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ABSTRACT Deep Neural Networks (DNN) are widely applied to many mobile applications demanding
real-time implementation and large memory space. Therefore, it presents a new challenge for low-power and
efficient implementation of a diversity of applications, such as speech recognition and image classification,
for embedded edge devices. This work presents a hardware-based DNN compression approach to address
the limited memory resources in edge devices. We propose a new entropy-based compression algorithm
for encoding DNN weights, as well as a real-time decoding method and efficient dedicated hardware
implementation. The proposed approach enables a significant reduction of the required DNN weights
memory (approximately 70% and 63% for AlexNet and VGG19, respectively), while allowing the decoding
of one weight per clock cycle. Results show a high compression ratio compared to well-known lossless
compression algorithms. The proposed hardware decoder enables an efficient implementation of large DNN
networks in low-power edge devices with limited memory resources.

INDEX TERMS Deep neural network, entropy compression, hardware decoder, real-time.

I. INTRODUCTION
Deep Neural Networks ( DNNs) have become a power-
ful tool for many Artificial Intelligence (AI) applications
such as computer vision, robotics, and NLP. Various types
of DNN architectures have recently been proposed, such
as: AlexNet, GoogLeNet, VGG, and ResNet. Ever since
AlexNet [1] won the ILSVRC2012 image classification chal-
lenge (demonstrating 16.4% top-5 error rate for the ImageNet
2012 data-set) the field of Neural Networks (NNs) has gained
significant momentum. During the last decade, more com-
plex DNNs have been developed showing outstanding perfor-
mances and continuous improvement accuracy [2]-[5], [6].
Russakovsky et al. [7] evaluate human accuracy in image
classification on the ILSVRC 2012 data-set, and conclude
that humans outperform GoogLeNet only by approximately
1.7% (6.8% vs. 5.1% top-5 error rate, respectively). However,
subsequently the ResNet [4] network achieved 3.57% top-5
error rate on the same data set, outperforming humans.
DNN architectures are composed of several NN layers
and are considered deep networks that are tightly connected.
Typically, the input data connected to the first layer is
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processed and transferred to the next layer and so on, until
all data reaches the output layer. DNN can consist of many
different types of layers, such as: Fully Connected (FC),
Convolution (Conv), Pooling, Dropout, Batch Normalization
and others. State-of-the-art DNNs include multiple layers
and require a substantial amount of memory for storing the
weights. Some of the NN layers, such as FC or Conv, require
alarge memory space. For example, an FC layer with an input
structure of 256 x 256x3 and 128 neurons contains about 24M
weights. Other layers, such as RNN, LSTM and GRU, require
an even larger number of weights for implementation.

AlexNet [1] contains approximately 60M weights,
encoded with 32-bits Floating Point (FP), and thus requires
approximately 240MB memory space for storing the net-
work weights. VGG19 [3] storage requirements are even
larger. It contains approximately 138M weights, and requires
552MB memory space. More advanced DNNSs, such as Incep-
tion V3 [5] and Inception V4 [6], are composed of approx-
imately 26M weights and require 104MB memory space.
Additional memory is needed for internal network temporal
arithmetic computations. Because of these extensive memory
requirements, deploying DNNs on mobile devices presents a
unique challenge for low-power and efficient implementation
in embedded systems with limited memory space.
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One of the common approaches to meet this challenge
is to remotely process the data and deploy the DNN using
a powerful remote cloud server. For example, the Google
Translate application uses a remote LSTM DNN [8] for real-
time text translating. The translation task is carried out by
sending the text from the local device to the cloud for pro-
cessing. However, this approach increases execution time and
requires an expensive continuous communication line, which
is not always feasible.

This paper proposes an efficient entropy-based lossless
compression and decompression algorithms and a real-time
hardware decoder implementation method. This method pro-
vides for a local solution to enable DNN implementation on
edge devices. The proposed algorithms are efficiently applied
to DNN weights compression to enable decoding one weight
in one processor clock cycle during the decompression phase.
The efficiency of the proposed hardware implementation is
evaluated in terms of its compression ratio compared to the
well-known 7ZIP lossless compression algorithms. Experi-
mental results show a high compression ratio comparable to
the 7ZIP algorithms, while maintaining the one-cycle decod-
ing constraint. Moreover, the proposed approach enables a
very significant reduction, up to 70%, in the required system
memory.

The rest of the paper is organized as follows. Section II
presents related DNN compression work. Section III
describes the proposed method and an efficient hardware
decoder implementation. Section IV demonstrates experi-
ments and results. Section V summarizes the paper.

