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ABSTRACT The odds ratio estimation when observed frequencies are very small usually causes difficulty in
calculation. In this paper, we proposed the estimator of odds ratio for small count using Empirical Bayes (EB)
in Zero-inflated Poisson distribution, where the hyper-parameters can be estimated via the posterior marginal
distribution function. We compare the proposed estimator of odds ratio based on EB in Zero-inflated Poisson
distribution with moments method estimator (MME) and modified maximum likelihood estimator (MMLE)
using the Estimated Relative Error (ERE) as criterion of comparison. The result of a simulated study indicates
that the EB estimator is more efficient thanMME andMMLE. For application, the EB odds ratio estimation is
implemented inAIDS-related data which the responsewas the self-reported number of times that respondents
having a risky sexual partners, classified by gender. The estimation based EB also yields consistent result as
those in simulation, resulting in smallest ERE when compared to MME and MMLE.

INDEX TERMS Empirical Bayes, zero-inflated Poisson distribution, moments method estimation, modified
maximum likelihood estimator.

I. INTRODUCTION
The odds ratio is a measurement of the magnitude association
between two binary data. Binary data occur very often in
clinical research and epidemiological studies referred to as
success or failure. Pamela [1] indicated that the odds ratio
was one of analytic measures that had frequently appeared
in the physical therapy literature. The result of OR expressed
concerns over ability to interpret study findingwhich required
understanding about the strengths and weaknesses of data,
design and analyses. A number of subjects in each group
falling in each category can be summarized in a two-way con-
tingency table. Total number of subjects in each group 1 and
group 2 are denoted as n1 and n2 respectively, which assumed
to be fixed. Let X1 and X2 be the number of observations
in group 1 and group 2. Let π1 and π2 be probabilities of
success in group 1 and group 2, respectively. The probability
of success can be defined by a number of success or positive
count divided by a number of subjects in that group. The odds
of success in group 1 is defined to be odds1 = π1/ (1− π1),
similarly for group 2. The usual maximum likelihood
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estimator (MLE) of odds ratio is defined as

ÔRMLE =
odds1
odds2

=
π1
/
(1− π1)

π2
/
(1− π2)

. (1)

From this equation, we can see that the odds ratio can be 0 or
∞(ÔRMLE = 0 if the numerator is 0, and ÔRMLE = ∞ if the
denominator is 0). If there is a 0 in both the numerator and
denominator, then ÔRMLE is undefined. Usually the count
data with excessive zero can arise, particularly in studies
involving rare events. Zero-inflated Poisson has been used in
situations where excess number of zero observations are gen-
erated. Cohen [2] and Lambert [3] considered a Zero-inflated
Poisson model to handle a dataset which had too many zero
observations. Anger and Biswas [4] studied a zero-inflated
generalized Poisson model using Bayesian analysis and dis-
cussed some appropriate choices of priors and posteriors.
John et al. [5] considered the application of Empirical Bayes
to high consequence of low frequency events and the result
revealed that Empirical Bayes was the choice for estima-
tion procedures. Nanjundan and Naika [6] discussed about
parameter estimationmethods in the Zero-inflated Poisson by
comparison of the moments method estimator (MME) with
maximum likelihood estimator (MLE). Lu et al. [7] pro-
posed the method to analyze count data with excess zero
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using Bayesian analysis approach in combination with Gibbs
sampler and M-H algorithm. Unhapipat et al. [8] per-
formed Bayesian predictive inference under the Zero-inflated
Poisson model with various types of prior distribution of
which the Empirical Bayes method yielded the best overall
performance.

In this paper, we focus on rare events which observed
count data have a large number of zeros causing difficulty
in finding odds ratio estimation. A Zero-inflated Poisson
distribution (ZIP) has amore flexible distribution for a dataset
with many zeros, so call rare events. It consists of two compo-
nents: a degenerating distribution for zero count and a Poisson
distribution for positive count. The probability mass function
of ZIP is expressed as

P (X = x) =

p+ (1− p) exp (−λ) if x = 0

(1− p)
exp (−λ) λx

x!
if x 6= 0,

(2)

where 0 ≤ p ≤ 1 and λ ≥ 0. The parameter p indicates
inflation of zero and the parameter λ is the expected value of
Poisson distribution. The new estimationmethod of odds ratio
based on EB in Zero-inflated Poisson distribution is proposed
and its result is compared with the moments method estima-
tion (MME) and modified maximum likelihood estimation
(MMLE).

