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ABSTRACT The odds ratio estimation when observed frequencies are very small usually causes difficulty in
calculation. In this paper, we proposed the estimator of odds ratio for small count using Empirical Bayes (EB)
in Zero-inflated Poisson distribution, where the hyper-parameters can be estimated via the posterior marginal
distribution function. We compare the proposed estimator of odds ratio based on EB in Zero-inflated Poisson
distribution with moments method estimator (MME) and modified maximum likelihood estimator (MMLE)
using the Estimated Relative Error (ERE) as criterion of comparison. The result of a simulated study indicates
that the EB estimator is more efficient than MME and MMLE. For application, the EB odds ratio estimation is
implemented in AIDS-related data which the response was the self-reported number of times that respondents
having a risky sexual partners, classified by gender. The estimation based EB also yields consistent result as
those in simulation, resulting in smallest ERE when compared to MME and MMLE.

INDEX TERMS Empirical Bayes, zero-inflated Poisson distribution, moments method estimation, modified

maximum likelihood estimator.

I. INTRODUCTION

The odds ratio is a measurement of the magnitude association
between two binary data. Binary data occur very often in
clinical research and epidemiological studies referred to as
success or failure. Pamela [1] indicated that the odds ratio
was one of analytic measures that had frequently appeared
in the physical therapy literature. The result of OR expressed
concerns over ability to interpret study finding which required
understanding about the strengths and weaknesses of data,
design and analyses. A number of subjects in each group
falling in each category can be summarized in a two-way con-
tingency table. Total number of subjects in each group 1 and
group 2 are denoted as n and n, respectively, which assumed
to be fixed. Let X; and X, be the number of observations
in group 1 and group 2. Let 1 and m, be probabilities of
success in group 1 and group 2, respectively. The probability
of success can be defined by a number of success or positive
count divided by a number of subjects in that group. The odds
of success in group 1 is defined to be odds; = 71/ (1 — my),
similarly for group 2. The usual maximum likelihood

The associate editor coordinating the review of this manuscript and

approving it for publication was Yanbo Chen

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

estimator (MLE) of odds ratio is defined as
—~ odds; m /(1 —m)

" oddsy m /(1 —m)
From this equation, we can see that the odds ratio can be 0 or
oo(6f2MLE = 0 if the numerator is 0, and 61\§MLE = oo if the
denominator is 0). If there is a 0 in both the numerator and
denominator, then @MLE is undefined. Usually the count
data with excessive zero can arise, particularly in studies
involving rare events. Zero-inflated Poisson has been used in
situations where excess number of zero observations are gen-
erated. Cohen [2] and Lambert [3] considered a Zero-inflated
Poisson model to handle a dataset which had too many zero
observations. Anger and Biswas [4] studied a zero-inflated
generalized Poisson model using Bayesian analysis and dis-
cussed some appropriate choices of priors and posteriors.
John et al. [5] considered the application of Empirical Bayes
to high consequence of low frequency events and the result
revealed that Empirical Bayes was the choice for estima-
tion procedures. Nanjundan and Naika [6] discussed about
parameter estimation methods in the Zero-inflated Poisson by
comparison of the moments method estimator (MME) with
maximum likelihood estimator (MLE). Lu et al. [7] pro-
posed the method to analyze count data with excess zero

ey
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using Bayesian analysis approach in combination with Gibbs
sampler and M-H algorithm. Unhapipat et al. [8] per-
formed Bayesian predictive inference under the Zero-inflated
Poisson model with various types of prior distribution of
which the Empirical Bayes method yielded the best overall
performance.

In this paper, we focus on rare events which observed
count data have a large number of zeros causing difficulty
in finding odds ratio estimation. A Zero-inflated Poisson
distribution (ZIP) has a more flexible distribution for a dataset
with many zeros, so call rare events. It consists of two compo-
nents: a degenerating distribution for zero count and a Poisson
distribution for positive count. The probability mass function
of ZIP is expressed as

p+(1—pexp(—=r) ifx=0

exp (—i) A% 2
(1-p SREDE iy,
X!
where 0 < p < 1 and A > 0. The parameter p indicates
inflation of zero and the parameter X is the expected value of
Poisson distribution. The new estimation method of odds ratio
based on EB in Zero-inflated Poisson distribution is proposed
and its result is compared with the moments method estima-
tion (MME) and modified maximum likelihood estimation
(MMLE).

