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ABSTRACT Urban arterial traffic coordination control has attracted much attention in smart city con-
struction process. To achieve optimal signal timing, many studies have attempted to adjust green splits of
a cycle time according to the distance between road intersections. However, existing green wave traffic
control systems usually require a sophisticated calculation that depend upon the stability of vehicle speed
and traffic flow, which can lead to weak robustness. Therefore, this article proposes two novel approaches
to control arterial traffic coordination with the help of artificial intelligence: DDPG-BAND and ES-BAND.
DDPG-BAND has two stages: a coarse-tuning stage reduces the blocking coefficient, and a fine-tuning stage
optimizes the traffic evaluation index. ES-BAND introduces the CovarianceMatrix Adaptation Evolutionary
Strategy (CMA-ES), a scalable alternative to reinforcement learning, into signal timing. Different traffic
variables are adopted as parameters to search for the optimal value by the CMA-ES. To evaluate the feasibility
and effectiveness of our approaches, we import real traffic flowdata fromZhongshanRoad, Ningbo, Zhejiang
Province, China, into a traffic environment simulator for training and then conduct a series of experiments.
The results show that ES-BAND outperforms the traditional methods in terms of better convergence, lower
journey time, fewer stops, and more throughput.

INDEX TERMS Green wave traffic, artificial intelligence, optimization, signal control, smart city.

I. INTRODUCTION
Traffic congestion is among the most challenging problems
in urban management, especially as the car ownership rates
increase in most Chinese cities. Urban arterial traffic coordi-
nation usually accounts for most of a city’s traffic volume
and contributes significantly to alleviating traffic pressure.
The green wave system, which has become a trending fea-
ture in smart city construction process, plays an essential
role in an intelligent transportation system. The green wave
system maximizes the number of green lights to be passed
along a road when vehicles pass the first light. Therefore,
the green wave system can reduce the average stops that
vehicles make and thereby improve the through efficiency of
road networks [1], [2].
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The traditional green wave method usually obtains the
maximum bandwidth of the object function either mathemat-
ically or graphically according to the distance between traffic
signal roads and the green wave velocity [3]–[9]. However,
the existing approaches have two major limitations. The first
limitation is similar velocities for all vehicles; vehicles (even
if only a minority) whose speeds are inconsistent with the
green wave velocity break the order of the entire green wave
queue. The second limitation is steady traffic flow; the ran-
domness of traffic flow changes the split and the offset, which
impairs the robustness of the green wave system.

In recent years, the rapid development of state-of-the-
art technologies in artificial intelligence, such as fuzzy
logic [10], [11], genetic algorithms [12] and expert sys-
tem [13], has introduced new concepts into traffic sig-
nal control. One example is the application of deep
reinforcement learning [14]. After defining the step
actions [15]–[18], reward function [19], and performance
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metrics, a reinforcement learning algorithm can seek the opti-
mal timing in a corresponding traffic environment. Although
remarkable achievements have been made in the study of
traffic trunks, these methods do not consider the variety
of real-time speeds for different types of vehicles, such as
large trucks, minicars, and buses, and the sparse reward of a
traffic environment in reinforcement learning makes training
difficult to converge.

Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES) is an alternative to popular MDP-based RL
techniques such as Q-learning and policy gradients [20].
Unlike the policy gradients in reinforcement learning, a
CMA-ES replaces back-propagation with smoothing of the
cost function in parameter space, which can reduce the
amount of computation per episode by approximately two-
thirds, and memory requirements by potentially much more.
For this reason, in the present article, we implement a rein-
forcement solution for traffic signal control. We elaborate the
training steps and explicitly define the observation, action,
and reward of the reinforcement learning application. We
thus propose the ES-BAND (Evolutionary Strategy-BAND),
a novel approach that introduces the CMA-ES for signal
timing training data to coordinate the traffic signals on an
arterial. ES-BAND converts the signal timing at each inter-
section into multiple search feature vectors and then finds
the optimal value under the objective function based on the
evolutionary strategy. ES-BAND can avoid traffic cases with
long action sequences and delayed rewards and can easily
perform parallel processing for performance improvement.
The proposed approach has been put into practice with the
help of the Ningbo Traffic Bureau, and the solution has been
proven useful.

The contributions of the ES-BAND, compared with its
previous version, are summarized as follows:

1. We consider the robustness of traffic signal coordina-
tion under different vehicle speeds and departure rules.
Both AI solutions use an open-sourced simulator which
can not only change vehicle speed, but also can simu-
late different departure rules of the same traffic volume.
Therefore, the robustness of the algorithm is enhanced
because various traffic environments are compatible
with the optimization of timing schemes.

2. ES-BAND uses the CMA-ES to find the optimal value
without a requiring substantial effort to design the
reward function.

3. In ES-BAND, a distributed computing approach is pro-
vided to accelerate training.

The remainder of the article is organized as follows.
After reviewing the related work on the green wave sys-
tem in Section 2, we present the specific algorithmic pro-
cess of ES-BAND in Section 3. Section 4 provides a case
study of coordinating the traffic signals on Zhongshan West
Road, an arterial in Ningbo, China, using ES-BAND. Finally,
Section 4 concludes the study and outlines potential applica-
tions for this research.