II. THE EMPIRICAL BAYES METHOD FOR ODDS RATIO
ESTIMATION
Let X1 and X2 be random variables distributed as
Zero-inflated Poisson, Xj ∼ ZIP

(
pj, λj

)
, j = 1, 2 where

pj and λj denote unknown parameters. For convenience,
subscript j is omitted for the derivation.

P (X |p, λ) =

p+ (1− p) exp (−λ) if x = 0

(1− p)
exp (−λ) λx

x!
if x 6= 0.

(3)

Assume that the prior distributions for p and λ are
Beta (a1, b1) and Gamma (a2, b2) respectively and they are
also assumed to be independent, given as

f (p) =
1

B (a1, b1)
p(a1−1) (1− p)(b1−1) , 0 < p < 1 (4)

and

f (λ) =
ba22
0 (a2)

λ(a2−1)e−b2λ, λ > 0 (5)

where a1, b1, a2, and b2 denote unknown hyper-parameters.
Let Y and n−Y be the number of X′is taking the value zero

and non-zero, respectively.
The likelihood function of ZIP (p, λ) can be written as

L (p, λ |X ) =
n∏

i=1
Xi=0

{
p+ (1− p) e−λ

} n∏
i=1
Xi 6=0

{
(1− p)

e−λλXi

Xi!

}

=
{
p+ (1− p) e−λ

}Y
 n∏

i=1
Xi 6=0

(1− p) e−λλXi

Xi!



=
{
p+ (1− p) e−λ

}Y
(1− p)n−Y

· e−(n−Y)λλn−Y
1

n∏
i=1
Xi 6=0

Xi!

.

The joint pdf of (X, p, λ) is

f (X, p, λ)

= L (p, λ |X ) f (p) f (λ)

=


(
p+ (1− p) e−λ

)Y

(1− p)n−Y e−(n−Y)λλn−Y

n∏
i=1
Xi 6=0

Xi!




·

[
1

B (a1, b1)
p(a1−1) (1− p)(b1−1)

]
·

[
ba22
0 (a2)

λ(a2−1)e−b2λ
]
.

The estimation of hyper-parameters can be obtained from the
posterior marginal distribution function as follow,

m (X) =

∞∫
0

1∫
0

ba22
B (a1, b1) 0 (a2)

·
1

n∏
i=1
Xi 6=0

Xi!

·

Y∑
k=0

(
Y
k

)
p(k+a1−1) (1− p)(n−k+b1−1)

· e−(n−k+b2)λλ(n−Y+a2−1)dpdλ

=
ba22

B (a1, b1) 0 (a2)
·

1
n∏

i=1
Xi 6=0

Xi!

·

Y∑
k=0

(
Y
k

)
B (k+ a1, n− k+ b1)

·
0 (n− Y+ a2)

(n− k+ b2)
(
nX̄+a2

) . (6)

The parameters a1, b1, a2, and b2 are initially estimated by
the method of moments [9], [10], obtained as

a1 = Sx
(
Sx (1−Sx)

s2
− 1

)
, (7)

b1 = (1−Sx)
(
Sx (1−Sx)

s2
− 1

)
, (8)

a2 =
Sx2

s2
, (9)

b2 =
Sx
s2
, (10)

where x̄ and s2 are the sample mean and variance,
respectively.
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The joint posterior distribution function of p and λ for a
given dataset X is

f (p, λ |X ) =

b
a2
2

B(a1,b1)0(a2)
·

1
n∏

i=1
Xi 6=0

Xi!

·

b
a2
2

B(a1,b1)0(a2)
·

1
n∏

i=1
Xi 6=0

Xi!