Il. BACKGROUND AND RELATED WORK

Many hardware accelerators [9]-[12] have been proposed
to efficiently implement DNNs. However, most of these
approaches do not apply weights compression. Typical
FPGA solutions focus on computation optimization and
therefore lead to efficient processing time [10], [11].
Achararit et al. [13] propose a DNN design framework
using weight sharing and reinforcement learning-based
methodology to accelerate the process of DNN generation.
Han et al. [12] develop a DNN engine that takes advantage
of sparse matrices and achieves high throughput. A weights
compression approach based on the Huffman algorithm is
also proposed by Han et al. [14]. However, this approach
does not provide a hardware solution for implementing the
Huffman compression algorithm.

Several approaches for DNN compression have been pro-
posed recently for addressing the limited memory in mobile
devices [14]-[17].

D. Blalock et al. provide a comprehensive overview of
approaches to pruning [18]. Typical pruning approaches sug-
gest reducing the number of weights by reducing the DNN
size, thereby minimizing required arithmetic operations [16].
Pruning can also be carried out by erasing the neuron con-
nections for the less significant weights, resulting in sparser
weights matrices [14].
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Hao and Li [15] suggest deleting redundant kernels in
the convolutional layers with minimal accuracy loss. They
show that pruning of 50% of the kernels in some convolution
layers of the VGG network results in a 34% FLOP reduction.
Molchanov et al. [16] suggest a new formulation for pruning
convolutional kernels based on Taylor expansion that approx-
imates the change in the cost function induced by pruning
network parameters. They demonstrate high accuracy and
a significant reduction of DNN complexity (approximately
50% of the required FLOPs in VGG).

A similar pruning approach is used in Deep Reinforce-
ment Learning (DRL). Huang et al. [17], propose a DRL
neural network, in which a reward is granted for each case
in which a convolutional kernel is pruned without affecting
the accuracy. They show that pruning 92.8% of the convolu-
tion kernels in VGG network results in only 3.4% accuracy
loss. Ye et al. [19] propose a progressive weight pruning
approach and demonstrate high pruning rate by using par-
tial pruning with moderate pruning rates. Aghasi et al. [20]
develop a convex post-processing technique that prunes a
trained network layer by layer while preserving the internal
responses.

These pruning approaches suggest lossy compression algo-
rithms (generally referred to as different types of pruning).
Because they change the uncompressed DNN structure, they
may affect network accuracy and performance.

A deep compression method proposed by [14] suggests
integrating both lossy (using pruning and quantization), and
lossless compression (based on entropy). Results using this
method show that AlexNet shrinks the memory required
from about 240MB to only 6.9MB. Han et al. propose an
entropy-based encoding of the weights using Huffman’s algo-
rithm [21]. However, the Huffman algorithm is complicated
to implement in real-time and cannot meet the constraint of
one-cycle decoding to avoid starvation. To ensure the decod-
ing of one weight per clock cycle using the Huffman tree
search, the clock frequency is limited by the time needed to
reach the deepest leaf of the binary tree. This is not a practical
solution for a real-time, one-cycle tree search, especially in
a deep binary tree. For example, for 16-bit weights coding,
a huge Huffman tree is generated with 64K nodes and at least
16 levels.

Pal et al. [22] propose a modified Huffman-based loss-
less compression technique for DNN weights compression.
However, their method requires a top-down traversing of a
complex deep Huffman binary tree.

Nevertheless, there are several approaches for hardware
implementation of the Huffman algorithm [23], [24].

Mansour [23] proposes to implement the Huffman algo-
rithm using a two-level Look Up Table (LUT). This approach
uses multiple repetitions of shortcode words, and requires a
large LUT (depending on the longest code-word). Therefore,
it significantly increases the decoder memory space.

Dabhri et al. [24] propose to implement Huffman algorithm
on an FPGA. Since the search for a code-word match is
carried out sequentially (reading bit by bit), this method can
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not promise real-time, one-cycle decoding and may cause
system starvation.

Some hardware implementations also exist for other loss-
less compression algorithms [25], [26]. Najmabadi et al. [25]
propose a hardware architecture based on an asymmetric table
decoding algorithm. The drawback of such an algorithm is
that each symbol decoding may require more than one cycle.
Moreover, the decoder hardware implementation requires
about 144KB per a 16-bit code-word, while our proposed
algorithm requires far less (only 16KB).

