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ABSTRACT In this paper a new control system on basis of group method for data handling neural networks
(GMDH-NNS) is designed for voltage and power regulation in the photovoltaic (PV)/Fuel/Battery systems.
The dynamics of all subsystems are considered to be fully uncertain. The suggested GMDH-NN is learned
using online tuning rules that are concluded through the robustness investigation. The challenging operation
conditions such as variable unknown dynamics, unknown temperature and irradiation and suddenly changes
in output load are taken into account and are handled by suggested control system. The superiority of the
suggested method is shown by simulation in several scenarios and comparison with other techniques.

INDEX TERMS Adaptive control, GMDH, adaptive learning, energy management, PV panels, solar energy,

machine learning.

I. INTRODUCTION
The importance of renewable energies such as PV panels is
increasing day by day due to some attractive features such as
abundance and clearity. However the efficiency of PV panels
is significantly undesirable, because of high dependance on
weather conditions. Then the PV panels need to be combined
with storages systems such as batteries. Also fuel cells as the
backup systems can be used to make a better energy balance.
The control object is the output voltage to be regulated in
a desired level in versus of variable load, temperature and
irradiation.

Up to now, many management techniques have been pre-
sented. For instance, in [1], hybrid energy storage systems are
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investigated and various structure by combination of super-
cap, battery, hydrogen and power-to-heat is studied. In [2],
an management technique is presented by proposing a cost
function including the decay cost of storage systems. In [3],
a forecasting method on basis of Markov technique is pre-
sented to construct a power management planing considering
various energy sources and cost of hydrogen consumption
and electricity energy. In [4], the problem of energy consump-
tion in peak hours is considered and a management system
is designed for overall balancing. In [5], considering elec-
trical vehicles in microgrids and the problem of fault event,
a management method is proposed on basis of targeted search
shuffled method. In [6], by genetic algorithm, an optimization
problem is solved to minimize energy cost under step tariffs
in a power system that includes PV and battery units. In [7],
the effect of wind speed is investigated in a PV-battery-wind
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system and a power management method is introduced to
extract the maximum power form PV system. In [8], a volt-
age management method is presented to diminish the output
voltage fluctuation by planing the charging and discharging
of batter storage systems in peak hours. In [9], the problem
of battery degradation is studied in the PV/battery systems by
considering the effect of temperature.

In the most above studies, the dynamics are considered to
be known and only an optimization problem is investigated.
To cope with uncertainties, some fuzzy neural network (FNN)
approach have been suggested. For example, in [10], a neural
model is developed for PV panels and wind sources and it
is shown that FNNs results in a good accuracy. A fractional-
order fuzzy control approach is developed in [11], for both
power and voltage management. In [12], the optimal utiliza-
tion of batteries in hybrid systems is studied and the effective-
ness of FNNs is shown. In [13], FNNs are used to increase
the power extraction in PV systems and energy saving plan
for battery is investigated. In [14], a FNN is learned by bat
algorithm and it is applied for PV/battery system and the
effect of shading conditions on power extraction is studied.
In [15], similarly to [14], the FNNs are optimized to power
and voltage regulation and the superiority of FNNs based
control systems is shown. In [16], a predictive controller is
developed using FNNs for power consumption management
and the voltage regulation in daylight irradiation times is
studied. In [17], deep discharging problem in PV/battery
systems is studied using FNNs and it is shown that by the
use of FNNs a better energy balance can be achieved. In [18],
it is shown that the fuzzy based controllers improve the
regulation accuracy about 12%. In [19], the problem of peak
current in battery is considered and a FNN based controller is
designed and it is shown that tuning of FNN by particle swarm
optimization better reduces the peak current in contrast to
traditional low-pass filters. In [20], a simple neural system
is suggested to approximate the relationship between various
energy generators and consumption units and on basis of the
neural model an operation control system is designed using
bus voltage.

