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ABSTRACT This paper presents the development of unmanned marine robotic control modelling and control
synthesis using a coupled multivariable underactuated nonlinear adaptive U-model approach. The proposed
controller was developed using thru an open source robot operating system (ROS) platform. The new adaptive
coupled U-model based internal model control (IMC) node was successfully developed and tested. The
proposed controller demonstrated the simplicity of the control synthesis process and the implementation of
the mathematical algorithm in real-time. The controller was compared with the proven existing GIRONA
500 UUV for real-time performance. The ROS environment provides fast and reliable controller design and
development compared to conventional software architecture. Simulation and real-time experiment were
conducted using ROS via the GIRONA 500 UUV platform and compared with a PID mission controller. A
new ROS node of nonlinear adaptive U-model based IMC was developed using ROS. The results showed
good control signal convergence and tracking performance between the plant or system model with the

proposed method.

INDEX TERMS Adaptive control, nonlinear, UUV, underactuated, ROS.

I. INTRODUCTION

Most of the autonomous unmanned underwater vehi-
cle (UUV) control systems are multivariable. The control
framework methodology can be varied based on the applica-
tion. There are no precise control methodology strategies that
can be implemented in UUV applications. There are a few
methodologies for the UUV control framework plan in the
literature which attempt to demonstrate the practicality of the
control algorithm. Most of the platforms are multiple-input
multiple output (MIMO) due to the installation of multiple
sensors and transducers onboard. Thus, controller design
and development shall include the real-time implementation
approach. However, a complex mathematical approach may
lead to higher computation demand and energy needs thus
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making it difficult to be implemented in real-time [1]. With
different designs and shapes, UUV are highly nonlinear,
underactuated or with a limited control actuator, highly cou-
pled in motion and vulnerable to external disturbances. The
underactuated system needs to overcome the nonlinearity of
the dynamics plus the disturbances and uncertainties arising
from the marine environment [2]-[5]. Unfortunately, there
is no such precise approach for nonlinear control and mod-
elling frameworks in the presence of external disturbances
especially in real-time implementation. In significant cases,
the control framework outline strategies for nonlinear con-
trol systems vary from one framework to another. A few
methodologies are described for nonlinear control framework
plans in the literature which attempt to represent nonlinear
control systems. It is desirable to have a control structure
that is capable of overcoming external disturbances without
involving a complex mathematical and modelling approach
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that can be demonstrated not only through simulation but in
real-time implementation as well. A reference-based model
approach such an internal model control (IMC) structure
can be implanted for a control strategy without any pre-
defined precise mathematical modelling, plus it includes a
disturbance rejection capability. The underactuated trajectory
control problem of an UUYV in the presence of environmental
disturbances was proposed by [6]. This scheme implemented
the barrier Lyapunov function for control law combined
with a backstepping algorithm, and a radial basis function
neural network (RBFNN) with dynamic surface control for
solving the effects of external disturbances. The proposed
method was compared with the quadratic Lyapunov function
and produced better tracking results via simulation. Another
underactuated trajectory control approach for an AUV under
perturbations was achieved using adaptive sliding mode con-
trol [7]. The sliding mode adaptive control was compared
to the generalised super-twisting algorithm (GSTA) sliding
mode via real-time implementation using a Leonard ROV.
The adaptive sliding mode method converged onto the desired
input better than the GSTA approach with a reduced root-
mean-square error value. Another control approach for the
ROV platform used a double-loop sliding mode control for
improvement of chatter reduction and to lower the root mean
square error value [8]. Those authors introduced a novel
switching term to replace the conventional switching term
for sliding mode control through simulation without real-time
implementation. Several other works employed the sliding
mode control approach for an UUV such as in [9], [10]
through simulation and real-time implementation. An adap-
tive fuzzy sliding mode controller was proposed to esti-
mate the nonlinearity of MIMO underwater vehicles in [11]
through a simulation approach. This method was the combi-
nation of two different nonlinear controllers aimed to counter
the dynamics and chatter effect from the sliding mode control
and also from external disturbances. The fuzzy logic control
approximates the couple dynamics of the UUV. However,
this method needs to be integrated with the sliding mode
controller for stability analysis and the systematic control
design method. The controller design was more complex
and had a higher computational demand. Fuzzy logic control
could reduce the chatter effect caused by the discontinuity
of the sliding mode control system excited by unmodelled
dynamics. In [4], a trajectory 3-D tracking control system was
addressed for an UUV with a prescribed performance under
model uncertainties and external disturbances through simu-
lation and real-time implementation. Control tracking with a
specified performance converged to the desired values with
minimal error. However, only specified performances were
presented for torpedo-like MIMO vehicles and unicycle-like
MIMO vehicles.