II. LITERATURE REVIEW
A. BANDWIDTH-BASED OPTIMIZATION STRATEGY
Maximizing the green wave band is the most commonly
used traditional objective for arterial traffic signal optimiza-
tion. The literature shows that stop-and-go behaviors, journey
time, and throughput can be reduced by a width-based opti-
mization strategy. Morgan et al. found that the band-width
in each direction is generally single. Under this condition,
they developed an algorithm for solving two kinds of prob-
lems related to synchronizing traffic signals for a progression
on an arterial street [3]. Little et al. formulated a mixed-
integer line program to solve more general problems [4].
MAXBAND [9], which is a portable, off-line, FORTAN
computer program, was developed by Little et al. for set-
ting arteries to achieve maximal bandwidth. MAXBAND
also has several newer versions – MAXBAND-96 [20] and
MAXBAND-3.1 [21] – to improve performance. Yang et al.
presented a multipath bandwidth-based model that can pro-
vide green wave for multiple paths on main roads [22]. Tsay
and Lin used a general mixed-integer programming formu-
lation, based on which a program called BandTop was devel-
oped to obtain the real progression bandwidth [23]. However,
the band in BandTop only increases in width along the arte-
rial, meaning it could not adequately adapt the bandwidth to
variations of flow. MultiBAND [8], [24] generate variable
bandwidth progression schemes in which each directional
road section is assigned an individually weighted band, which
offers the traffic engineer a much wider range of design
options than existing arterial progressionmethods do. Aiming
to restrict symmetry in MultiBAND, Zhang et al. proposed
an asymmetrical multiband model called the AM-Band for
arterial traffic signal coordination [25]. To address an increas-
ing number of signals, Tian and Urbanik [26] divided a large
signalized arterial into the subsystem and each subsystem
was optimized to achieve themaximum throughput. Recently,
scholars have improved theMAXBAND algorithm by adjust-
ing the priority of specific vehicles, such as trams [27] and
buses [28]. Considering the uncertainty of progression time,
Li [29] develop a two-phase approach. They generated a
number of optimal or suboptimal plans by perturbation con-
trolled MAXBAND in the first phase and simulate random
progression time to evaluate these candidate solutions in the
second phase.

In summary, a width-based optimization strategy requires
all directions to have the same (or an integer multiple) cycle.
Considering the green split, these approaches adjust the off-
set of each intersection to obtain the maximal green wave
bandwidth.

B. ARTIFICIAL INTELLIGENCE-BASED
OPTIMIZATION STRATEGY
In addition to traditional bandwidth-based solutions, artificial
intelligence methods have been applied successfully to the
traffic control problem. Evolution Strategy [20] (ES) is a class
of black-box optimization algorithms that has been extremely
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FIGURE 1. Illustration of MAXBAND computing process: a traditional way
to coordinate arterial traffic by formulating a mixed-integer linear
program.

successful in solving optimization transport problems in low
to medium dimensions [31], [32]. As the evolution in real
world, the best population is chosen for each generation to
form the next generation until the objective is fully optimized.
The CMA-ES is a special example of evolution strategy when
a population is represented by a full-covariance multivariate
Gaussian.

Regarding the control of consecutive intersections on
artery, few studies have introduced the artificial intelligence
method of achieving the green wave effect. Kong et al. pre-
sented a two-direction green wave intelligent control strategy
that includes a coordination layer and a control layer [33].
This control strategy can maximize the possibility for vehi-
cles in each direction along an arterial road to pass the local
intersection without stopping when the utility efficiency of
the green signal time is at a relatively high level. Ma et al.
introduced an intelligent technique based on an adaptive
genetic-artificial fish swarm algorithm to optimize a green
wave traffic control system [34]. They also applied this tech-
nology to the arterial road in Lanzhou, China and achieved
good results.

III. PROBLEM SETTING
This section describes the preconditions and optimization
objective of this article. In our application, the traffic signal
executes the control by using the following preconditions:
(1) Our application changes the green light time at each

phase (green split), cycle, and offset for signal timing.
(2) The changeable phase sequence is not considered.
(3) The yellow-light time is fixed in our application.
The optimization objectives are different under different

situations. Normally, the average number of vehicles stop-
and-go behaviors is the first consideration in the green wave
coordination system. However, during rush-hours or off-peak
hours when the traffic flow is particularly intense or free-
flowing, the vehicles’ throughput and journey time should
be considered. In the following section, the average number
of vehicles’ stop-and-go behaviors, throughput, and journey
time are collectively referred to as the Traffic Evaluation

Index. In sum, the optimization objective in our system con-
sists of two parts. The top priority is no congestion in the
traffic system, and the secondary priority is the optimization
of the traffic evaluation index.

IV. DDPG-BAND
A. OVERVIEW OF REINFORCEMENT LEARNING
Reinforcement learning focuses on the trial-and-error interac-
tion of goal-directed agents with a dynamic environment, in
which an optimal action sequence with maximum cumulative
reward is learned [35]. The fundamental mathematical model
of RL is the Markov decision process (MDP), which exam-
ines a sequential decision-making task. An agent that uses the
MDP consists of a set of states (also called observations) S,
a set of actionsA, a reward functionR [36], a state transition
function P , and a discount rate Y (Y ∈ [0, 1]), which is
denoted as Eq. (1):

M = 〈S,A,R,P, ϒ〉 (1)

The policy function takes a state and an action as param-
eters and returns the probability of taking the action in that
state.