The main shortcomings of the methods in the above-
mentioned literature are summarized as follows. In the most
of reviewed studies, simple FNNs are used and also the
controller optimization is not adaptive and online. An opti-
mization problem commonly is solved as off-line and the
unpredictable conditions during process are neglected. Also
the stability is not guaranteed. Motivated by above review,
in this study a new neural controller is proposed. Unlike to
the most papers, very difficult operation conditions are taken
into account and robustness and stability are ensured. New
GMDH approach with online and stable learning algorithm
is suggested to deal with unknown dynamics of PV, battery
and other units. In many studies and applications it is shown
that GMDH based FNNs are more effective than conven-
tional FNNs in nonlinear problems with high uncertainties
such as: forecasting applications [21], modeling nonlinear
systems [22], soil compaction analysis [23], electrical load
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FIGURE 1. A general view on control system: Ip/Ij, and V. are the
PV/battery currents and output voltage respectively; up and up, are
control signals; gp and gp are outputs of suggested GMDH-NNs; I and
V¢ are reference signals.
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FIGURE 2. A general view on control system.

studies [24], feature extraction problems [25], classifier sys-
tems [26], and many others. The main advantages and contri-
bution of current study are:

« A new approach on criteria of GMDH neural networks
is presented

o Adaptive rules are obtained for online learning of
GMDH-NNSs.

¢ Unlike to the other methods, in addition to uncertain
conditions such as time-varying temperature and irradi-
ation, the dynamics are also considered to be unknown.
Furthermore, abruptly changes in output load is consid-
ered to be external perturbation.

« New adaptive compensators guarantee the robustness.

In the remaining, the problem is formulated in Section II,
the structure of GMDH-NN is explained in Section III,
the main results are provided in Section IV, the simulations
results are presented in Section V and finally the conclusions
are given in Section VI.

Il. PROBLEM FORMULATION

A. GENERAL VIEW

The block diagram of the under control plant is shown
in Fig. 1. As it is observed, a GMDH-NN is employed to
deal with uncertain dynamics of units. The controllers are
designed on basis of GMDH model (see Fig. 2). The impacts
of variable irradiation, temperature and estimation error are
handled by compensators such that the robustness to be
ensured. GMDH-NN is online learned by tuning laws that
arise from stability study. It should be noted that there is no
data set for learning of GMDH-NN. The input/output data set
is online measured at each sample time.
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TABLE 1. Parameter description of FC, see equation (1).

TABLE 2. Parameter description of FC, see equations (2-6).

Parameter Description Unit Parameter Description Unit
R Constant of J/mol K km, Valve molar index kmol/s- atm
universal gas of hydrogen
T Stack temperature kelvin qH, Hydrogen flow mol/s
F Faraday’s constant C/mol rate
Ey Voltage of free volt TH, Time constant of sec
energy hydrogen
T Stack internal Q ko, Valve molar index kmol/s - atm
resistance of of oxygen
Ny Number of cells in - qo, Oxygen flow rate mol/s
stack TO, Time constant of sec
Irc Current of FC A oxygen
PH, Hydrogen Partial atm km,o0 Valve molar index kmol/s- atm
pressures of water
PHLO Water Partial atm TH,O Time constant of sec
pressures water
PO, Oxygen Partial atm K, constant kmol/s - A
pressures Ts Time constant of sec
fuel
THO Hydrogen to -
Remark 1: The main topic of this study is to present a con- oxygen ratio
. . Uopt Desired level of -
trol system for voltage and power regulation not a maximum P
power point tracking algorithm. Please note that, as shown fuel employment
in the general control block diagram (Fig. 2), it is assumed
that the optimal current of PV is known. The main objec- L
tive of this study is to design an adaptive control system 1, > r @
such that a robust regulation performance to be achieved O/ SW
in versus of unknown mathematical dynamics, abrupt 2
changes in output load and variation of temperature and
irradiation. SW, sw,
. v, RS :
B. FUEL UNIT e
The fuel cells as the backup systems are used to improve the

reliability of the system. The fuel cells help to full charge of
battery storage systems. The FC unit is described as equa-
tions (1-6):