It is desirable to have a control structure that is capable of
overcoming external disturbances without involving a com-
plex mathematical and modelling approach. Other work was
done by [12] using two degrees of freedom IMC-PID with
logarithmic approximations for the load frequency controller
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of a power system. The inverse component made use of a
low pass filter to reject any load disturbances. The control
structure required another feedback controller to counteract
the effects of befuddling or mismatching. The results showed
good performance in terms of error analysis, settling time
and disturbance rejection. Based on the literature, a variety
of approaches are available when designing a nonlinear con-
troller for an unmanned marine robotics platform, especially
for the underactuated model and these approaches can be
highly robust against external disturbances.

As mentioned in the literature, the nonlinear modelling
approach is a vital solution to overcome the nonlinearity,
variation of the dynamics and hydrodynamics, underactuated,
and external disturbances in a marine environment. Several
strategies have been implemented to overcome these prob-
lems by implementing hybrid control approaches such as
fuzzy logic control combined with sliding mode control [11],
[13]-[15]. Other approaches augment the controller law by
incorporation with the nonlinear neural network method
and new novel approaches [16], [17]. These approaches
will ensure the nonlinear effects and the disturbances can
be reduced, thus improving the controller performance.
A U-model has been proposed by [18] for a nonlinear dynam-
ical control design for the Hammerstein model, a laboratory-
scale level system and a continuous stir reactor. The con-
trol law was formulated as the current control term u(t)
which would be suitable for a nonlinear control application
to reduce mathematical complexity. The U-model is an adap-
tive control-orientated model and it is based on a control
input signal. It is more general compared to other estimation
approaches and exhibits a polynomial structure applicable to
the control term. This makes it suitable for real-time appli-
cations. Our previous works in [19] demonstrate the effec-
tiveness of U-model modelling and the control approach in
unmanned marine robotics applications through simulation.

This paper implements a nonlinear multivariable adap-
tive control synthesis using the U-model for nonlinear UUV
applications in the 3D ROS visualisation tool GUI for the
robotic platform simulation in a targeted environment such
as an underwater scenario with sensor simulation using the
GIRONA 500 UUV platform as in Fig. 1. The ROS simula-
tion environment enables the controller to be analysed and
verified before a real-time experiment can be conducted in
the underwater environment. The controller was compared
with the proven existing GIRONA 500 UUV controller for
the validation process.

Il. APPROACH AND METHODS

A. NONLINEAR INTERNAL MODEL CONTROL APPROACH
An Internal Model Control (IMC) is selected as a nonlinear
modelling control framework. Fig. 2 shows an online adaptive
IMC basic principle. IMC approach popular in process con-
trol applications and effective with linear plants [20]. It also
can be used in nonlinear modelling and control applications
such in [20]-[25]. It has good disturbance rejection capabili-
ties and reduced the UUV controller design and development
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FIGURE 1. GIRONA 500 UUV.

complexity due to the uncertainty in the underwater environ-
ment.