If π means the action policy where an agent chooses his
action based at each time step, for many Markov decisions,
the optimal strategy is determined; that is Eq. (2):

πmax (s) = a (2)

The state value functionis one of the performance criteria
used to evaluate the policy function. In every decision of a
state process, an agent has a set of actions selected as a set of
alternative actions and each action leads to different rewards.
If the reward value changes from state st to state st+1 as
Eq. (3):

rt = P (si, π (si)) (3)

then the sum of these sequential rewards Rt can be derived
as Eq. (4):

Rt =
∑∞

0
ϒkrt+k+1 (4)

On the above basis, the state value function is defined as
Eq. (5):

V π (s) = Eπ (Rt |St = s,At = a) (5)

The agent in a Markov decision process tries to seek the
optimal policy π , which maximizes the expected accumu-
lative maximum rewards starting from any state S ′; that is,
we should find the best solution to the state value function
written as q∗ (s, a) = max (V π (s)). According to the Bell-
man Equation [37], the state value function of any state-action
pair (s, a) under any policy π can be approximated iteratively
as Eq. (6):

q∗ (s, a) =
∑

s′ ,r
P
(
s′, r|s, a

) (
r + ϒ max

(
q∗
(
s′, a′

)))
(6)
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B. REINFORCEMENT LEARNING IN TRAFFIC CONTROL
There has been renewed interest in traffic light control
with the advent of the deep reinforcement learning (DRL)
approach [38]–[40], but most related studies have not pro-
vided implementation details. Reinforcement learning (RL) is
a primary approach to learn control strategies by considering
what actions autonomous agents should take to maximize
a numerical reward signal [41]. Since Abdulhai et al. [42]
proposed the first truly adaptive traffic signal that learns
to control the traffic signal dynamically, many studies
have shown the potential capacity of RL in traffic control.
Mannion et al. [14] presented a comprehensive review of
previous literatures (before 2016) on the RL of the traffic
control problem. The review summarized, in detail, how
these approaches were defined using the action, state and
reward function.With the development of smart cities, related
research has focused on using novel technologies such as
edge computing and 5G effectively to help highlight the
advantages of RL in traffic control. Ning et al. [43] developed
an intent-based traffic control system by investigating DRL
for 5G-envisioned IoCVs, which can dynamically orches-
trate edge computing and content caching. Zhou et al. [44]
proposed a solution based on edge computing nodes to col-
lect traffic data. ERL alleviates congestion. Joo et al. [45]
designed a TSC system, from the perspective of smart city
construction, to maximize the number of vehicles crossing an
intersection and balance the signals between roads by using
Q-learning (QL). For the current situation in whichmost stud-
ies do not consider realistic settings, Tan et al. [46] proposed
a DRL-based adaptive traffic signal control framework that
explicitly considers realistic traffic scenarios, sensors, and
physical constraints. Wang et al. [47] proposed a coopera-
tive double Q-learning to coordinate large-scale traffic signal
control. Liang et al. [48] applied RL to control a traffic light
cycle. In their methods, the state of RL is traffic data divided
into grids, the actions are the duration changes of a traffic
light, and the reward is the cumulative waiting time difference
between two cycles. To address a problem where only a few
vehicles are equipped with wireless communications capa-
bility, Cabrejas-Egea et al. [49] compared the performance of
agents using different reward functions in a simulation across
various demand profiles and subject to real world constraints.
Zhang et al. [50] reported a new RL algorithm for partially
detected intelligent traffic signal control (PD-ITSC) systems,
which can perform well under a small detection rate environ-
ment. Xiong et al. [51] proposed a novel method to leverage
demonstrations collected from classic methods to accelerate
learning, which is mainly based on the state-of-the-art deep
RL method Advantage Actor-Critic (A2C).

Traditional reinforcement learning uses a two-dimensional
table (Q-Table) to store the state and corresponding action of
the agent in every step, which cannot deal with huge state
spaces and continuous candidate action in real-world applica-
tion. With the development of deep learning in recent years,
Deep Q-Network [52] (DQN) have been made proposals for
how to replace Q-Table with deep neural network to solve this

problem. Deep Deterministic Policy Gradient (DDPG) [53] is
an improvement on DQN to enable it to support continuous
action. DDPG is one kind of A2C algorithms, where the actor
network can choose the next action based on probability and
the critic network evaluates the actor’s behavior and updates
the above probability. DDPG-BAND (Deep Deterministic
Policy Gradient-BAND) is applied to DDPG as the learning
policies in our reinforcement solutions. There are two stages
in the training process. The first stage is the coarse-tuning
stage and its objective is to train the agent controlling the
traffic signal light to avoid road congestion. In the coarse-
tuning stage, we train the agent in each intersection separately
because the massive dimensions of action and observation
make the algorithm difficult to converge when the entire
arterial road is taken as a single agent. When the coarse-
tuning stage is completed, we combine the model of each
intersection into the main road coordination agent for fine-
tuning training. The first and second stages have similar
observations, while the only difference lies in the number of
dimensions. We will elaborate the state, action, and reward of
DDPG-BAND in the following section.

C. STATE DESCRIPTION
In the case of traffic systems, the state of the RLmodel should
reflect the traffic situation of intersections. Vehicle Queuing
Quantity means the total number of vehicles in line that are
waiting for a red light to turn green. At a certain intersection,
the vehicle queuing quantity in each direction is a benchmark
for the rate of traffic flow in that direction, which directly
determines the green light time of the phase. However, it is
not insufficient to simply count the number of vehicles and
not care about the vehicle type. The acceleration rate of a
large truck is far lower than that of an ordinary car, so more
green time is required. For this reason, a certain weight should
be added to the vehicle queuing quantity according to the
vehicle characteristics, and the vehicle queuing number is
thus expressed as the weighted quantity.