0.5 TR
Ve =No | In I:,OH2 " PO, //OHZO] == +Ey ) —rlpc (1)

2F
qr, =2Irc K,/ [(s7 + 1) Uop | 2
doi = quin/THO 3)
pit, = | ~2Kilrc + gy | / (ki (s, +1)] )
po, = [—KrIFC + qogw] / [ko, (st0, +1)] ®)
pry0 = 2K Irc)/ [kiyo (sta0 + 1)) (6)

where, the parameter are defined and described in Tables 1- 2.

C. CONVERTERS

The Boost convertors are used for applying control command
on PV and battery/Fuel units to carry out an energy balance
between energy generation and consumption. The Boost and
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FIGURE 3. Boost and Bidirectional Boost convertors: Ip/Ij, and V¢ are the
PV/battery currents and output voltage respectively; up and up, are
control signals; SW;, SW, and SW5 are switchers; Lp and L}, are the value
of inductors and R represents the output load.

Bidirectional Boost convertors as shown in Fig. 3, are consid-
ered the switching actuators. From Fig. 3, the circuits for all
modes are depicted in Fig. 4. On basis of Fig. 4, the dynamics
can be written as:

X1 = (chp — X2+ Vp (Xl)) /Lp

i 1
X2 = (=x1up + x1 — x2/R + Ipup)
X3 = (Vo (x3) — x2up) /Lp @)

where, V. and I,/I, are the load voltage and currents of
PV/battery. Ly, Ly and C are the values of inductors and
capacitor and R represents the output load. u,, u, are con-
trol signals. V,, and V), are voltage of PV and battery. The
variables x1, x2 and x3 are considered to be I, V. and Iy,
respectively.
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TABLE 3. Parameter definition of PV, see equation (8).

Parameter Description
n Cell numbers
G (w/m?) Solar radiation
ky (J/K) Boltzmann’s constant
R, and R, () Equivalent resistances
E; (ev) Band-Gap Energy
q Electron charge
T (°c) PV Temperature
A Diode ideality constant
iph (A) Currents generated by photo
T, (°c) Desired temperature
i, (A) Current of saturation
1,-> L, L, <1, I,—»> L, L, «1,
(a) C Ry (b) v, C__llz_‘ R 7,
T

L, <1, 11y d Lp = N ]
(c) 7, T R Y (@ v, C%R Vs
c

FIGURE 4. Four switching modes while the state of switchers SW,/
SW,/SWj5 is: (a): open/close/open; (b): close/close/open; (c):
open/open/close; (d): close/open/close. I, and I, are the currents of PV
and battery; Vp and V, are voltage of PV and battery; Lp, Lj, and C are the
values of inductors and capacitor and R represents the output load.

D. PV MODELING
On basis of single-diode modeling of PV panels [27], one has:
iph =5 (lse + ki (T = T}))

Iy =IpngG — i exp (—1 + g (Vp + I,Ryg) /nTkp)

1
- th (Vp + IpRsg)

1 1
(T,+273 T T273

™ ) (T +273/T + 273)%i,

iop=exp | Egq

®)

where, definition of parameters are given in Table 3. The
trajectory of power of PV as a function of its current is shown
in Fig. 5. It is seen that at one current, the maximum power
can be obtained. The frequency switching should be adjusted
such that the current of PV to regulated at its optimal level.

E. BATTERY MODELING

The battery dynamics can be
equation (9-12) [27]:

described by

E (1) = _/IBVboch + Wiossdt (9)
Vb = —rplp + Vioe (10)
SoC (t) = E (1) /Emax (11)
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FIGURE 5. The power trajectories of the under control PV panel with
respect to the current.

TABLE 4. Parameter description of battery system, see equation (9).