The IMC control structure consists of a reference input
R(?), nonlinear system Gg, a nonlinear model of Gy, the
controller as the inverse of Gy, in the presence of unknown
external disturbance D(¢) and output of the nonlinear system
Y(#). The output Y(¢) is compared with the model output
Y (¢) to calculate the error E(#). The closed loop system of
the IMC control scheme can be expressed by [26]:

(R (1) — D (1)) G,,'Gs
1+ (Gs — Gy) Gy,
Rearranging Eq. (1), we get,

Y1) = +D ) ey

G,Yy'R() + (1 — Y'Y, )D(1)
14 (Gy — Y)Yy,

Eq. (2) shows that according to IMC scheme, if the system
can be truly modelled and the model can be inverted, it is
possible to reject the disturbances, and output tracking is
achieved. Therefore, the IMC tracking problem transforms to
identifying a true model and its inverse. Recently, U-model
has been used for certain process control, robotics and other
nonlinear SISO and MIMO applications. U-model represents
simplified NARMAX nonlinear polynomial model that can
be inverse according to the IMC scheme. Therefore, this
paper focuses on MIMO U-model based methodology for
underwater marine applications.

Y (1) =

@)

B. COUPLED UNDERACTUATED MIMO NONLINEAR
ADAPTIVE U-MODEL CONTROL SYNTHESIS APPROACH
For coupled and underactuated system, we establish a MIMO
U-model by considering a multivariable nonlinear coupled
system that can be represented by n-input X p-output multi-
variable NARMAX model as:

V1 5Ot yp ot g, d)
y2 f372(y17-~'9ypsu17-~~sun»d)
= . 3)
)’p f;)p(ylv--'9ypsulv-~'sun»d)
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where the outputs, y1 (£) ,y2 (¢), - -+, yp (t) are expressed as
functions of inputs, u; (), up (¢),--- , u, (t) and the mod-

elling mismatches. The multivariable U-model expresses the
outputs in terms of weighted, time-delayed polynomials in
the control input u; (t — 1) ,un t — 1), --- ,u, (t — 1) as:

y1 (t) = bott + biinwr (t — 1) + bayyuy (t — 1)

+ ...+ byiiuy (t — l)N

+boat + bioiuz (t — 1) + bypyua (1 — 1)

+ ...+bN21u2(t—1)N+...

+bout + biattty (t = 1) + baniun (¢ — 1)

+ .+ bypiun = DN 4)
y2 (1) = borz + biiauy (t — 1) + bappuy (t — 1)?

+ ...+ byouy (t — 1)N

+booa + bioouz (t — 1) + bonoua (1 — 1)*

+ .+ bynu =DV 4.

+bonz + bty (t — 1) + bawpuy (t — 1)

+ ...+ byou, t — DN (5)

Similarly, for the p™ output yp (¢) will be:

Yp (1) = bowp + bripur (t — 1) + bagpur (t — 1)
+ .o+ byipur (- HY
+boop + biopuz (t — 1) + bagpua (1 — 1)
+ oo bypua (1 — DY 4.
+ Bonp + Dinpitn (t — 1) + bauptty (t — 1)*
+ .+ byou, = DN (6)

The equations can be represented in vector form as:

1
up (t —1)
2
yp (1) = (bOIpbllpb21p .. -lep) up (r—1)
up (t — HN
1

up (t —1)

2
+ (boapbiopbaay - . byap) | 2 =1

u (1 — YV
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1

u, (t —1)
2

+ ..+ (bowpbinpbant - - bgp) | M@= D
wn (t — HN

)