·

Y∑
k=0

(
Y
k

)
p(k+a1−1) (1− p)(n−k+b1−1) ·

Y∑
k=0

(
Y
k

)
B (k+ a1, n− k+ b1)

·
e−(n−k+b2)λλ(n−Y+a2−1)

0(n−Y+a2)
(n−k+b2)(n−Y+a2)

. (11)

The marginal posterior pdf of p and λ can be derived as
follows

f (p |X ) =

∞∫
0

f (p, λ |X )dλ

=

Y∑
k=0

(
Y
k

)
p(k+a1−1) (1− p)(n−k+b1−1)·

Y∑
k=0

(
Y
k

)
B (k+ a1, n− k+ b1)

·

0(n−Y+a2)
(n−k+b2)(n−Y+a2)

0(n−Y+a2)
(n−k+b2)(n−Y+a2)

(12)

and

f (λ |X ) =

∞∫
0

f (p, λ |X )dp

=

Y∑
k=0

(
Y
k

)
B (k+ a1, n− k+ b1) ·

Y∑
k=0

(
Y
k

)
B (k+ a1, n− k+ b1)

·
e−(n−k+b2)λλ

(
nX̄+a2−1

)
0
(
nX̄+a2

)
(n−k+b2)(

nX̄+a2)

. (13)

Thus, the estimator of π1 is calculated as

π̂1 =
(
1− p̂1

) (
1− e−λ̂1

)
, (14)

and the estimator of π2 is

π̂2 =
(
1− p̂2

) (
1− e−λ̂2

)
. (15)

The EB for odds ratio estimation can be obtained as follow

ÔREB =
π̂1/

(
1− π̂1

)
π̂2/

(
1− π̂2

) . (16)

III. MOMENTS METHOD ESTIMATION FOR ODDS RATIO
ESTIMATION
The two parameters in Zero-inflated Poisson distribution,
p and λ can be estimated by the method of moments [11], [12]
as

p̂ =
s2 − x̄

s2 + x̄2 − x̄
, (17)

and

λ̂ =
s2 + x̄2 − x̄

x̄
(18)

where x̄ and s2 are the sample mean and variance, respec-
tively.

However, the MME of parameter p undesirable property
with negative value. When x̄ > s2, p̂ can become negative,
while the actual parameter p is always between 0 and 1.

Beckett et al. [13] modified the MME by truncating p̂ at
zero and λ̂ at x̄ when x̄ > s2.

Let π̂ ′1 and π̂ ′2 be estimators of π1 and π2 respectively,
where

π̂ ′1 =
(
1− p̂1

) (
1− e−λ̂1

)
, (19)

and

π̂ ′2 =
(
1− p̂2

) (
1− e−λ̂2

)
. (20)

Then, the MME of odds ratio is obtained as

ÔRMME =
π̂ ′1/

(
1− π̂ ′1

)
π̂ ′2/

(
1− π̂ ′2

) . (21)

IV. MODIFIED MAXIMUM LIKELIHOOD ESTIMATOR FOR
ODDS RATIO ESTIMATION
The modified maximum likelihood estimator (MMLE) is
presented by Haldane [14] and Gart and Zweifel [15] to
solve the problem of zero cell counts in denominator and
numerator of odds ratio estimation. They also suggested to
add a correction term 0.5 to each cell, when having zero
counts in both groups, which gives the modified maximum
likelihood estimator (MMLE) as

ÔRMMLE =
(Y1 + 0.5) (n2 − Y2 + 0.5)
(Y2 + 0.5) (n1 − Y1 + 0.5)

. (22)

V. SIMULATION STUDY FOR EB, MME, AND MMLE
METHOD
Simulation study with randomly generated data using R
program (version 4.0.2) [16] is performed to assess perfor-
mance of the proposed method in comparison with MME
and MMLE method s. Data in both groups are generated
as independent zero inflated Poisson distribution with the
inflation of zero

(
p1, p2

)
are (0.5, 0.5) and (0.7, 0.5) and the

expected value λi, where i = 1,2 are 0.1, 0.3, 0.5 and 1.0 for
sample sizes (n1, n2) = (10, 10) and (10, 30). Each situation
is repeated 5,000 times after 1,000 burn-ins. The efficiency
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TABLE 1. The estimated value of odds ratio for p1 = 0.5, p2 = 0.5 and(
n1, n2

)
=

(
10, 10

)
.