Parameter Description
5 (£2) Internal resistance
Wiross (w) Power losses
B and Sy Charge/discharge rate
Vhoe (V) Open circuit voltage
Epax (J) Maximum charging level
where,
B I, =0
B = (12)
B I, <0

where, E represents the charging level and V}, and I, are the
voltage and current of battery. The other parameters are given
in Table 4.

Ill. UNCERTAINTY APPROXIMATION BY GMDH-NN

The dynamics of all units reconsidered to be unknown
and time-varying. As depicted in Fig. 6, GMDH-NNs are
employed to estimate the dynamics. The details are explained
in below.

1) The inputs of GMDH-NNSs are x1, x2 and x3. Then con-
sidering Ivakhnenko second order polynomials, for 3 input
variables, there will be two neurons with five sub-neurons.
2) For the first and second neurons in the hidden layer one
has:

X11 = X1

X12 = X2

X13 = X1X1

X14 = X12

xXi5 = X3 (13)

X1 = X2

X2 = X3

X23 = X2X3

X4 = X3

x5 = X3 (14)

3) The inputs of output neuron are obtained as:

ont =f (W,QM) (15)
oz = f (wh2) (16)

213751
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where, o1 and opp represent the outputs of hidden neurons
and:

) ) . AT
Wi = [Wlll’WIIZ""’Wlls:I )

) ) . AT
Wy = I:WIZI, Whos ooy w’25] (18)
x; = X1, X2, -, X517 (19)
X, = [x21, %2, ..., x25]" (20

1 —exp(—x)
= = 21
100 = o o) @1
4) For the output neuron, one has:

8i = who (22)

where similarly to (17-18), w;3 is the vector of parameters in
output layer and:

. . o 92 1277
¢i — |:0;11, 0;12, 0;110;12, I:O;ll:l s [0212] ] (23)

Considering Taylor expansion, g; in (22) can be written as:

gi~0lg (24)

of =[wh W W] e3)

of = [ 08 08i 08i ] 26)
wy  wy Iwy

From (26), for ;wﬁ, one has:
i3

3%, i i i Ti T T
08 _ [021,0;,2,0;,10;,2, [021] ,[022] ] (27)

0w,
For %, one has:
8 o
S5 = s (wh ) x (28)
il
where,
2exp (—wlx
£ (whet) = ( - ) . (29)
(1+ exp (—wjjx1))
8it = W3y + W3y0j + 2W340), (30)

Similarly to (28), % can be obtained as:
2

0gi T
B =0 (wh2) x2 31
where,
2exp (—wlx
f (w,.szz) - P - 2) . 32)
(1+exp (—whx2))
8 = Why + w505, + 2w350), (33)
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FIGURE 6. The structure of suggested estimator: x; = Ip, x = Vc and
x3 = Ip are the input signals, wl'l., j=1,...,5 are the tunable
parameters and g; is the output of the suggested GMDH-NN.

IV. MAIN RESULTS
The main results and outcomes are given in the following
theorem.

Theorem 1: If the adaptation rules, controllers and com-
pensators are considered as (34-41), then the asymptotic
stability is ensured.

up = (_‘pep -8+ CP) /Bp (34)
up = (—tper — &+ cv) /By (35)
6y = AVepp (36)
b, = 0, (37)
B, = A Veu, (38)
By = 1Velpuy (39)
& = —Tyey |I,| / (|e,| +9) (40)
cp = —Tpep [Ve|/ (|ey| +9) A1)

where, A, tp, (p, I, and I:I,, are constant, 8, ¢, and ¢, are
compensators, e, and e, are tracking errors.

Proof: From (7), the output dynamics can be rewritten
as:

. V.