Based on the above conclusion, there are two granularities
of state space in our system. The state space with a coarse
grain size only approximates the vehicle queuing quantity of
edges in each direction, while the fine-grained state space
provides exact statistics for each lane. For example, Figure 2
illustrates an intersection with four directions. The state space
with coarse grain size for this intersection can be expressed
by a vector of four dimensions (the outgoing lanes are not
included). Each element of the four-dimensional vector repre-
sents the vehicle queuing number in each direction, including
east, south, west and north. The fine-grained state would
have to map the Figure 2 intersection to an eight-dimensional
vector where the vehicle queuing numbers in each lane are
stored.

D. ACTION SPACE
After the agent has observed the state of the environment,
it must choose one action from the set of all available actions.
Traffic lights should take corresponding measures when fac-
ing different traffic conditions
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FIGURE 2. Illustration of traffic crossroads. Different color at the edge of
vehicles represents their taillights. Red means vehicles are stopping,
yellow means vehicles are slowing down and green means vehicles are
running.

In the coarse-tuning stage, the action candidates are the
preliminary green times of each traffic signal phase. When
the traffic flow is relatively high during the rush hour, a longer
green time increases throughput to reduce traffic jams. On the
other hand, when traffic flow reaches a free-flow state dur-
ing off-peak hours, less green time is required. Therefore,
the action space is a multidimensional vector, where each
dimension of the vector represents the green time of each
phase in the traffic signal. Therefore, the range of action vec-
tors in the coarse-tuning stage should consider the following
factors:

• The preliminary green time is a positive integer.
• The preliminary green time must have a fixed minimum
that is determined by the length of the road to ensure that
pedestrians can pass.

• The complete cycle of the traffic signal must not exceed
a certain value determined by the longest waiting time
that can be endured.

In the fine-tuning stage, the entire road is taken as a single
agent. We first combine the preliminary green time of each
intersection and, on this basis, we adjust the green time to
a certain extent to improve the traffic efficiency of arterial
roads on the premise of no traffic jam. After the agent takes
an action, the traffic simulator can obtain the final green time
for each phase at each intersection and run for a certain but
possibly unequal simulation time. (For example, the agent
can take an integral multiple of cycles as the simulation time,
and the traffic light can have different cycles with different
actions.) Finally, the agent evaluates this behavior according
to the reward function and takes the next action. How the
reward function is defined will be discussed in the next
section.

E. REWARD FUNCTION
The reward function is the final element of RL.After the agent
has observed the state of the environment and performed an
action, it receives the reward from the reward function in the
environment. The reward function can ensure that the agent
finally takes an action based on our optimization objectives.
The reward function in the coarse-tuning stage is different
from that in the fine-tuning stage.

We first discuss the details of the coarse-tuning reward
function. The objective of the coarse-tuning stage is to reduce
the blocking coefficient for each intersection. As shown
in Figure 2, the lane block line is a threshold line of the maxi-
mum vehicle queue length of the road that does not cause con-
gestion. In practice, the lane block line can be set to a distance
from the end of the intersection. For example, the distance
from the blocking line is set to the end of the intersection that
occupies 10% of the length of the road. Such a location for
distance setting can be easily obtained from remote sensing
images or by fieldwork. When the signals are used for traf-
fic control, the vehicle queue length of each lane must not
exceed the lane block line. The blocking coefficient denotes
how many times the queuing length exceeds the lane block
line during the simulation. Let the blocking coefficient ratio
denote the ratio of the variable blocking coefficient to the
simulation time. Based on the above conditions, the reward
function should be considered from the following situations.
If after the simulation, the variable blocking coefficient ratio
ranges from zero to nonzero, then it returns directly to -1; if it
is from zero to nonzero, it returns to 1. If both of the blocking
coefficient ratios in two actions are greater than or equal to
zero, the reward function returns to 0.

In the fine-tuning stage of DDPG-BAND, we optimize
the traffic evaluation index of the whole artery road. During
the simulation time, the traffic evaluation index can nor-
mally be obtained from the simulator. For example, we put
speed detectors on every vehicle of the simulation, therefore,
the stop-and-go behavior is calculated as follows:

1. If the vehicle comes to a complete stop, that is, the
speed is zero, we add stop-and-go behavior twice.

2. If the vehicle has braking behavior (acceleration less
than 0) and the speed has dropped to a certain extent,
5 km/h for example, we add stop-and-go behavior once.

3. If the vehicle stops and goes, the stop-and-go behavior
will continue to accumulate.

However, the traffic evaluation index is likely to be delayed
during the process. It takes a certain amount of time for the
vehicles affected by the current action to run through the traf-
fic scene. Therefore, we insert the traffic evaluation indexes
after each simulation into a traffic evaluation FIFO queue
with a certain length. After each simulation, we average the
data in the traffic evaluation FIFO queue. If the average
value improves, it returns to 1. If the average value become
worsens but remains within a certain tolerance, it returns to
0; otherwise, it returns to −1.
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FIGURE 3. Time consumed in each iteration for two granularity
observations on Jiefang road. The experimental data are described in
Section 4; the coarse-grained observation is a four-dimensional vector
and the fine-grained observation is an 18-dimensional vector.