TABLE 2. The estimated value of odds ratio for p1 = 0.7, p2 = 0.5 and(
n1, n2

)
=

(
10, 10

)
.

of estimators is evaluated using the percentage of Estimated
Relative Error (ERE), defined as

ERE =

[∣∣OR− ÔRi
∣∣

OR

]
× 100, (23)

where OR denotes the usual maximum likelihood estimator
of odds ratio and ÔRi, where i = 1, 2, 3 denote the estimates

TABLE 3. The estimated value of odds ratio for p1 = 0.5, p2 = 0.5 and(
n1, n2

)
=

(
10, 30

)
.

TABLE 4. The estimated value of odds ratio for p1 = 0.7, p2 = 0.5 and(
n1, n2

)
=

(
10, 30

)
.

of odds ratio using EB, MME, and MMLE, respectively. The
simulation results of odds ratio estimation for sample sizes
(n1, n2) = (10,10) and (10,30) are given in Table 1-4 and
their performances are compared using ERE as illustrated
in Table 5-8. The ERE of three estimation methods also
display in Fig.1-2 for the case (n1, n2) = (10,30), similar
to the case (n1, n2) = (10,10) (but not shown here). Based
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TABLE 5. The percentage of the Estimated Relative Error of OR estimation
for p1 = 0.5, p2 = 0.5 and

(
n1, n2

)
=

(
10, 10

)
.

TABLE 6. The percentage of the Estimated Relative Error of OR estimation
for p1 = 0.7, p2 = 0.5 and

(
n1, n2

)
=

(
10, 10

)
.

on the percentage of ERE, the proposed estimator mostly
outperform MME and MMLE. For all cases under study,
it is also found that EB method yields the smallest ERE
accounted for 59.38% of the time while MME and MMLE
methods respectively provide smallest ERE only 32.81% and

TABLE 7. The percentage of the Estimated Relative Error of OR estimation
for p1 = 0.5, p2 = 0.5 and

(
n1, n2

)
=

(
10, 30

)
.

TABLE 8. The percentage of the Estimated Relative Error of OR estimation
for p1 = 0.7, p2 = 0.5 and

(
n1, n2

)
=

(
10, 30

)
.

7.81% of the time. The results indicated that EB method to
incorporating prior knowledge about parameters combined
with information in the observed data to produce the posterior
distribution are preferable to the odds ratio estimation for
small cell count.
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TABLE 9. AIDS-related data.

TABLE 10. True odds ratio and their estimates using EB, MMLE and MME
methods and their corresponding ERE.

FIGURE 1. A comparison of the percentage of ERE of odds ratio
estimation using EB, MME and MMLE when p1 = p2 = 0.5 and(
n1, n2

)
=

(
10, 30

)
.

VI. ILLUSTRATIVE EXAMPLE USING REAL DATA
Our example is taken from the set of AIDS-related data
discussed in Heilbron [17]. The response variable in this
study was the self-reported number of times that the respon-
dents had anal intercourse with opposite sex partners during
the study period classified by to dichotomous explanatory
variables; gender (male, female) and having a risky main

FIGURE 2. A comparison of the percentage of ERE of odds ratio
estimation using EB, MME and MMLE when p1 = 0.7, p2 = 0.5 and(
n1, n2

)
=

(
10, 30

)
.

sexual partner. Table 9 gives the number of times (Y) and
gender. The estimate of odds ratio between male and female
respectively are

n1 = 125, p̂1 = 0.816, λ̂1 = 0.870

and

n2 = 117, p̂2 = 0.880, λ̂2 = 0.640.

The EBmethod yields the EREwith 0.0066 while those using
MME and MMLE methods result in ERE with 0.7541 and
0.0135, respectively as shown in Table 10. The results
in this example revealed that we can estimate the odds
ratio without disturbing the original data based on the EB
method when observed count data have a large number of
zeros.

VII. CONCLUSION
This paper presents the odds ratio estimation for small count
in Zero-inflated Poisson distribution. The results obtained
from both simulated data and actual data indicate that the pro-
posed method perform rather well. The EB estimator of odds
ratio is more efficient than theMMLE andMME. In addition,
more robust estimation methods have been proposed by sev-
eral authors, as illustrated by Chen et al. [18] which probably
draw attention for future research.
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