Iy = (=Ve+Vy (1)) /Lp + fc“p
D

. Iy

Ve = (I,/C — Lu,/C — V./CR) + PG

To design controllers u, and uy, the estimated dynamics are
considered as:

i,, g’,, + B,,ch,,
¢ = & + Bplpup (43)

<>
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where /§p and ﬁb are estimations of 1/L, and 1/C. g, and

g» are the GMDH-NN. The dynamics of I, = I, — I, and
V.=V, -V, are:
ip = (_VC +Vp (Ip)) /Ly — &p
1 4
(5, v
Ve = (,/C — Lu,/C — V./CR) — &
| RN
- — I 44
+ <C /317) bUb (44)

From (44), f and \L/C are written as:
Iy = [(~Ver v () /1y~ 5] + 25— 2
Q% 2 1 Q%
+ (ﬂp - 5,,) Vetty + (- = By ) Vetty
Ve =[(I,/C — Luy/C — V:/CR)
A A 1 ~
+ (B — B ) Tous + (5 - ﬂ;:) b, (45)

where, g; and gr; are optimal GMDH-NN. From (45),
the approximation errors E, and E}, are considered as:

1 ~
By = [(Vers vy () 1= 5] + (- = B ) v
Ep = (x1/C — x1up/C — x2/CR) — &5 (x. 6;)

+ ! S5 1, (46)
- — u
C 2 ) %

- &)+ 8-

From equations (45)-(46) one has:
Ip =E, +6’ <pp+,3qup

V = Ep + 0 @2 + Bolpup 47
where,
- A
r — Y — U
. NS
b =0, —0p
,317 = ,3; - ,Bp
By = B — Br (48)

Substituting the signals u,, and u;, from equations (34-35) one
has:

ep = —lpep+cp 49)
ep = —lpep + Cp (50)

Now, to prove stability, Lyapunov function is defined as:

V= 112+1V2—|—1 1l
e —e
27 2‘ 2P 2b
Xﬁﬂp"i‘ /3b

From (51), V is concluded that:

T
5 p9p+2ke,, b, (51)

V= ipip + \75‘76 + épep + epep
1. 2 1. 2 L -7x 1 ~p A
- Xﬂpﬂp - X,Bb/gh — Xep 0p — ng 0 (52)
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FIGURE 7. Scenario 1: Trajectory of /p.

Then, V yields as:
vV=I, (Hp—ké;gop—i-/;chup)—i-Vc (Hb-l-ébT(Pz—l-Bblbub)
+ep (—tpep + ¢p) + ep (—pep + cp)
1~ 2 1~ 2 < A
Xﬁpﬁp - Xﬁbﬂh — 500

From (53), V is written:

Lors (53)
PRChe

V= —Lpez + cpep — Lhei + cpep

+9 <p(pp——9 >+9b < c(pb—xeb)

+ By (7pvcup - Xﬁ,,) + By (Vclbub - %ﬂh)

+ ], + TV (54)
Considering tuning rules éb = AV.pp, ép = Aipctpp, ,éb =
AVCIbub and Bp = )ijCup from (36-39), V is written as:

V = —uep — pey + cpep + cvep + Myl + Ve (55)
Then one has:
V < —Lbei — tpef,

+ [|Hp| ‘jp‘ + Cpep] + [Cbeh + |TIp| |Ve

| o
Considering compensators ¢, and c¢;, from (40-41), results in:
V< —Lhe% — L,,elz7 + |Ip| ‘ip‘ — 1, ‘ip’ e,z,/ ()ep‘ + 6)

(10| [Bo| = 1, || 3/ (lel +8) 57

From (57) it is concluded that V. < 0 and considering
Barbalat’s Lemma the proof is completed. ]

Remark 2: It should be noted that, to guarantee the sta-
bility against dynamics perturbations such as variation of
irradiation, output load and temperature, it is assumed that
the upper bounds of perturbations are unknown. By the
use of these upper bounds, the suggested compensators are
designed. Furthermore, it is assumed that there is no restricts
on control signals and the generated control signals can
be handled by the actuator. Then, by considering the upper
bounds of perturbations, and assuming no limitation on con-
trol signals, the range of variation of irradiation, temper-
ature and output load can be determined. For our future
studies, the upper bounds of perturbations are assumed to be
unknown and some adaptation laws are derived.
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TABLE 5. Simulation parameters.