PX=x) =

Il. THE EMPIRICAL BAYES METHOD FOR ODDS RATIO
ESTIMATION

Let X; and X, be random variables distributed as
Zero-inflated Poisson, Xj ~ ZIP (pj, )LJ) , j = 1,2 where
p; and A; denote unknown parameters. For convenience,
subscript j is omitted for the derivation.

p+ ({1 —pexp(—1) ifx=0

A) AX 3
(1—)92L—L— itx 20, O
Assume that the prior dlstrlbutlons for p and X are
Beta (a;, b;) and Gamma (ap, by) respectively and they are
also assumed to be independent, given as

PX|p,2) =

1
fp)= ——p@ D A—p®=D 0<p<1 @@
P = B o’ P P
and
by
f(h) = —2—a@ D22 5~ (5)

I" (a2)
where aj, by, ap, and by denote unknown hyper-parameters.
Let Y and n—Y be the number of X's taking the value zero
and non-zero, respectively.
The likelihood function of ZIP (p, A) can be written as

n n e*)\)\'xi
L alX) =[] {p+0a-pe?} [] {(1—p> < }
2o )éiz;ﬁ]o
x| o (—pe ki

i=1
X;#0
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_3 Y _
={p+-pe?} a-p™Y
.ef(an)k)\an;

n
1 X
7&
The joint pdf of (X, p, 1) is
f(X,p,2)
=L ArIX)t(p) @)

(1-— p)n—Y e—(n—Y))L)Ln—Y

HK

X#O

1
A (a;—1) 1— )(bl—l):|
[B @.op? 4P

a
b A@=Dg=b2d |
" (a2)

The estimation of hyper-parameters can be obtained from the
posterior marginal distribution function as follow,

oo 1

1

m(X)szB@u b)T (@) &
00

=|(p+0-pec?)’

[T Xj!
i=1
Xi£0
(Y
. Z <k >p(k+a1—1) a- p)(n—k+b1—l)
k=0
ef(n7k+b2)l)\(n7Y+3271)dpd)\'
_ by o1
n
B (a1, b1) I (a2) 1T X!
)Eiz;ﬁlo
Yy
> i JB&+ain—k+bp
k=0
Fn—-Y+ap)

. _ . 6
(0 — k 4 by) ("X+22) ©

The parameters ay, b1, az, and b, are initially estimated by
the method of moments [9], [10], obtained as

—
aj =Y<X(S—2Y)—1), (7)
b]=(1—¥>(ms—f)—1), ®)
<2
X
n = ©)
X
by = . (10)

where X and s2

respectively.

are the sample mean and variance,
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The joint posterior distribution function of p and A for a
given dataset X is

bgz 1
BG.b)l (@) 12[ Xi!
i=1
X;#0
f(p, 2 1X) = &
b, ) 1
B(aj,b)I'(a2) ﬁ Xi!
i=1
Xi#0
Y\ (kta—1) (n—k+b,—1)
> (1) plern (1 = pyo-ksei-.
k=0

Y (Y
» (k>B(k+a1,n—k+b1)
k=0

e—(n—k+b2)k)»(n—Y+a2— 1)

I'(n—Y+ap) : (11)
(n—k4by) ("—YH2)
The marginal posterior pdf of p and A can be derived as
follows

[e¢]

/f(p, A1X)dr

0
Y

Z (E) p(k+a]—1) (1 _ p)(n—k-‘rb]—l)'

_ k=0

f(p1X)

(Y
> (k>B(k+a1,n—k+b1)
k=0
I'(n—Y+ap)
 (n—kby) (YH)
'(n—Y+ap)
(n—k+by) ("= Y+22)

(12)

and

]

/ £(p, 2 1X)dp
0

Y /Y
3 <k)B(k+a1,n—k+b1)-
=k:0

(Y
k=0

e—(n—k+b2)h )L(n)_(+a2—l)

f (A ]X)

I'(nX+ay) 13)
(n—k+b2) (115(+a2)