Lin and Chang [26] propose a two-stage lossless decom-
pression algorithm that combines the PDLZW algorithm
and an approximated adaptive Huffman algorithm. However,
this algorithm cannot be implemented in real-time to ensure
extracting a weight coefficient in one cycle.

To overcome the limitations of previous related works,
we suggest a real-time oriented approach. The main contri-
bution of the proposed algorithm is its ability to achieve a
high compression rate, while enabling the extraction of one
coefficient weight for every cycle. We propose an efficient
hardware decoder implementation that can easily be inte-
grated into a DNN hardware accelerator.

Ill. THE PROPOSED COMPRESSION APPROACH

The proposed compression algorithm is based on the Huff-
man algorithm and is applied to pre-partitioned weight
classes according to the appearance probability of the
weights. The Huffman algorithm is a Variable Length Cod-
ing (VLC) entropy-based compression algorithm. The code
words are encoded into an appropriate binary tree, in which
each leaf represents a code-word. The matching code-word
process requires top-down traversing of the tree. Although
this search can easily be implemented by software, it is com-
plicated to implement on low-level hardware given memory
limitations and strict real-time constraints. Moreover, Huff-
man trees usually are not balanced binary trees (representing
multiple non-equal leaf levels). Therefore, the weights decod-
ing time is not constant and depends on the leaf depth. The
entropy of a given weights vector W is given by:

HW)=— )" P(w) - logaP(w)) e

wieW

where P(w;) is the probability of appearance of weight w;.
The entropy H(W) reflects the theoretical minimal average
number of bits required for encoding a weight in vector W.

Entropy-based VLC assigns different code length for each
code-word, based on the symbol appearance probability.
In our case, the symbols are represented by the DNN weights.
Code-words are assigned to weights based on their appear-
ance probability. Thus, different symbols can have different
code lengths. A good entropy-based coding algorithm should
converge to the entropy H (W) in terms of the average number
of bits required to encode a weight in vector W.

Fig. 1 shows the weights histogram in a typical
DNN. The weights histogram is depicted for AlexNet
(on CIFAR-10) and is represented by a normal distribution
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FIGURE 1. AlexNet weights histogram.

with a zero expectation. The appearance probability of each
weight can be easily derived from the histogram plot. As part
of the compression process, each weight in the DNN is
assigned a new VLC code-word according to its appearance
probability.

As mentioned before, hardware implementation of the
Huffman algorithm, under strict real-time and memory con-
straints, is not trivial. Implementing an unbalanced Huffman
tree using a single LUT yields high redundancy and is not
practical due to the huge memory required.

To avoid a complex traversing on the Huffman tree, we sug-
gest grouping the DNN weights into classes according to their
appearance probability. Weights with a similar probability of
appearance are assigned the same class, resulting in a small
number of classes compared to the number of weights. The
Huffman algorithm is then applied to the weight classes,
representing a relatively simple tree that can be implemented
by a small LUT.

To achieve efficient class coding, each class size is assigned
apower of 2, except for a specific Residual class that contains
the weights with the lowest appearance probability and can be
any size.

To decode a specific weight, the class assigned to that
weight is decoded using the Huffman algorithm implemented
by arelatively small LUT. Then simple second level decoding
is applied to extract the actual weight.

Applying the Huffman coding to a relatively small number
of classes, instead of coding a large number of DNN weights,
results in a simple and practical representation of the Huffman
tree.

A. THE PROPOSED LOSSLESS

COMPRESSION ALGORITHM

To meet the strict constraint of real-time weight decoding
in one-cycle, the compression algorithm must be simpli-
fied, compromising on the quality and efficiency of the
selected compression method. Selection of the proposed
low-complexity compression algorithm results in a trade-
off between real-time implementation and the compression
ratio. Although other entropy-based weight encoding using
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Huffman’s algorithm may yield better compression, it is too
complicated to implement in real-time and cannot meet the
constraint of one-cycle.

The compression algorithm’s flow is described in Fig. 2.
The algorithm contains four main stages: (a) splitting the
weights into classes, (b) generating a class-based Huffman
tree, (c) storing the tree structure, and (d) encoding of the
weights. In the first phase, the DNN weights are divided into
classes according to their appearance probability. To achieve
an efficient entropy-based compression ratio, the number of
bits that should be assigned to a specific weight w; is derived
from the entropy Eq. 1 as follows:

Bits(w;) = Round(logr(P(w))) 2)

The weights are sorted in descending order according to
their appearance probability. Then, the required number of
bits is calculated for all sorted DNN weights using Eq. 2. The
main idea is to classify weights, which should be encoded
with the same number of bits into the same class.