Parameter value Parameter value
L, 3 (mH) Ly 20 (mH)
q 1.5e-19 n 36
P, 65 (w) Tse 4.45 (A)
C 600 (1.f) Tp 40 (m€)
T 80 (M) ky 1.481e-23
T, “O) k; 1.5 (A/k)
A 1.2 Vioe 8 (v)
51 0.97 Ba 1.13
. 2.93e-8 (A) E, 1.22 (ev)
by 22 (w) Wioss 22 (w)

3 =] =
FIGURE 8. Scenario 1: Trajectory of P. FIGURE 10. Scenario 1: Trajectory of up.

»
R
I

N
i
T

I

N
8

Load voltage (v)

=
T
I

>
T
I

I I
40 80 120
Time (s)

FIGURE 9. Scenario 1: Trajectory of V.

TABLE 6. MSE Comparison for different control methods.

Signal
Method Ve 1,

LQR [30] 137.9198 2.2237
PID [28] 178.134 2.8021
F-FLC[11] 8.1254 1.1427
PBC [29] 12.1340 0.9149
SMC [31] 9.4587 0.5761
Proposed Method 0.9071 0.3071

V. SIMULATION STUDIES

In several faulty condition, the regulation performance is
examined. The values simulation parameters are provided
in Table 5.

A. SCENARIO 1

For the first experiment, the normal condition is taken into
account as follows. The irradiation, temperature and output
load are considered to be fixed. The tracking performance of
Iy, P, V. are shown in Figs. 7- 9. The controller outputs u,
and u, are shown in Figs. 10- 11. Figs. 7- 9 exhibit a good
and favorable reference tracking response. Also one can see
the good and implementable controller trajectories with no
chattering in Figs. 10- 11.
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FIGURE 12. Scenario 2: Variation of irradiation, output load and
temperature.

B. SCENARIO 2

For 2-th scenario, a difficult condition is considered. Varia-
tion of irradiation, output load and temperature are depicted
in Fig. 12. As shown in Fig. 12, the temperature is not
constant but it is continuously changed from T = 10 to
T = 50°C, also output load is abruptly changed from 75 into
25 (£2). Furthermore, irradiation level is suddenly changed
from 400 into 200 (w/m?). The tracking performance of I,
P, V. are shown in Figs. 13- 14. The controller outputs #, and
up are shown in Figs. 16- 17. From trajectories, a very good
robustness is seen in the presence of variable temperature,
irradiation and output load. The output voltage has been

VOLUME 8, 2020



S.S. Band et al.: Voltage Regulation for Photovoltaics-Battery-Fuel Systems Using Adaptive GMDH-NNs

IEEE Access

TABLE 7. Comparison of tracking performance for different control methods in time range ¢ < [0, 40].

t Method Overshoot Undershoot Settling time Steady state error
LQR [30] 19.5358 0 - 0.1175
PID [28] 27.35 19.58 34.85 0.0101
1, F-FLC[11] 26.48 9.52 20.67 0.0014
PBC [29] 21.75 6.88 39.79 0.0410
SMC [31] 25.6395 8.98 26.83 0.0153
Proposed Method 24.08 0 3.45 0.0001
LQR [30] 50.45 0 37.01 0.1649
PID [2§] 63.45 38.04 - 0.6816
V. F-FLC[11] 15.40 4 12.30 0.0123
PBC [29] 18.10 3.75 29.67 0.1887
SMC [31] 21.11 3.60 20.30 0.0367
Proposed Method 31.55 0 2.92 0.0087
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FIGURE 15. Scenario 2: Trajectory of P.

kept in favorable level and also the power well follows up
the optimal operation point. It can be observed that, after
disturbance occurring at times ¢ = 40s, ¢ = 80s and r = 120s
the output voltage is converged to desired level 20 V in less
than 20s. Furthermore, the shapes of control signals u;, and uy,
are smooth with no fluctuation. Figs. 13- 14, demonstrate that
the suggested controller exhibits a good robust performance
against changes of output load, irradiation and temperature.