F. DISCUSSION ON DDPG-BAND
Through the above process, we implement a traffic control
method based on RL. RL can be a potential solution for traffic
control. However, DDPG-BAND also has drawbacks.

The first disadvantage is that the simulation time is difficult
to define. In our approach, the agent obtains the observa-
tion before the simulation and computes the reward function
afterwards; as a consequence, the long simulation time may
lead to an obsolete observation for the agent. On the other
hand, the insufficient simulation time causing the action of
the agent is replaced by the next action before its effect on the
traffic evaluation index is calculated in the reward function.
The essential reason for this contradiction is that the agent
observation is not static, as it computes the reward function
in DDPG-BAND.

Another weakness of DDPG-BAND is the slow conver-
gence. There are two possible reasons for this. The first is
that, for many cases in our experiment, the reward function
returned to a zero value and the agent received a sparse
matrix from the traffic environment. The second reason is the
large search space including the observation space and the
action space. The observation in our approach contains two
granularities. As shown in Figure 3, the average time spent
on coarse-grained observation is 8 percent longer than that of
the fine-grained (227 s versus 245 s).

Even under the coarse-grained observation, each intersec-
tion has four dimensions (directions). For the artery, the total
observation spacewill reach 10 or even dozens of dimensions.
The action space is similar. When multiple traffic signals are
controlled by a single agent, the action space is the sum of
all their phases on the artery, resulting in a high dimension
for the action space. Figure 4 shows the convergence of
the blocking coefficient with two granularity observations.
In Fig. 4, we can see that the convergence rate of fine-grained
observation is slightly slower than that of coarse-grained but
they have similar precision.

V. ES-BAND
In this section, we will introduce our ES-BAND approach, a
novel framework for a green wave traffic control system that
utilizes CMA-ES [29]. The problem setting is the same as
DDPG-BAND represented in Section III.

FIGURE 4. The blocking coefficient in the training of the reinforcement
learning algorithm with two granularity observations on Jiefang Road.

A. OVERVIEW
The basic equation for the sampling feature vector refers to
Eq. (7):

x(g+1)k ∼ N
(
m(g),

(
σ (g)

)2
C(g)

)
for k = 1, . . . , λ (7)

where

∼ denotes that the left and right sides obey the
same distribution.

N is the multivariate normal search distribution.
x(g+1)k refers to the kth search feature vector from

generation g+ 1.
m(g) means the value of the search distribution at

generation g.
C(g) is the covariance matrix at generation g.
λ is the sample size.

Each iteration of the ES-BAND algorithm mainly consists
of two steps (see Fig. 5):

(1) Computing the green time for each phase generated
by sampling a multivariate normal distribution and then the
traffic simulator [54] returns the objective functions.

(2) Combining the objective value, calculating the stochas-
tic gradient estimate, and updating the parameters. As with
DDPG-BAND, the priority of the blocking coefficient is
higher than that of the traffic evaluation indicator. In addition,
the calculation of the blocking coefficient takes all lanes into
account, while the traffic evaluation indicator only considers
lanes in the direction of the main road.

B. DEFINITION OF FEATURE VECTOR
Since the sampling of feature vectors in CMA-ES is a random
process, the same initial value produces different results after
the same training.We run the process for three to five times to
find the best answer. The detailed steps of the above process
are described in the following paragraph.

The CMA-ES samples the independent points from a
specific distribution (such as normal distribution) and then
iteratively chooses the best points as the next generation.
Consequently, the first step of ES-BAND is to define the
search points. Studies [8], [9] have shown that an identical
cycle (referred to below as the public cycle) of lights at each
intersection is required to maintain the green wave effect. For
each intersection, we can obtain the green time in the last
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FIGURE 5. Flow chart of the ES-BAND algorithm. Note: In the sampling
process, different random seeds are considered that improve the
robustness for dealing with various traffic environments.

phase by subtracting the sum of other phase times from the
public cycle.

Suppose intersection Ck has Pk phases and we have Pk−1
dimensions for the green time needed to set at each intersec-
tion. In addition, each intersection, except for the first one,
has an offset time plus the public cycle, so the total number
of dimensions of search points is as in Eq. (8) below:

k=n∑
1

(Ck − 1)× Pk + (n− 1)+ 1 (8)

Simplified as Eq. (9)

n∑
1

k Ck × Pk (9)

C. TRAFFIC SIMULATION
Sampling from a normal distribution can generate a set of
sample points, which are taken as the green time of each
phase for the simulation. Ultimately, a set of traffic evaluation
indexes is obtained as return values. During the simulation,
it is possible to generate traffic congestion in the traffic envi-
ronment. For example, the simulator fails to start normally

when one of the lanes at a crossroads is full; in this case,
we give the worst return value. Note that this step can be
performed in amulti-threaded or distributedmanner to reduce
the training time.

D. OFFSPRING
A set of function values obtained through simulation are used
as the next generation of CMA-ES. The generated offspring
sample points are processed using the following steps:
(1) The offset of the next generation can be added to or sub-

tracted from the public cycle to keep the value between
zero and the public cycle.

(2) The last green light time is recalled by subtracting
the sum of other phase timings from the public cycle.
Consequently, if the last green light time is less than the
minimum green light time, it is necessary to adjust the
public cycle, which means that the last green time at all
sections increases accordingly.

E. OVER-FITTING
The corresponding timing scheme can be obtained after the
convergence. However, this timing scheme has a robust cor-
relation with departure rules and it is difficult to guarantee
that our simulator’s departure rule is same as that in reality.
Therefore, we need to find a timing scheme that can adapt to
various environments and has better generalization ability to
solve the overfitting problem.