Thus, the estimator of 71 is calculated as

= (1-p) (1-e). (14)
and the estimator of 75 is

o= (1=py) (1-¢7). (15)
The EB for odds ratio estimation can be obtained as follow

— m/(1-m)

ORgg = ——8M8=. 16
EB o) (1= ) (16)
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IIl. MOMENTS METHOD ESTIMATION FOR ODDS RATIO
ESTIMATION

The two parameters in Zero-inflated Poisson distribution,
p and X can be estimated by the method of moments [11], [12]
as

N s —X 17
Pre e =%
and
2,22
)::S—i-xfx (18)
X

where X and s? are the sample mean and variance, respec-
tively.

However, the MME of parameter p undesirable property
with negative value. When X > s, p can become negative,
while the actual parameter p is always between 0 and 1.

Beckett ef al. [13] modified the MME by truncating p at
zero and A at X when X > s2.

Let 7| and 7} be estimators of 1 and w2 respectively,
where

= (—p) (1-e). (19)
and

= (1-py) (1-¢7). (20)
Then, the MME of odds ratio is obtained as
A1/ (1= #)
7/ (1—73)
IV. MODIFIED MAXIMUM LIKELIHOOD ESTIMATOR FOR
ODDS RATIO ESTIMATION
The modified maximum likelihood estimator (MMLE) is
presented by Haldane [14] and Gart and Zweifel [15] to
solve the problem of zero cell counts in denominator and
numerator of odds ratio estimation. They also suggested to
add a correction term 0.5 to each cell, when having zero
counts in both groups, which gives the modified maximum
likelihood estimator (MMLE) as
Y1 4+0.5) (my —Y,+0.5)
(Y24+0.5)(n; —Y; +0.5)°

ORMME = 21

(22)

ORMMLE =

V. SIMULATION STUDY FOR EB, MME, AND MMLE
METHOD

Simulation study with randomly generated data using R
program (version 4.0.2) [16] is performed to assess perfor-
mance of the proposed method in comparison with MME
and MMLE method s. Data in both groups are generated
as independent zero inflated Poisson distribution with the
inflation of zero (p;, p,) are (0.5, 0.5) and (0.7, 0.5) and the
expected value A;, where i = 1,2 are 0.1, 0.3, 0.5 and 1.0 for
sample sizes (n1, np) = (10, 10) and (10, 30). Each situation
is repeated 5,000 times after 1,000 burn-ins. The efficiency

217319



IEEE Access

K. Raweesawat, K. Jampachaisri: Odds Ratio Estimation for Small Count in Zero-Inflated Poisson

TABLE 1. The estimated value of odds ratio for p; = 0.5, p, = 0.5 and
(ny,np) = (10, 10).

TABLE 3. The estimated value of odds ratio for p; = 0.5, p, = 0.5 and
(nq, ny) = (10, 30).

A A OR e 6§EB 6§MME 6§MMLE M A, OR e 6§EB 6§MME 61\{MMLE
0.1 0.1 1.0000 0.8874 0.9932 0.9967 0.1 0.1 1.0000 0.9104 2.0919 2.9369
0.1 0.3 0.3356 0.3289 0.6555 0.8213 0.1 0.3 0.3356 0.3413 0.8685 2.4571
0.1 0.5 0.2040 0.2815 0.4700 0.6941 0.1 0.5 0.2040 0.1660 0.5552 2.1240
0.1 1.0 0.1081 0.1212 0.2469 0.4808 0.1 1.0 0.1081 0.0928 0.2834 1.5572
0.3 0.1 2.9802 2.9620 1.4928 1.2097 0.3 0.1 2.9802 3.0389 3.1443 3.5644
0.3 0.3 1.0000 1.0979 0.9853 0.9968 0.3 0.3 1.0000 1.1393 1.3054 2.9822
0.3 0.5 0.6079 0.9396 0.7065 0.8424 0.3 0.5 0.6079 0.5540 0.8346 2.5779
0.3 1.0 0.3222 0.4046 0.3711 0.5835 0.3 1.0 0.3222 0.3097 0.4260 1.8899
0.5 0.1 4.9025 3.2175 2.1147 1.4362 0.5 0.1 4.9025 3.3010 4.4540 2.9369
0.5 0.3 1.6450 1.1926 1.3957 1.1835 0.5 0.3 1.6450 1.2376 1.8492 2.4572
0.5 0.5 1.0000 1.0207 1.0007 1.0002 0.5 0.5 1.0000 0.6017 1.1822 2.1241
0.5 1.0 0.5300 0.4395 0.5257 0.6928 0.5 1.0 0.5300 0.3364 0.6034 1.5572
1.0 0.1 9.2500 5.5437 4.7873 2.0904 1.0 0.1 9.2500 5.6876 10.0834 6.1595
1.0 0.3 3.1039 2.0550 3.1597 1.7225 1.0 0.3 3.1039 2.1323 4.1863 5.1533
1.0 0.5 1.8868 1.7586 2.2656 1.4557 1.0 0.5 1.8868 1.0368 2.6764 4.4547
1.0 1.0 1.0000 0.7572 1.1900 1.0083 1.0 1.0 1.0000 0.5797 1.3661 3.2658