C. COMPARISON

In this experiment, a comparison with classic regula-
tors is provided, such as: PID [28], passivity approach
(PBC) [29], LQR [30], fractional-order fuzzy logic controller
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(F-FLC) [11], and sliding mode controller (SMC) [31]. The
simulation conditions as given in the second scenario are
considered to be same for all controllers. Table 6 exhibits
the superiority of the suggested method. From Table 6, it can
be realized that MSE (mean square error) values for sug-
gested method is significantly less than the other approaches.
It should be reminded that, this favorable performance is
achieved, while unlike to the compared methods, the dynam-
ics of PV panel and all other units are considered to be
unknown. In other words, the mathematical model of these
units are not used in the control designing process. The
unknown dynamics are online estimated by the suggested
GMDH-NNSs. For better comparison, the trajectories of I,
and V, for different above described controllers are depicted
in Fig. 18. It is seen that the settling time for the suggested
controller is significantly small than other methods. Also the
value of steady state error for the suggested method is remark-
able less than other techniques. The numerical compression in
terms of overshoot, undershoot, steady state error and settling
time are given Tables 7- 8.
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TABLE 8. Comparison of tracking performance for different control methods in time range t < [40, 80].

t Method Overshoot Undershoot Settling time Steady state error
LQR [30] 19.5358 0 - 0.1175
PID [28] 3.17 6.88 3.17 0.0101
1, F-FLC [11] 6.35 28.04 18.70 0.0021
PBC [29] 0.53 26.48 34.73 0.06
SMC [31] 28.6395 18.98 32.62 0.0023
Proposed Method 0 11.64 3.79 0
LQR [30] 0 15 29.25 0.1771
PID [28] 9.6 19.6 22.1 0.0058
V. F-FLC [11] 6.51 17.50 19.5 0.0149
PBC [29] 14.12 20.12 23.70 0.0062
SMC [31] 6.45 20.01 15.16 0.0366
Proposed Method 0 7.5 3.1 0.0003

Remark 3: The sample time in the simulations is 0.001s
and it is equal for both controllers and GMDH-NNs. In other
words, at each sample time the computations for updating
the parameters of GMDH-NNs are done and then the control
signals are generated (see Fig. 2).

Remark 4: The value of MSEs show the accuracy of the
suggested control system. The smaller MSEs represent the
higher accuracy. When the mean square of output voltage
error is decreased the output voltage is converged to the
desired voltage level. Also, the decreasing of mean square of
PV current error indicates the approaching of the PV working
point into optimal one.

Remark 5: It should be noted that, the parameters of sug-
gested GMDH-NNs are tuned by the adaptation laws that are
extracted form robustness and stability investigation. Then,
by convergence the estimation errors into zero, the tracking
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errors are also reached to zero. As it can be seen form
Figs. 7, 9, 13, 14, the trajectories of outputs are reached to
their reference signals less than 20s.

VI. CONCLUSION

In this paper the problem of voltage and power adjustment
in PV/Battery/Fuel systems is studied. A new approach is
presented using GMDH-NN. GMDH-NNs are used to esti-
mate uncertainties in dynamics of subsystems. New rules are
extracted from robustness investigation for online learning of
GMDH-NN:E. The stability is ensured by compensators. Sim-
ulation results show the superiority of suggested approach
against uncertain irradiation and temperature, unknown time-
varying dynamics and output load. Also, a comparison with
some classic regulators such as LQR, SMC and passivity
based controllers, further clarifies the effectiveness of the
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suggested controller. One of the drawbacks of this study is
that the desirable level of current of PV (reference signal) is
considered to be known. For the future studies, a maximum
power point tracking algorithm can be added to the suggested
control scheme to determine the optimal current level of PV.
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