EMD based techniques also outperform
SM, a traditional benchmark for TWA analysis. TWA real
noises muscular activity and electrode movement follow a

Laplacian probability distribution. GLRT estimators outper-
form and estimation results are comparable to benchmarked
SM estimator. It is also noted that estimation is significantly
lower under adverse signal conditions (SNR < 0 dB), com-
parative estimation bias is rendered irrelevant. Therefore,
under GDTF, a more meaningful estimator comparison war-
rants observation of bias under better signal quality with
the probability of true positive ≥ 0.99. GLRT approaches
present comparatively better estimation than TMF based on
correlation-based schemes.

D. COMPUTATIONAL ANALYSIS
Being a data-driven method, decomposition of the signal into
a finite number of IMFs, establishing correlation indices,
and finally, reconstruction of the signal from selected IMFs
involve computational complexity. The detection perfor-
mance of these schemes is directly related to the computa-
tional complexity and run time. GLRT methodologies based
on Gaussian noise statistics outperforms SM by ≥ 2 dB,
as well as, all TMF based strategies. These strategies are
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FIGURE 7. GLRT detectors performance for 10 µV TWA under Laplacian noise, (a) Detection (b) Estimation (c) Mean square error
(d) Relative estimation bias.

FIGURE 8. Computational analysis Monte Carlo simulations of DTF
algorithms.

computationally efficient and lie in the same region as SM
and TMF based on mean and median. The run-time analysis
of ten detectors and estimators of TWA for Monte Carlo
simulations of 106 and higher-order is shown in Fig. 8.

Time calculations were based on Matlab 2016a on Intel
(R) Core (TM) i-7 3740 QM-CPU @ 2.70 GHz, 4GB RAM,
and operating on a 64-bit operating system. Although TMF
based on mean and median approaches are computationally
simpler and resides with GLRT and SM in run time analysis.
However, their detection and estimation performance is lower
than match filtered based correlation. EMD based match
filtering involves decomposition of TWA into IMFs and com-
putations of correlation factors for each gives a good result at
very high computation and run time cost. GLRT approaches
provide robust estimation under the complete noise spectrum
(-30 dB to 15 dB) under DTF with simpler and efficient
computation. Estimation of TWA with GLRT detectors can
be simulated conveniently, whereas EMD and EMF-based
algorithms take much higher time for simulations.

V. CONCLUSION
A generalized detection theoretic framework is proposed for
the consolidation of exiting TWA detection and estimation
strategies based on signal under noise scenarios. Analyti-
cal foundations and comprehensive detection and estimation
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analysis under a broad spectrum of the noise having Gaussian
and Laplacian probability distribution validate GDTF. The
study exhibits strengths and limitations of strategies based
on statistics, signal decomposition and reconstruction, and
likelihood estimation for TWA under process noise arti-
facts. The research guides in choice of a detector under a
noisy environment with computational cost vs TWA anal-
ysis strategies with information available about signal and
noise. GLRT detectors outperform median and mean tem-
plates and correlation-based detection strategies significantly
whereas also proves to be computational efficient among
all. Template-based strategies are computational intense how-
ever gather noise information from signal under observation.
GLRT schemes require information regarding TWA acqui-
sition process artifacts i.e., pdf for implementations. The
proposed GDTF provides a common platform for further
research and exploration of similar work based on TWA
process noise statistics in the future.
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