All the inputs and outputs are coupled through the param-
eters, bji. The subscripts j, k and /, represent the 7™ power of
control signal, Kkt row (model output), and 1™ column (model
input). The parameters bjy; are identified iteratively using an
adaptive algorithm. In particular the first coefficient for each
input boy; can be adaptively trained to model the past values
of the outputs [19]. Defining the coefficient vectors bj; and
the input vectors u;, the output equations can be written in
closed form as

yi =bruy +byux + ... +byu, ®)
y2 = bpuy +bous + ...+ bpou, 9
yp = bipur +bopur + ...+ bypuy, (10)
The vectors, uy, us, ..., u,, are comprised of powers of the
inputsug (t — 1) ,un (t — 1), -+ ,u, (t — 1) as:
1 1
up (r —1) u (t —1)
wo= | m@=D |, o | - 1?
wy (0 — DN uy (t — DN
1
u, (t — 1)
u, = | unt— 1)? (11)
un (t — N
In matrix form
Y1 byy by ... bn
2 by byn ... bp
Vp by, by ... by
x(ur wy ... wy) (12)
Y = BU (13)
where:
by by ... bu
B = . and
by, by ... by
U= (w1 wuw ... u) (14)

Equation (13) is a simplified of a multivariable nonlin-
ear coupled U-model representation. In order to design the
controller, we need to solve Equation (13). Since the system
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matrix B is a non-square matrix that includes the interaction
among inputs and the outputs the Jacobian matrix requires
the Newton-Raphson method. Therefore, the challenge is to
avoid the singularity while inverting the non-square Jacobian
matrix. We can avoid the singularity by using the following
techniques available in the literature [27]:

(a) Employing pseudoinverse,

(b) Utilising the converse of the Jacobian framework from
the past moment,

(c) Adding a small number to the Jacobian lattice to stay

away from the singularity.

In order to acquire higher modelling accuracy with less
error correlation, neural networks are integrated with the U-
model methodology. Neural networks are a proven approach
to the linear and nonlinear modelling and estimation process.
A radial basis function neural network (RBFNN) consists
of a single layered feedforward network and offers faster
learning time compared to the multi-layered feedforward neu-
ral network (MFNN). RBFNN is capable of approximating
the linear and nonlinearities in the systems. This algorithm
has also been used in multi-applications such as control
systems, signal processing, medical, renewable energy and
machine learning such as in [28]-[37]. The RBFNN is incor-
porated with the U-model by computing the term By () while
By (t),Ba(t),...By (t) by the NLMS algorithm.

Bo(t) =Y (1) = w1 (u(t — 1)) + wag (u(t — 1))
e @ —1) (15)

where w,, and ¢ are the weights with n number of neurons and
basis function. The input of the ith hidden neuron is:

@i(llu (@) — cill) (16)

where c; is the centre of the ith hidden layer node while the
weight vector for each neuron is:

W () = [Wiwz...wy] a7
Equation (15) can be simplified as:

By (1) = Wo(r) (18)

The radial basis function (RBF) is chosen as an activation
function due to better learning speed [28], [30], [31]. The
activation function can be expressed as:

u(t—1)— ¢ .

—2) fori=1,2...n (19
B

where n is the number of hidden layer neurons, ¢; is the centre

of the ith hidden layer (c1, ¢2, ¢3..c;) node and g is the width

of the activation function. As a result the weights By of the

neural network and the rest of the parameters B; (j = 1, 2, N)
are updated using NLMS as:

W@+ 1) =W @)+ u@) error()e ()T (20)
Bi(t+1) =B (1) + pu () error)U? 1 — 1) (21)

where u (¢) is the NLMS learning rate (0 < w (#) < 1).
These time varying parameters B; (f) and RBFNN weights

$ (1) = e(—
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FIGURE 3. U-model based IMC with RBFNN.

W; (¢) are updated online via a NLMS filter as mentioned in
Equations (20) and (21) simultaneously based on the identi-
fication tracking error. Thus, any changes in parameters in
the dynamic system will be taken care off by these adap-
tive weights and parameter values. The representation of the
adaptive mechanism with five neurons of the RBF activation
function and third order of U-model polynomial equation is
presented in Fig. 3.

The parameter Bo(¢) will compensate all the uncertainties,
nonlinearities, and lagged parameters. Thus, the controller
synthesis will only involve current control signal u (¢ — 1).
This algorithm will reduce total computational demand dur-
ing UUV mission, thus reducing total power consumption.