A greedy process is used to define the size of the first class
(including the highest probability weights). First, the num-
ber of weights N is found for encoding the number of bits
assigned based on the highest probability. Since the size of the
class is a power of 2 (due to hardware limitations), a rounding
operation is needed. Therefore, the size of the first class is
calculated as follows:

Class Size = 2Round(logaN) 3)

This process is repeated for all unclassified weights until
all the weights are classified. The appearance probability
for each class C; € Classes is defined as the sum of all
appearance probabilities of the weights in that class, and is
calculated as follows:

P(C)= > P(w) )

w;€Cj

The Huffman algorithm is applied to all classes, resulting
in a specific code that is assigned to each class. The length
of the code assigned to each class is proportional to the class
probability. A class with high probability has a relatively short
code.

The weights in each class are grouped in descending order
according to their appearance probability. Each weight is
assigned an Index according to its probability (i.e. Index zero
is assigned to the weight with the highest probability in the
class).

Fig. 3 shows the compressed weight encoding structure.
The coding is composed by concatenation of two fields: Class
and Index codes. The Class code is actually the generated

205054

Class Code
(Huffman Code)

Index Code
(Within Class)

FIGURE 3. Weight encoding structure.

Huffman code. The length of the Index code is determined
by the class size, as follows:

Index Length = log;(Class Size) 5)

The compression process is completed after replacing the
entire weights by their resulting compressed code and storing
the compressed vector in SRAM external memory.

Information regarding the class, including Huffman Class
codes and all class sizes, is stored in the internal decoder
memory for further use in the decoding stage.

B. A DETAILED EXAMPLE OF THE

COMPRESSION ALGORITHM

This section describes the proposed algorithm step by step.
Let’s assume that the weight vector represents a DNN net-
work containing 95 weights with 4 -bits each. To simplify the
example, we assume that there are only 16 different weights,
and therefore only 4-bits are assigned to each weight. Table 1
demonstrates the probability of appearance, the calculated
entropies, and the required number of bits for each of the
unique 16 weights (out of the total 95 weights). The weight
with the highest probability “0011”’, appears 20 times, and
have the lowest entropy, leading to a 2-bit representation. The
weights with the lowest appearance probability (appear only
once) require 7-bit representation. The weights are sorted in
descending order according to their appearance probability.
The weights are split into four classes, encoded with a differ-
ent number of bits per class.

TABLE 1. Split weights into classes example.

Weight Appearances | P(w;) | —log2P(w;) | Bits

0011 20 21.05% 2.25 2
0110 18 18.95% 24 2
0010 15 15.79% 2.66 3
0111 12 12.63% 2.98 3
1111 11 11.58% 3.11 3
0000 6 6.32 3.98 4
1100 4 4.21 4.57 5

0001, 0100, 0101,

1000, 1001, 1010, 169 | o 6.57 7

1011, 1101, 1110 )

Afterwards, a class-based Huffman algorithm is performed
on the above classes, unlike the compression algorithm pre-
sented in [14] that applies Huffman directly on the DNN
weights. The appearance probability of each class is defined
as the sum of all its weights probabilities. Fig. 4 depicts the
class-based Huffman tree.

Fig. 4a specifies the assigned code for each class for the
example given in Table 1, while Fig. 4b shows the probabili-
ties of each class according to Eq. 4.
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FIGURE 4. Class-based Huffman Tree: (a) Huffman Tree, and (b) Class
Probability.

TABLE 2. Weights encoding.

Weight | # Class | Class Code | Index Code | Encoding
0011 0 o1 0 010
0110 1 011
0010 00 100
0111 | | 01 101
1111 10 110
0000 11 111
1100 2 001 - 001
0001 0000 000_0000
0100 0001 000_0001
0101 0010 000_0010
1000 0011 000_0011
1001 3 000 0100 000_0100
1010 0101 000_0101
1011 0110 000_0110
1101 0111 000_0111
1110 1000 000_1000

According to the Huffman tree, each of the 16 weights
is assigned with a unique Class code and an Index code,
as depicted in Fig. 4. Table 2 describes the weight encoding
according to the proposed algorithm. While weights with
high probability are encoded with only 3 bits, weights with
low probability are encoded with 7-bits. The compression
process results in a total of 321 bits required for weights
representation, instead of 380 bits (95 x 4 bits per weight).
It is important to note that the resulting average number of
bits per weight (3.379) is close to the entropy value (3.152).