TABLE 2. The estimated value of odds ratio for p; = 0.7, p, = 0.5 and
(n1 N I'lz) = (10, 10).

A A, ORyyp O’ﬁEB (SﬁMME (SEMMLE
0.1 0.1 0.6000 0.4501 0.8905 0.9550
0.1 0.3 0.2203 0.1423 0.5806 0.7849
0.1 0.5 0.1451 0.1048 0.4920 0.6592
0.1 1.0 0.0903 0.0491 0.1836 0.4183
0.3 0.1 1.6341 1.8789 1.1814 1.0837
0.3 0.3 0.6000 0.5942 0.7703 0.8906
0.3 0.5 0.3952 0.4373 0.6526 0.7480
0.3 1.0 0.2460 0.2048 0.2435 0.4747
0.5 0.1 2.4808 2.6254 1.4753 1.2196
0.5 0.3 0.9109 0.8303 0.9619 1.0023
0.5 0.5 0.6000 0.6111 0.8150 0.8418
0.5 1.0 0.3735 0.2862 0.3041 0.5342
1.0 0.1 3.9855 5.5501 2.1640 1.5844
1.0 0.3 1.4633 1.7552 1.4109 1.3021
1.0 0.5 0.9639 1.2918 1.1955 1.0936
1.0 1.0 0.6000 0.6050 0.4461 0.6940

of estimators is evaluated using the percentage of Estimated
Relative Error (ERE), defined as

|OR — ﬁi
OR

ERE = x 100, (23)

where OR denotes the usual maximum likelihood estimator
of odds ratio and OR;, where i = 1, 2, 3 denote the estimates

217320

TABLE 4. The estimated value of odds ratio for p; = 0.7, p, = 0.5 and
(ny,ny) = (10, 30).

A A, ORy ¢ O’ﬁEB (SRMME (SEMMLE
0.1 0.1 0.6000 0.5218 1.8164 2.8002
0.1 0.3 0.2203 0.1904 0.7733 2.3482
0.1 0.5 0.1451 0.1165 0.4865 2.0258
0.1 1.0 0.0903 0.0583 0.2484 1.4823
0.3 0.1 1.6341 2.1784 2.4097 3.1774
0.3 0.3 0.6000 0.7950 1.0258 2.6645
0.3 0.5 0.3952 0.4863 0.6454 2.2987
0.3 1.0 0.2460 0.2434 0.3295 1.6820
0.5 0.1 2.4808 3.0438 3.0092 3.5760
0.5 0.3 0.9109 1.1108 1.2811 2.9987
0.5 0.5 0.6000 0.6794 0.8059 2.5870
0.5 1.0 0.3735 0.3401 0.4114 1.8930
1.0 0.1 3.9855 6.4347 4.4140 4.6456
1.0 0.3 1.4633 2.3483 1.8791 3.8957
1.0 0.5 0.9639 1.4363 1.1822 3.3608
1.0 1.0 0.6000 0.7190 0.6035 2.4592

of odds ratio using EB, MME, and MMLE, respectively. The
simulation results of odds ratio estimation for sample sizes
(n1, np) = (10,10) and (10,30) are given in Table 1-4 and
their performances are compared using ERE as illustrated
in Table 5-8. The ERE of three estimation methods also
display in Fig.1-2 for the case (nj,ny) = (10,30), similar
to the case (ny, ny) = (10,10) (but not shown here). Based

VOLUME 8, 2020



K. Raweesawat, K. Jampachaisri: Odds Ratio Estimation for Small Count in Zero-Inflated Poisson IEEEACC@SS

TABLE 5. The percentage of the Estimated Relative Error of OR estimation
for p; = 0.5, p, =0.5 and (n;, ny) = (10, 10).