Based on Fig. 3, the U-model Y, incorporated with
RBFNN for the SISO system can be expressed as:

Yo = Wi (u(t — 1)+ + W, (u(t — 1))
+biOut—1) +by () u> (¢ —1)
+ b OU - 1) (22)

C. ROBOT OPERATING SYSTEM (ROS) GIRONA 500 UUV
GIRONA 500 UUYV platform was developed by Underwater
Robotic Laboratory, University of Girona Spain in 2012 for
underwater survey and intervention. The unique design of
GIRONA 500 UUV with capability to accommodate a large
volume of different instruments and equipment such under-
water manipulator [38]. Fig. 1 show the design and charac-
teristic of GIRONA 500 UUV platform. The main structure
of this platform is Aluminium 6082-T6 alloy frame T-shaped
pillars and torpedo-shaped pressure cylinder for electronic
compartment. The overall size is (1 m in height x 1 m in
width x 1.5 m in length) and weight up to 200 kg depending
on the payload being attached. The platform can be equipped
with three to eight underwater thrusters depending on the
underwater intervention mission for under-actuated or fully
actuated control autonomy. The pressure cylinder are covered
with thermoformed ABS plastic skin whose streamline shape
is based on the Myring hull profile equation [39] for drag
reduction. The maximum operating depth for underwater
intervention is up to 500 m. This platform implements open
source ROS for system integration and control.

The floatation modules, consist of epoxy composite foam
with a density 400 kg/m?, are place in top part of the platform
to make the vehicle neutrally buoyant. This is to make sure the
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FIGURE 4. ROS software architecture.

platform will afloat when critical failure during underwater
intervention mission. Heavier equipment is place in the lower
hull to create good performance stability in roll and pitch that
influence the separation between centre of buoyancy (CB)
and centre of gravity (CG) make it suitable for bathymetric
and imaging survey. The power system consists of Li-ion
battery packs with combined capacity of 2.2 kWh of energy.
RS-232 interface connection is implemented to manage and
monitor the state of the system at any time such temperature,
voltage condition, and time to full charge/discharge. The
battery system is located at the bottom part of the vehicle.
A 614.4 kHz phased array of doppler velocity log (DVL),
attitude and heading reference system (AHRS) added by
fibre optic gyro (FOG) sensors are used for dead-reckoning
navigation. Absolute position in the surface is determined
by GPS system while ultra-short baseline (USBL) for under-
water. Sound velocity sensor (SVS) is used for measuring
sound speed profile for optimizing data accuracy for under-
water acoustic devices (DVL, UBSL, and Side Scan Sonar).
Different configuration of thrusters can be implements onto
the vehicle for greater autonomy and long-range mission
endurance.

The coupled underactuated multivariable nonlinear adap-
tive U-model based IMC controller is designed and developed
in the ROS architecture [40] for rapid implementation. The
UUYV application involves multiple sensors and transducers
in order to operate in a harsh marine environment, thus
making the system configuration and system integration pro-
cess difficult and complex. The ROS framework uses the
“publish-subscribe” method by passing the message around
the sensors and transducers compared with the conventional
method that is highly time consuming. The ROS framework
simplifies the communication and integration process via the
ROS core system, thus making it faster to implement.

Fig. 4 shows the ROS software architecture. The con-
ventional software architecture shown in Fig. 5 is mainly
for one-to-one communication and needs to be reconfigured
again in order to change one module while the ROS based
communication architecture uses “‘publish-subscribe” via the
ROS core system [41].