To do this, we rely on random factors that commonly
appear in most simulators. Under the same departure prob-
ability, different random seeds of the simulator produce dif-
ferent departure rules. Therefore, multiple groups of random
seeds are used in the simulator and the worst result is taken
as the return value. The above process can also be executed
in parallel.

F. DEFINITION OF OBJECTIVE FUNCTION
The definition of object value fx consists of the following two
parts:
• Blocking Coefficient:During training, all lanes should
not be blocked. Assume the blocking coefficient is α.
Computing the occupancy ratios for all lanes in each
iteration; if the waiting vehicles have exceeded the lane
block line, then α = α + 1.

• Traffic Evaluation Index:The training should stress
minimizing a specific traffic evaluation index.

As with DDPG-BAND, the priority of the blocking coeffi-
cient is higher than the traffic evaluation indicator. In addi-
tion, the calculation of the blocking coefficient takes all
lanes into account, while the traffic evaluation indicator only
considers lanes in the direction of the main road.

G. THE OPTIMAL SOLUTION
ES-BAND generates multiple traffic environments by ran-
dom seeds to increase the robustness of the algorithm. Three
groups of 10 random seeds were conducted as training
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FIGURE 6. Task scheduling process.

samples and another three groups of equal numbers of ran-
dom seeds were the testing samples. Finally, the optimal
solution of this algorithm is the timing with the lowest mean
of objective function.

H. PARALLEL COMPUTING
ES-BAND has triple loops that can be executed in parallel:
(1) ES-BAND samples λ offspring as green times for each
phase of the traffic lights at each intersection; (2) every
offspring has several random seeds; (3) we run the whole
algorithm several times for the randomness of ES-BAND,
with each attempt being independent of each other, which
can be processed in parallel. The first two triple loops are
conducted at each iteration of ES-BAND.

As shown in Fig.6, the simulation process of ES-BAND
can be divided into two categories: the master process, which
collects the results of all slave nodes and samples the feature
vectors by CMA-ES, and the slave executor, which conducts
traffic simulation training with the corresponding timing
scheme and random seeds assigned by the master executor.
Each group of timing schemes combined with random seeds
is allocated to the slave process for traffic simulation.

1. Master:A population of new samples is generated by
sampling multivariant normal distribution, considered
the green time at each phase. After each group of timing
schemes combined with random seeds is allocated to
the slave, the master process sleeps.

2. Slave: The traffic simulation is conducted according to
the timing scheme and random seed and returns fx to
the master.

3. Master: After receiving fx from all slave processes,
the master process is awakened. For a particular
timing scheme, the master process finds the worst-
performing random seed (expressed as worst (seed i) ,
i ∈ 1, 2, . . . , n), under which fx is obtained for the
next generation.

VI. CASE STUDY
For case studies, the green wave traffic control system was
tested at four consecutive intersections along Zhongshan

FIGURE 7. The layout of Zhongshan Road in Ningbo, China. Zhongshan
Road contains four intersections: Xiaowen Road (T-junction), Zhenming
Road (T-junction), Jiefang Road, and Kaiming Road.

Road in Ningbo, China. The feasibility of the ES-BAND
algorithm could also be verified using the above cases. Our
case studies used Simulation of UrbanMobility (SUMO) [55]
as the traffic simulator, where the acceleration and decelera-
tion [56], [57] and the reaction time [58] are also defined.

A. ROAD SELECTION
Zhongshan Road is a main urban arterial in Ningbo City,
Zhejiang Province, China, which stretches 20.2 km east-
west throughout the whole city. For this study, the busiest
section of Zhongshan Road was selected, whose range is
from Xiaowen Road in the east to Kaiming Road in the west.
The total length of the selected road is more than 1 km. The
general situation of the intersection and the corresponding
road network are shown in Figure 7.

B. TRAFFIC DATA
We obtained the original traffic flow data from cameras at the
intersections. The traffic flowwas categorized into represents
large vehicles and small vehicles. Large vehicles are those
with a length exceeding 10 meters, such as large trucks and
buses, whereas small vehicles are small and medium-sized
cars. To collect the traffic flow data every 5 minutes between
7:00 a.m. and 11:30 a.m., we performed simple processing
to obtain the departure probability of each direction into the
simulator.

Finally, as shown in Table 2, we obtain a departure matrix
with dimensions of the number of intersections × number of
crosses (3 for T-junction and 4 for crossroads)× 3 (left, right
and straight).

C. IMPLEMENTATION
In the entire experiment we implemented three signal control
algorithms. In addition to the above two artificial intellig-
ence algorithms, we also took the traditional mixed-integer
linear algorithms of MAXBAND [6] as the experimental
benchmark. The mixed-integer linear equations are solved by
the LINGO software. In DDPG-Band, coarse-grained obser-
vation is executed as the learning policies in the training.

Our application is deployed on the operating system
CentOS 7. The hardware facilities in our experiment are
composed of three computing nodes. Each computing node
has 24 cores and 32 G RAM. Therefore, there are a max-
imum of 72 processes carrying out the traffic simulation
at the same time. The distributed process is coupled to the
QueueManager data structure. The ES-Method algorithm
is then implemented using Python 3.7.3 with the covari-
ance matrix adaptation built on Tensorflow1.14. With the

214122 VOLUME 8, 2020



Y. Zheng et al.: Novel Approach to Coordinating Green Wave System With Adaptation ES

TABLE 1. The rate of traffic flow in the intersection.

abovementioned configurations, the traffic simulation runs
under the SUMO 1.3.1 environment (Institute of Transporta-
tion Systems, German Aerospace Center).