C. THE PROPOSED DECOMPRESSION ALGORITHM

The compressed file is stored in external SRAM memory.
The decompression phase restores the encoded weights in
a sequential manner, deploying weight-by-weight decoding.
First, the weight Class is decoded, according to the class-
based Huffman tree. Then, the weight is directly retrieved
from the internal decoder memory using the Index code. This
process is repeated for all the weights in the compressed
weights vector. The next sections explain the structure of
the internal decoder memory, hardware limitations, and the
proposed efficient hardware implementation. The complexity
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of the proposed decompression algorithm is O(1), assuming
a low number of classes (up to 16), compared to Huffman
O(log(n)) complexity.

1) ENCODER/DECODER LOOK UP TABLES

The internal decoder memory is composed of three fixed-size
LUTs: LUTI1, LUT?2, and LUT3. These tables are used for
storing the Huffman tree, class information, and the decom-
pressed weights, respectively. LUT1 contains the Class num-
bers addressed by the Huffman Class code, as shown
in Table 3. The size of LUT1 is determined by the longest
Class code and the number of classes. For example, in case
the weight encoding results in 4 classes and a maximum 3-bit
representation per Class, the LUT1 size is 23 x 22-bits.

TABLE 3. LUT1 Example (Huffman LUT).

Input 3-bit Addresses | Output 2-bit (Class Number)
000 11 (Class 3)
001 10 (Class 2)
010-011 00 (Class 0)
100-111 01 (Class 1)

TABLE 4. LUT2 Example (Classes LUT).

LUT1 LUT?2 output
output bits Class Code Index Code Class Offset
Length (minus 1) Length Address

00 (Class 0) 01 (Length 2) 001 (Length 1) | 000 (Address 0)
01 (Class 1) 00 (Length 1) 010 (Length 2) | 010 (Address 2)
10 (Class 2) 10 (Length 3) 000 (Length 0) | 110 (Address 6)
11 (Class 3) 10 (Length 3) 100 (Length 4) | 111 (Address 7)

LUT?2 stores three fields for each class: Class code length,
Index code length, and class Offset (for addressing LUT3).
LUT2 is addressed by the Class number derived from
LUT1 output. Table 4 presents LUT2 organization for the
detailed example given in the previous section (Sec 3-B).

TABLE 5. LUT3 Example (Weights LUT).

# Class | Address | Weight (P(w;))
0 0000 0011 (21.05%)
0001 0110 (18.95%)

0010 0010 (15.79%)

1 0011 0111 (12.63%)
0100 1111 (11.58%)

0101 0000 (6.32%)

2 0110 1100 (4.21%)
0111 0001 (1.05%)

1000 0100 (1.05%)

1001 0101 (1.05%)

1010 1000 (1.05%)

3 1011 1001 (1.05%)
1100 1010 (1.05%)

1101 1011 (1.05%)

1110 1101 (1.05%)

1111 1110 (1.05%)

LUT3, as shown in Table 5, stores the ordered uncom-
pressed weights, addressed by adding the weight Index code
to the class Offset (output of LUT?2).
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2) THE PROPOSED HARDWARE DECODER

The following parameters have been considered for evalu-
ating the proposed decoder: (1) the size of LUT3, which
stores the most common weights, (2) the number of classes
used for classifying the weights according to their appearance
probability, and (3) the maximal code length for encoding a
class. In the experimental analysis, the size of LUT3 has been
chosen to be 8 KB, with up to 16 classes and 8-bit maximal
code length per class.

The size of LUT1 is determined by the longest Huffman
Class code. For example, 16 classes and a maximum code
length of 8-bits, requires LUT1 size of 28x2* bits. In this
case, LUT2 has 16 entries and its actual size depends on
the size of LUT3. To minimize the required internal mem-
ory, only part of the uncompressed weights, those with the
highest appearance probability, are stored internally in LUT3.
The remaining weights, characterized by low probability, are
grouped into a Residual class, and derived directly from the
compressed code using the Index code. Therefore, a different
encoding structure is used.

Class Code

Uncompressed Weight
(Huffman Code) )

(Binary Representation

FIGURE 5. Residual class weights encoding.

Fig. 5 shows the modified coding structure of the Residual
class weights. This coding is composed of two fields:
(a) Class code, and (b) the uncompressed weight. As before,
the Class code represents the Huffman code. Although each
of these weights requires more bits than the original uncom-
pressed 16-bit weight (16-bits uncompressed weight plus the
Residual class code), it is not stored internally. Since the
appearance probability of the Residual class is relatively low,
the compression ratio is not reduced significantly, while still
saving substantial memory space in LUT3. Table 6 shows an
example for the assigned Residual weights encoding.