The ROS operates using an Ubuntu Linux open
source operating system and can be learnt through
http://wiki.ros.org/. A ROS system is made up of many
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FIGURE 5. Convention software architecture.

different program call nodes or topics that run simultaneously
and communicate with each other by passing messages.
The basic programming languages for ROS applications are
Python and C++ for simulation and real-time implemen-
tation. A new node or topic is designed for the adaptive
nonlinear U-model based IMC in order to subscribe to all
the relevant topics and to publish a U-model controller node
for the GIRONA 500 UUV platform. In this new node,
topic pose_ekf_slam/odometry, cola2_navigation/nav_sts,
cola2_control/body_velocity_req represent the navigation
data, an extended Kalman Filter (EKF) with simultaneous
localisation and mapping (SLAM) for underwater 6DOF
localisation and mapping application [42], [43] and the veloc-
ity input for the underwater thrusters.

Catkin is set of tools that the ROS uses to generate exe-
cutable programs, libraries, scripts, and interfaces that other
code can use. Catkin comprises a set of CMake macros
and custom Python scripts. CMake is commonly used for
open source build systems. To build a new node, a dedi-
cated directory or workspace must be created through Catkin.
A workspace consists of directories for ROS code to be stored
and we can have multiple ROS workspaces but only one
workspace can be run at any one time. A Catkin workspace
can be created and initialised through a command-line as:

cirs@cirs~ubuntu : ~$ mkdir-p~?catkin_ws/src
cirs@cirs~ubuntu : ~$ cd~ /catkin_ws/src

cirs@cirs~ubuntu : ~$ catkin_init_workspace

The 6 DOF vehicle position in the reference frame is
achieved through an extended Kalman Filter (EKF) filter
and multistep_excitation: reference input signal generation
for controller responses, validation, and performance. This
adaptive nonlinear U-model based IMC controller node pub-
lishes messages to the cola2_control/body_velocity_req and
cola2_controlbody_force_req. However, only body velocity_
req messages will be used for the controller reference.
Fig. 6 and Fig. 7 show the publish messages algorithm to
send messages from the adaptive nonlinear U-model based
IMC node to the body_velocity_req node.

The subscribe messages form pose_ekf _slam/odometry
node consists of the velocity data in surge, swag, and heave or
X, y, and z directions. All these messages are used for the sen-
sor update or current velocity and position during simulation
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#include <vector>

#include <string>

#include <ros/ros.h>

#include <auv_msgs/BodyVelocityReq.h>
#include <auv_msgs/BodyForceReq.h>
#include <nav_msgs/Odometry.h>
#include <sensor_msgs/JointState.h>
#include <adaptive control/Results.h>
#include "Controller.h"

FIGURE 6. Controller node header program.

void odometryCallback(const
nav_msgs::Odometry::ConstPtr& msg)
{

if(useMimo)

{
Eigen::VectorXd
sysOut = Eigen::VectorXd::Zero(3);

sysOut <<
msg->twist.twist.linear.
X,
msg->twist.twist.linear.
Y,
msg->twist.twist.linear.
z

FIGURE 7. Subscribe pose_ekf_slam/odometry node for U-model node.

Pose_ekf slam
Odometry node

Reference
input-
multistep
signal

6 DOF position
update

published
controller
data

U-Model
adaptive_controller
node

Body_velocity_re
quest node

Multistep-
excitation node

FIGURE 8. Subscribe and publish messages from U-model adaptive
controller node.

and real-time testing for GIRONA 500 UUV. In term of
the algorithm, the Eigen C+4+ library that is suitable for
linear algebra, matrices, vectors, and related applications
is implemented. This is suitable for the adaptive nonlinear
U-model based IMC that consists of polynomial equations.
The controller computation also involves the Eigen C++
library. The published messages from the adaptive nonlinear
U-model based IMC controller node are the velocity data in
x,y, and z directions through U-model control synthesis. This
data is the controller update values for the GIRONA 500 UUV
platform. Fig. 8 shows the messages for subscribe and publish
for the adaptive nonlinear U-model based IMC in the ROS
GIRONA 500 UUYV architecture during simulation and real-
time implementation.
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FIGURE 10. Comparison of control tracking in the sway (y-direction).