In our experiment, there are two types of vehicles (truck
and car), and each type has different configurations in terms
of length, max speed, acceleration, brake deceleration and
driver reaction time. All these configurations are set accord-
ing to the real-world statistics from the literature [59]. Table 2
describes the details of the configurations in simulator:

D. TRAINING RESULTS OF DDPG
This section describes the learning speed results for two
artificial intelligence solutions. In DDPG-BAND, we train
the blocking coefficient of each intersection separately in the

TABLE 2. configurations in the simulator.

coarse-tuning stage. Figure 8 shows that with the increase in
the number of iterations, the blocking coefficient of all four
intersections decrease and remain stable when the number
of iterations reaches approximately 70. For example, at the
intersection of Jiefang Road, the average blocking coefficient
in the first 10 iterations is nearly 3.11 times that of the last
10 iterations, which indicates that RL has a certain effect on
easing road congestion.

Moreover, we also explore the change law of the traffic
evaluation indexes in the fine-tuning stage.

From the above experiments, we find that the traffic evalu-
ation indexes have been optimized. The details of the training
results are as follows:

1. The average journey time of the last 20 iterations is
7.87% shorter than that of the first 20 iterations. The
average journey time finally converges to approxi-
mately 145 seconds.

2. The average number of stops for the last 20 iterations
is 41.37% less than that for the first 20 iterations.
The average number of stop-and-go behaviors finally
converges to approximately3.72.

3. The throughput of the last 20 iterations is 5.28% higher
than that of the first 20 iterations. The throughput
finally converges to approximately 15,390.

E. TRAINING RESULTS OF ES-BAND
Figure 12 demonstrates a similar conclusion for ES-BAND.
The blocking coefficient decreases significantly until it
reaches a stable value, while ES-BAND requires fewer itera-
tions (approximately 25) than DDPG-BAND.

However, based solely on the above experimental results,
it cannot be concluded that the learning speed of RL is slower
than that of ES-BAND because each iteration in the two
approaches takes a different amount of time. Our experiments
have proven that each iteration of DDPG-BAND (JieFang
Road) takes approximately 2.2 times that of ES-BAND.
Figure 13 shows the learning time for both AI algorithms by
weighting the experimental results in DDPG-BAND (JieFang
Road) and ES-BAND. The experimental results show that
ES-BAND converges slightly faster than DDPG-BAND.

We can see in Figure 14 that the traffic evaluation indexes
have also been optimized after approximately 50 iterations.
The details of the training results are as follows:
(1) The average journey time of the last 10 iterations is

33.10% shorter than that of the first 10 iterations.
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FIGURE 8. The relationship between the number of iterations and the
blocking coefficient of DDPG-BAND at four intersections. The result
contains two kinds of observation granularity, where the blocking
coefficient of the fine-grained observation is greater than the
coarse-grained observation because former accumulates the blocking
coefficient of each lane, while the latter only counts once in each edge.

The average journey time finally converges to approx-
imately 149 seconds.

(2) The average stops of the last 10 iterations is 33.12%
less than that of the first 10 iterations. The average
number of stop-and-go behaviors finally converges to
approximately 2.80.

FIGURE 9. Average journey time of vehicles in each iteration. Vehicles
outside the main road are not included, which is also implemented in the
following experiments.

FIGURE 10. The unit of the y-axis is the average number of stop-and-go
behaviors for vehicles in each iteration. If a vehicle takes stop-and-go
action repeatedly when passing a single intersection, the stops will
accrue one or more times correspondingly.

FIGURE 11. Throughput of vehicles on the arterial road. Y-axis represents
the number of cars.

FIGURE 12. The relationship between the number of iterations and the
blocking coefficient of ES-BAND on the arterial road. Unlike in the
DDPG-BAND, in the ES-BAND we train the blocking coefficient of all
intersection s on the arterial road as a whole.

(3) The throughput of the last 10 iterations is 11.11%
higher than that of the first 10 iterations. The through-
put finally converges to approximately 15,010.

In the last experiment of this section, we explored the
effect of different types of parallelism on training speed.
Figure 15 shows the relationship between the number of
parallelisms and the average time spent per iteration.

We can see in the experimental results that, with increasing
parallelism, the average training time per iteration decreases.
However, when the parallelism reaches approximately 30,
the average time is no longer reduced because in CMA-ES,
the relationship between the number of parameters N and the
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FIGURE 13. The blocking coefficient changes over time during the
training process. Since the blocking coefficients at each intersection are
trained separately in DDPG-BAND, we use JieFang road as a comparison
in this experiment.

FIGURE 14. Traffic evaluation indexes during the ES-BAND training
process.

FIGURE 15. Average time spent per iteration with different parallelisms.

sample size λ is represented by Eq. (10):

λ = 4+
⌊
3× loge N

⌋
(10)

The total number of parallel tasks in each iteration is
λ multiplied by the number of random seeds. If we have
14 parameters and three random seeds, the number of tasks
in each iteration is 33. When 33 cannot exactly divide the
parallelism of the process, there will be idle process blocking
and the computing resources will not run at full load. If the
parallelism of the process rises to 33 or more, the agent will
have the fastest learning speed.