TABLE 6. Residual weights modified encoding.

Weight | # Class | Class Code | Modified Encoding
0001 000_0001
0100 000_0100
0101 000_0101
1000 000_1000
1001 3 000 000_1001
1010 000_1010
1011 000_1011
1101 000_1101
1110 000_1110

The number of the weight classes is determined empir-
ically considering the available internal memory space.
A higher compression ratio can be achieved by using a
larger internal memory and more weights classes. However,
the available internal memory of embedded devices is a major
constraint. Thus, the number of weights classes is a tradeoff
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between internal memory size and the required compression
ratio. Using 16 weights classes results in a high compres-
sion ratio (up to 70%) and relatively low LUT memory
capacity (8KB).

For example, for 16-bit weights, an LUT3 size of 216 words
(i.e., 128 Kbytes) is required. However, results show that
storing only 4096 weights internally has a minor effect on
the compression ratio. The iterative process for splitting the
weights into classes, as described in the compression phase,
is completed by filling LUT3 with a predefined number
of weights with high appearance probability. These weights
should be stored internally.

Since only weights with high appearance probability are
stored internally, a significant reduction in the LUT size is
achieved (8KB compared to 128KB). LUT3 is implemented
using 8KB SRAM, while LUT1 and LUT2 are implemented,
due to their small size, using ARM register files that require
a negligible area.

For example, implementation of a single 128KB
SRAM using a 22nm process with ARM memory (type
a_LL_SR_32768 x 32_M16B8_xaohwd) requires silicon
area of 221, 151um?, while implementing 8KB SRAM
requires only 17,500um® (using a a_LL_SR_4096 x
16_M8B2_xaohd of ARM). Therefore, a LUT area reduction
of about 92% is achieved using the proposed method.

Algorithm 1 Split Weights Into Classes
Input: W - Sorted DNN weights
Cinax - Maximum number of classes
LUTize - Maximum number of weights to store

in LUT3
Output: C - Classes of weights

1: Chumber < 0 > class number initialization

2: Coffser < 0 > class offset initialization
3: while W is not empty do

4: Cize < 1

5: Cpirs < Bits(W[0])) > using Eq. 2
6: while Cp;ss = Bits(W[Csiz]) and

7: Csize + Coffser < LUT iz do

8: Csize < Ciize + 1 > increase the Class size
9: end while

10: Cyize < 2Round(logy(Ciize)) > round Class size
11: if Csize + Coﬁ‘sel > LUTsize or Coym = Cipax — 1

12: Cize < Len(W)

13: end if

14: Define W[O : Csi;e — 1] as a new class in C

15: Remove W[0 : Cyipe — 1] from W

16: Cofser < Cofser + Ciize > calculate next class offset
17: Crumber < Chumber + 1 > calculate next class

number
18: end while
19: return C

Algorithm 1 describes the process of splitting the weights
into several classes. The following parameters serve as the
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FIGURE 6. Hardware weights decoder block diagram.

algorithm input: the sorted DNN weights, maximum number
of classes, and maximum number of weights to be stored in
LUT3. The classification process starts with class initializa-
tion (lines 1-2). Lines 3-17 describe the first-class generation
(as detailed in Sec. 3-A). This iterative process stops when
one of the two following conditions exists: (a) the number of
classes is greater than the predefined maximum (lines 11-13),
or (b) LUT3 overflows (the number of class weights is greater
than LUT3 capacity). Finally, the remaining weights are
unified in the Residual class and the algorithm returns the
resulting class partitioning.

D. HARDWARE DECODER IMPLEMENTATION

Real-time implementation requires usage of extra internal
memory. To minimize this, only part of the uncompressed
weights, those with the highest appearance probability, are
stored internally. The remaining weights, characterized by
low probability, are grouped into unique Residual class and
are extracted directly from external memory. A dedicated
ASIC (with 8KB internal SRAM) has been developed to
implement the proposed decoder.