Rvis is a 3D ROS visualisation tool GUI for robotic
platform simulation in the targeted environment such as an
underwater scenario with sensor simulation [44]-[46]. Rvis
can plot and display many types of data streams through
ROS nodes such as cameras, underwater acoustic transducers,
a manipulator arm, and other related sensors. All these ele-
ments such as 3D rendering of the view and data from sensors
can be accessed simultaneously. Using the launch command
in the terminal, the Rvis terminal and GIRONA 500 UUV can
be used through a teleoperated keyboard key or pre-defined
manoeuvring control. A multistep excitation node controller
reference will be used for the adaptive nonlinear U-model-
based IMC controller node in the simulations and real-time
experiment as a pre-defined manoeuvring control.

Ill. SIMULATION RESULTS

The simulation results of the GIRONA 500 UUV implement-
ing an adaptive nonlinear IMC-based U-model algorithm and
a comparison with the existing GIRONA 500 UUV workable
mission PID controller are shown in Fig. 9 to Fig. 12. The 3rd
order system of the MIMO U-model was set up with initial
values for the parameters B, 82, and B3 = [0.1,0.1,0.1]
with a learning rate equal to 0.05 and small gain parameter
q = 0.01.

Fig. 9 shows the comparison of tracking control of body
velocity request in the surge or x-direction. Adaptive non-
linear IMC based U-model and PID control approaches con-
verged to the desired reference value. The U-model control
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FIGURE 12. 3D Rvis GIRONA UUV environment.

approach converged with signal oscillation at the beginning
of the simulation without a proper tuning process compared
to the PID control method. The GIRONA 500 AUV PID
control parameters were already tested and proven during
the simulation and real-time missions. However, the U-model
control approach may be improved with proper tuning gain
selection. The adaptive mechanism in the U-model adapted
to changing dynamics, although with random values (0 to
1) for the learning rate, initial adaptive parameter values, and
q value. Thus, the U-model control approach was capable of
synthesising control signals for the unknown control plants.
Similar trends have been observed in Fig. 10 for comparison
of control tracking in the sway (y-direction), in which both
controllers converged to the desired body velocity request
reference value. The U-model control approach produced
oscillation in the control signal compared to the PID control
method. Again, the same learning rate, initial adaptive param-
eter values, and g value were implemented in the simulation
compared to the PID control method using different controller
gains. Lastly, Fig. 11 shows the comparison of control track-
ing in the heave (z-direction). Both controllers converged
to the desired reference value which the U-model control
approach converged closest to the reference value compared
to the PID control approach. The GIRONA 500 UUV PID
control parameters were already tested and proven during
simulation and real-time missions. However, the U-model
control approach may be improved with proper tuning gain
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FIGURE 13. Girona Underwater Vision and Robotics pool facilities.

selection. The adaptive mechanism in the U-model adapted
to changing dynamics, although with random values (0 to
1) for the learning rate, initial adaptive parameter values, and
q value.

Thus, the U-model control approach was found capable of
synthesising control signals for unknown control plants. Fig.
12 shows the Rvis GUI interface for GIRONA 500 UUV with
way point marker during underwater manoeuvring simula-
tions. In the Rvis GUI display, we can select several nodes
to be included during simulation such as robot model, path,
odometry, multibeam, world_origin, and profiler.

IV. REAL-TIME EXPERIMENT RESULTS

The experiment was conducted in order to validate the adap-
tive nonlinear IMC-based U-model algorithm from the ROS
simulation environment into a real-time workable controller.
The experiment was conducted at the pool testing facilities at
the University of Girona, Spain as in Fig. 13. The size of the
pool was 16 m length x 8 m width. Due to this underwater
terrain, the experiment was conducted in decoupled manoeu-
vres due to the limited underwater space and safety of the
underwater vehicle. The data was transmitted online via a
communication cable or umbilical cord from the GIRONA
500 UUV. The advantage of this approach was the controller,
and the algorithm could be tuned online without having to
retrieve the underwater vehicle to the surface. All the refer-
ence and odometry data was saved as .bag record format and
exported to the MATLAB Simulink for analysis.