FIGURE 16. The traffic evaluation indexes of MAXBAND, DDPG-BAND,
and ES-BAND. In order to avoid biased result, MAXBAND is set with the
same cycle length and green split as those of other two AI methods.

F. EVALUATION OF TRAFFIC EVALUATION INDEXES
This group is a test experiment to verify the validity of
our approach. In this group of experiments, we compared
the results of the traffic evaluation indexes DDPG-BAND
and ES-BAND with the benchmark of the traditional
MAX-BAND. Considering that the traffic environment of
the simulator is different under the different random seeds,
we took 10 other random seeds that have never been used
in the above training process as the test set. To ensure the
test fairness, we performed the following operations on the
results of 10 random seeds as the statistical test: 1. The traffic
evaluation index under 10 random seeds in each cycle length
was calculated, and the maximum and minimum results
were removed; 2. The average value of the traffic evalua-
tion index under the remaining 8 random seeds was used
to test the final result of traffic evaluation indexes in this
cycle. Figure 16 shows the illustration of the traffic evaluation
indexes of the traditional MAXBAND, DDPG-BAND, and
ES-BAND in each cycle length.

At the beginning of the experiment, to keep a certain
number of vehicles on site, we allow the simulator to run
for a period of time without calculating the traffic evaluation
index; this is called the initial time. In the initial time of the
training experiment, the signal timing is random, while in the
test set, the traffic signals are controlled by the trained agent.
Therefore, whatever the journey time, stops and throughput in
the test set experiment are all clearly better than those in the
training set experiment, which also proves the effectiveness
of artificial intelligence in traffic signal control.

In Fig. 16 we can see that in the 20 periods, the traffic
control on ES-BAND has the best performance for average
journey time (77.1 s versus 82.47 s in the DDPG-BAND
and 85.0 s in the ES-BAND), average number of stop-and-go
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behaviors (1.04 versus 1.40 in the DDPG-BAND and 1.24 in
the ES-BAND), and traffic throughput (725.4 per cycle ver-
sus 710.7 per cycle in the DDPG-BAND and 698.3 per
cycle in ES-BAND). Therefore, we conclude that, in general,
the artificial intelligence method exhibits better performance
in traffic evaluation indexes than the traditional mathematical
method in our case.

VII. CONCLUSION AND FUTURE WORK
With the development of computer technology, novel traffic
control approaches are constantly being proposed to handle
urban traffic congestion. This article addresses the deficien-
cies of the conventional method by proposing two approaches
for traffic signal control based on artificial intelligence.
DDPG-Band has two stages: a coarse-tune stage and the
fine-tune stage. The coarse-tuning stage reduces the blocking
coefficient, while the fine-tuning stage optimizes the traffic
evaluation index. ES-BAND converts the green light time,
offset, and public cycle of traffic light at each intersection
into a multidimensional feature vector of a CMA-ES. Opti-
mized training is carried out to obtain the objective of traffic
evaluation index. Finally, we successfully applied these algo-
rithms to the green wave traffic control of four consecutive
crossovers on Zhongshan West Road in Ningbo, Zhejiang,
China and verified their feasibility and effectiveness.

In general, compared with the traditional MAXBAND,
the two AI-equipped approaches (DDPG-BAND and
ES-BAND) we proposed exhibit better performance no mat-
ter in travel time, parking times and throughput for traffic
signaling coordination. Furthermore, the experimental results
show that ES-BAND has a better coordination effect than
DDPG-BAND. This is because the traffic scenario assessed in
this article is the same departure probability under different
departure rules. DDPG-BAND is more effective in dealing
with real-time sequence decision-making problems, that is,
it can observe the changes of various variables in traffic
scenarios and take corresponding signal action. ES-BAND
is good at finding the best solution in a specific environment.
It should be noted that the randomness was only introduced to
the vehicle departure pattern, and had nothing to do with the
amount of traffic flow. Consequently, the introduced random-
ness was under control and contributed to the enhancement
of robustness.

Although the experimental results show that ES-Band
exhibits better performance in journey time, stops and
throughput, there are still shortcomings in this method. The
ES-BAND can provide an accurate fixed timing scheme
according to traffic flow, but this means that it is heavily
reliant on traffic flow forecasting. ES-BAND is less effective
when the traffic flow changes a lot. In our future work, wewill
concentrate on adaptive traffic signal control in the green
wave system. A preliminary idea is that, on the baseline of
ES-BAND, we will time the green light within the limited
range according to the traffic volume. Therefore, we will start
with a neural network where the queue length and road envi-
ronment in each direction are taken as input data, while the

green time will be designed as the output data. We will then
search the parameters of neural network by CMA-ES on the
simulator. Finally, the complete model, which combines the
neural network and ES-BAND, will be obtained for adaptive
traffic signal control.

For DDPG-BAND, traffic measurements such as queue
length are sensitive to the accuracy of traffic measurements.
DDPG-BAND is an adaptive real-time model based on traf-
fic information. Therefore, queue length is needed not only
during the training process when it can be obtained from the
simulator but also as a parameter of the trained model in the
reasoning process. In the reasoning process, real-time traffic
measurements obtained from the field are often inaccurate.
To avoid this problem, in future work, we will consider using
agents to observe fuzzy traffic measurements for training. For
example, we can use the queue length level instead of the
exact queue length as the observation of the agent. The queue
length level changes only when the queue length is increased
to a certain extent, thus reducing its sensitivity to the accuracy.
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