Fig. 6 depicts hardware decoder implementation, com-
posed of four main modules: a register file containing two
registers, three LUTs, address generation unit (AGU), pointer
calculator, and some extra logic. The input to the decoder
is a compressed 32-bit data, while its output represents a
16-bit decompressed weight. The decoder is designed to
decompress one 16-bit weight for each cycle. Since we
use VLC coding, the compressed weights are of different
sizes. The code length of the compressed weight is derived
from LUT2 and calculated by a dedicated pointer. Registers
(RO and R1) are used as double buffers, enabling sampling of
new input while processing the previous one. The 32-bit input
is always directed to R1 and copied to RO initially every time
the pointer crosses the value of 31 (in this case, the pointer
generates a read request from the external SRAM).
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FIGURE 7. Registers bits concatenation into 64-bit buffer.

The 8-bit input to LUT1 is extracted from registers RO and
R1 (Fig. 7), and the specific compressed weight is addressed
by the pointer. The appropriate Class number (LUT1 output)
serves as input to LUT2. The three LUT2 data fields (length
of the Class and Index codes, and class Offset) are used to
extract the Index code from the compressed code and update
the pointer to address the next compressed weight code for the
next cycle. The AGU generates the entry address for LUT3 by
adding the Index code to the class Offset. In case the Class
number represents the Residual class, the AGU outputs the
uncompressed 16-bit weight (retrieved from the Index field)
directly to a one-cycle delay register. Additionally, an output
control line is used for selecting the appropriate output from
LUTS3 or from the delay register, using a MUX.

Fig. 8 depicts the decoder timing diagram. The module
is implemented using a 4-stage pipeline: (a) class decoding
(b) address generation (c) weight extraction, and (d) weight
output. The proposed hardware architecture enables real-time
decoding of one weight at each clock cycle at 125 MHz.

The uncompressed (decoded) weights are either used only
once in an FC layer, with no need for temporary stor-
age, or they are reused in a Conv layer, requiring a small
temporary buffer. This internal buffer is dedicated to storing
the temporary partial uncompressed weights for a single filter
only. Its actual size is negligible compared to the size of the
overall CNN weights size. For example, for AlexNet with a
3 x 3 x 384 convolution filter and 16-bit weights, the size of
this additional temporary buffer is only about 7KB memory.
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FIGURE 8. Four pipeline stages decoder.

This unique hardware implementation enables compressed
weights decoding in one cycle within the original DNN tim-
ing. There is no extra CPU stalling and starvation is avoided.
The additional decompression phase is integrated into the
overall DNN architecture and is performed in parallel to the
weight fetching stage using the pipeline approach. Therefore,
the proposed approach can be applied to other more com-
plex DNN architectures (such as: ResNet and MobileNet)
while maintaining the real-time constraint. It is important to
note that the end-to-end execution time is not in any way
affected by applying the proposed compression approach, nor
is the original DNN processing time (without compression)
lengthened.

IV. EXPERIMENTAL AND RESULTS

The proposed approach has been evaluated using two well-
known DNN architectures: AlexNet and VGG19. Each net-
work has been tested with two benchmark datasets: MNIST,
CIFAR-10 for AlexNet and CIFAR-10, CIFAR-100 for
VGG19. AlexNet has been implemented using 5 Conv layers
(with 3 x 3 kernels) and 3 FC layers, while VGG has 14 Conv
layers (with 3 x 3 filters) and 3 FC layers. For both networks,
a batch normalization has been applied, and the dropout
mechanism has been used in the training process to eliminate
overfitting. The training phase has been carried out using the
Tensorflow framework and optimization tool [27]. Each of
the DNNs has been trained, with the two datasets, using four
different final sparsity configurations (60,70, 80 and 90%).

To evaluate the efficiency of the proposed lossless DNN
weights compression algorithms, we refer to the DNN
weights matrixes generated after completion of the train-
ing phase. Both AlexNet and VGG19 result in high top-1
accuracy for all datasets and are comparable to previously
published results [1], [28], shown in Table 7.

The DNN weights of all the network layers are quantized
(by asymmetric quantization) and concatenated into one long
weights vector W in a predefined order. Then, W is com-
pressed using the proposed algorithm, demonstrating a high
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TABLE 7. DNN accuracy comparison Table.

DNN Dataset Reference Top-1 | Our Top-1
Accuracy Accuracy
MNIST 997 995
AlexNet CIFAR.10 o 3
CIFAR-10 ]7 3387
Vea19 CIFAR-100 58 52 68

compression ratio of up to 70%. For validating the correctness
of the algorithm, a decompression phase is applied, providing
exactly the same input weights vector W without data loss.

The compression capabilities of our proposed approach
were compared to several lossless compression algorithms
presented by the 7ZIP package [29].