TABLE 7. The percentage of the Estimated Relative Error of OR estimation
for p; = 0.5, p, = 0.5 and (ny, ny) = (10, 30).

A A, ERE, ERE, ;& ERE i A A, ERE, ERE, i ERE, e
0.1 0.1 11.2600 0.6800 0.3300%* 0.1 0.1 8.9600* 109.1900 193.6900
0.1 0.3 1.9818* 95.3509 144.7623 0.1 0.3 1.7136* 158.8288 632.2604
0.1 0.5 38.0041%* 130.4154 240.2794 0.1 0.5 18.6193* 172.1843 941.2813
0.1 1.0 12.1105%* 128.3836 344.7421 0.1 1.0 14.1596* 162.1462 1340.4168
0.3 0.1 0.6101* 49.9091 59.4085 0.3 0.1 1.9703* 5.5070 19.6034

0.3 0.3 9.7900 1.4700 0.3200%* 0.3 0.3 13.9300* 30.5400 198.2200
0.3 0.5 54.5660 16.2206* 38.5764 0.3 0.5 8.8660* 37.2933 324.0694
0.3 1.0 25.5819 15.1840%* 81.1098 0.3 1.0 3.8737* 32.2241 486.5971
0.5 0.1 34.3696* 56.8645 70.7045 0.5 0.1 32.6664 9.1476* 40.0933

0.5 0.3 27.5023 15.1560* 28.0555 0.5 0.3 24.7668 12.4121* 49.3722

0.5 0.5 2.0700 0.0700 0.0200%* 0.5 0.5 39.8300 18.2200* 112.4100
0.5 1.0 17.0743 0.8099* 30.7188 0.5 1.0 36.5274 13.8507* 193.8154
1.0 0.1 40.0684* 48.2457 77.4012 1.0 0.1 38.5127 9.0092* 334111

1.0 0.3 33.7920 1.7993* 44.5044 1.0 0.3 31.3015%* 34.8743 66.0292

1.0 0.5 6.7955%* 20.0751 22.8490 1.0 0.5 45.0504 41.8472* 136.0958
1.0 1.0 24.2800 19.0000 0.8300%* 1.0 1.0 42.0300 36.6100* 226.5800

Note: *is the smallest ERE in each row.

TABLE 6. The percentage of the Estimated Relative Error of OR estimation
forp; = 0.7, p, = 0.5 and (ny, ny) = (10, 10).

Note: *is the smallest ERE in each row.

TABLE 8. The percentage of the Estimated Relative Error of OR estimation
for p; = 0.7, p, = 0.5 and (ny, ny) = (10, 30).

A A, ERE, ERE, i ERE, e A Ay ERE, ERE, ERE, e
0.1 0.1 24.9896* 48.4212 59.1690 0.1 0.1 13.0338%* 202.7387 366.7034
0.1 0.3 35.3912%* 163.5634 256.2832 0.1 0.3 13.5597* 251.0080 965.9031
0.1 0.5 27.8118* 239.0252 354.2475 0.1 0.5 19.7357* 235.2438 1296.0069
0.1 1.0 45.6881%* 103.2184 363.1366 0.1 1.0 35.4491* 174.9503 1541.0726
0.3 0.1 14.9796* 27.7071 33.6860 0.3 0.1 33.3060* 47.4579 94.4409

0.3 0.3 0.9646* 28.3764 48.4370 0.3 0.3 32.4998%* 70.9689 344.0834
0.3 0.5 10.6536* 65.1323 89.2515 0.3 0.5 23.0330* 63.2904 481.6133
0.3 1.0 16.7481 1.0165%* 92.9549 0.3 1.0 1.0532* 33.9227 583.7141
0.5 0.1 5.8273%* 40.5313 50.8392 0.5 0.1 22.6949 21.2999* 44.1456