For the default 7ZIP compression algorithm, LZMA,
a decompression throughput of about 10-20Mbps is typically
obtained using a 2GHz CPU [29]. Therefore, the decompres-
sion of one weight in LZMA requires about 100 cycles. The
proposed method demonstrates a relatively high compression
ratio comparable to the 7ZIP algorithms while maintaining
the one-cycle decoding major constraint.

For each experiment, the appropriate DNN weights vector
was compressed using five popular algorithms from the 7ZIP
package: Deflate, LZMA, LZMA?2, PPMd and BZip2. The
algorithm that yielded the best compression, has been chosen
as a reference for comparison with our algorithm. The com-
pression ratio is defined by Eq. 6.

Compressed
Compression Ratio = 1 — d

(6)

Uncompressed

Since the decoder internal LUT sizes are negligible com-
pared to the size of the compressed weights, the compression
ratio has been evaluated considering only the size of the
compressed file, as described in Eq. 6.

TABLE 8. AlexNet compression results on MNIST and CIFAR-10 with
various sparsity levels.

Dataset Best 7Zip Our Our
S . Top-1 Algorithm Algorithm Algorithm
(Weights Sparsity Accurac Ie o Ie . c -
File Size) ccuracy omprgsslon omprgsslon ompression
Ratio Ratio Result
0.00% 99.40% - - -
MNIST 37.79% 99.32% 31.48% 30.63% 28.06 MB
(40.45 MB) 42.17% 99.41% 35.66% 34.71% 26.41 MB
. 49.26% 99.49% 42.46% 41.50% 23.66 MB
56.86% 99.40% 50.25% 49.52% 20.42 MB
0.00% 78.26% - - -
CIFAR-10 52.47% 78.50% 45.94% 44.98% 25.26 MB
(46.46 MB) 58.46% 78.20% 50.67% 51.24% 22.65 MB
. 66.84% 78.23% 60.22% 60.26% 18.46 MB
75.63% 78.37% 69.57% 68.72% 14.53 MB

Table 8 and Table 9 show the results for AlexNet and
VGGI19 for the different databases using various sparsity
levels. Results demonstrate a high compression ratio, and
are comparable to the best 7ZIP algorithm, while our algo-
rithm uniquely allows decompression of one weight per
clock cycle. For example, for classifying CIFAR-10 using
AlexNet with 75.63% sparsity, the best 7ZIP algorithm results
in 69.57%, while our proposed algorithm achieves close
results of 68.72%.

VOLUME 8, 2020



T. Malach et al.: Hardware-Based Real-Time DNN Lossless Weights Compression

IEEE Access

TABLE 9. VGG19 compression results on CIFAR-10 and CIFAR-100 with
various sparsity levels.

Dataset Best 7Zip Our Our
. . Top-1 Algorithm Algorithm Algorithm
(Weights Sparsity A C . Ie . C .
File Size) ccuracy ompression ompression ompression
Ratio Ratio Result
0.00% 83.87% - - -
CIFAR-10 44.00% 82.40% 37.66% 36.11% 46.04 MB
(72.06 MB) 58.47% 83.23% 51.45% 51.03% 32.59 MB
. 68.61% 83.31% 61.90% 61.31% 27.88 MB
70.24% 83.15% 63.56% 62.99% 26.67 MB
0.00% 52.68% - - -
40.07% 52.60% 34.62% 32.74% 48.94 MB
Caarp) | 4730% | S18% | 4071% 39.13% 4429 MB
’ 53.07% 50.88% 46.36% 45.15% 39.91 MB
62.79% 51.60% 55.98% 55.20% 32.60 MB

Similar results are achieved for classifying CIFAR-10
using VGG19 with 70.24% sparsity, demonstrating a 63.56%
compression ratio for the best 7ZIP algorithm, and 62.99%
using the proposed algorithm.

V. CONCLUSION

This work presents an entropy-based compression algorithm
and a real-time oriented decompression approach. The pro-
posed unique and efficient hardware decoder implementa-
tion, allows decompression of one weight in a single clock
cycle. Results show a high compression ratio compared to
well-known lossless compression algorithms. The achieved
compression ratio is comparable to the 7ZIP compression
package and enables efficient implementation of large DNN's
in a low-power SoC with limited memory resources. The
combination of the existing TensorFlow built-in pruning tool
with our proposed compression algorithm may yield better
results as sparsity increases. The proposed approach was
evaluated using different DNNs and various image datasets,
demonstrating consistent results and promising robustness.
Future research can integrate compression of the inter-layer
data, in addition to the weights compression, to further reduce
the required internal memory for implementing DNN in edge
devices.
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