0.5 0.3 8.8477 5.6033* 10.0413 0.5 0.3 21.9529* 40.6402 229.2140
0.5 0.5 1.8456* 35.8390 40.2985 0.5 0.5 13.2396* 34.3239 331.1696
0.5 1.0 23.3749 18.5754* 43.0440 0.5 1.0 8.9294* 10.1658 406.8604
1.0 0.1 39.2568* 45.7032 60.2464 1.0 0.1 61.4527 10.7507* 16.5626

1.0 0.3 19.9461 3.5807* 11.0157 1.0 0.3 60.4763 28.4091* 166.2171

1.0 0.5 34.0174 24.0254 13.4516* 1.0 0.5 49.0106 22.6420* 248.6629
1.0 1.0 0.8300%* 25.6567 15.6717 1.0 1.0 19.8387 0.5849* 309.8698

Note: *is the smallest ERE in each row.

on the percentage of ERE, the proposed estimator mostly
outperform MME and MMLE. For all cases under study,
it is also found that EB method yields the smallest ERE
accounted for 59.38% of the time while MME and MMLE
methods respectively provide smallest ERE only 32.81% and
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Note: *is the smallest ERE in each row.

7.81% of the time. The results indicated that EB method to
incorporating prior knowledge about parameters combined
with information in the observed data to produce the posterior
distribution are preferable to the odds ratio estimation for
small cell count.
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TABLE 9. AlDS-related data.

v Gender
Male Female
0 102 103
1 5 6
2 8 4
3 2 2
4 1 -
5 4 1
6 1 -
7 R R
10 - -
12 - -
15 1 -
20 - -
30 - -
37 1 -
50 - 50

TABLE 10. True odds ratio and their estimates using EB, MMLE and MME
methods and their corresponding ERE.

Methods
Study MLE EB MME MMLE
AIDS- OR 1.6589 1.6480 2.9099 1.6365
related ERE 0.0066 0.7541 0.0135
p1,p2=0.05, lambda2=0.1 p1=p2=0.5lambda2=0.3

o
a <,

e —— 7_\\
qe . %
&

. - 0f%=<=§

lambdat lambdat
p1=p2=0.5Jambda2=0.5

# *
¢ EB O MME * MMLE
o

pi=p2=0.5lambda2=1.0

9EB OMME % MMLE

<«
“ e
\ [ — LR g *

» 0-\

O o

lambdal lambdal

FIGURE 1. A comparison of the percentage of ERE of odds ratio
estimation using EB, MME and MMLE when p; = p, = 0.5 and
(ny,np) = (10, 30).

VI. ILLUSTRATIVE EXAMPLE USING REAL DATA

Our example is taken from the set of AIDS-related data
discussed in Heilbron [17]. The response variable in this
study was the self-reported number of times that the respon-
dents had anal intercourse with opposite sex partners during
the study period classified by to dichotomous explanatory
variables; gender (male, female) and having a risky main
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FIGURE 2. A comparison of the percentage of ERE of odds ratio
estimation using EB, MME and MMLE when p; = 0.7, p, = 0.5 and
(nl N l'lz) = (10, 30).

sexual partner. Table 9 gives the number of times (Y) and
gender. The estimate of odds ratio between male and female
respectively are

n; =125, p; = 0.816, i; = 0.870
and
ny = 117, p, = 0.880, iy = 0.640.

The EB method yields the ERE with 0.0066 while those using
MME and MMLE methods result in ERE with 0.7541 and
0.0135, respectively as shown in Table 10. The results
in this example revealed that we can estimate the odds
ratio without disturbing the original data based on the EB
method when observed count data have a large number of
ZEeTO0S.

VIi. CONCLUSION

This paper presents the odds ratio estimation for small count
in Zero-inflated Poisson distribution. The results obtained
from both simulated data and actual data indicate that the pro-
posed method perform rather well. The EB estimator of odds
ratio is more efficient than the MMLE and MME. In addition,
more robust estimation methods have been proposed by sev-
eral authors, as illustrated by Chen et al. [18] which probably
draw attention for future research.
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