Several real-time experiments were conducted in the pool
facilities for the control validation as in Fig. 14. The pre-
defined velocity reference consisted of multistep excitation
of different amplitudes in the x, y, and z directions with a
period of 10 s for each amplitude for the real-time validation
due to limited underwater manoeuvring space. R;(t) as the
x-axis, Ry(t) is the y-axis and Rj3(¢) for z-axis where R;(?)
and Ry(t) are [0.1 —0.1 0.2 —0.3 0.4 0.1 —0.4 —0.1] ms™~!
and Rj(1) is [0.05 —0.05 0.1 —0.2 0.1 —0.2 0] ms~!. All
real-time data (.rosbag) was exported to MATLAB Simulink
2018b version due to integration capability with the ROS
environment using U_Model=rosbag(’u_model.bag’) in the
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FIGURE 14. GIRONA 500 UUV during real-time experiments.

n/s) in x-direction

E]
>
=

=

2]

20 30 40 50 60 70 80 90 100
Time(s)

FIGURE 15. Real-time comparison of control tracking in the surge
(x-direction).

command window, where u_model.bag is the rosbag file from
the ROS environment. Next, the ROS topic odometry was
selected for further analysis by entering odometryU_Model =
select(U_Model, Topic’, /pose_ekf_slam/odometry’). Then,
the rosbag file was converted to a time series data by enter-
ing odometry_tsU_Model= timeseries(odometryU_Model)
in the command window. Lastly, the time series data was
analysed using the MATLAB plotting tool.

In Fig. 15, two U-model control methods were compared
with the PID control method on the GIRONA 500 UUV
platform. All the control methods converged to the desired
multi-amplitude reference body velocity request signal. The
U-model with a learning rate of 0.03 converged with better
performance compared with the U-model with a learning rate
of 0.02 and the PID control approach. The U-model with a
learning rate of 0.03 converged closely with the reference
value for most of the reference amplitudes compared to the
existing PID controller.

Fig. 16 shows a comparison of control tracking in the sway
(y-direction). Again, the U-model approach used a similar
learning rate value of 0.02 and 0.03 to compare with the PID
control approach. All the controller approaches converged to
the desired body velocity request value. The vehicle move-
ment was not smooth compared to the surge (x-direction)
testing due to the limited number of underwater thrusters
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FIGURE 17. Real-time comparison of control tracking in the heave
(z-direction).

and representing underactuated control manoeuvring. Both
the U-model control approaches converged with better per-
formance compare to the PID control approach although
with a small overshoot during the first of three cycles of the
multi-amplitude signal.

Fig. 17 shows the real-time experiment comparison of
control tracking in the heave (z-direction). Both control
approaches tried to converge to the desired body velocity
request reference signal due to the shorter period of 10 sec-
onds compared to the simulation in the Rvis 3D visualisation
tool that used a 20 second time frame period for each of the
reference amplitudes. Due to fast-changing dynamics, both
controllers needed enough time to converge as in the Rvis 3D
visualisation. However, both controllers converged at the end
of the experiment due to the extra time of the reference body
velocity request signal. The reference body velocity request
value could be reduced to a smaller amount to enable the
controller to converge to the desired reference. This could be
seen in the experiment, where the vehicle velocity movement
in the heave direction was more than the surge and sway
directions. This did not reflect a real underwater mission
because, in the heave direction, the GIRONA 500 UUV was
moving at a slower speed due to safety reasons. The under-
water thrusters for the heave direction usually implement a
higher torque on the motor than the horizontal thrusters for
the surge and sway directions due to the buoyancy force
against the vehicle, thus affecting the vehicle in the heave
direction.

VOLUME 8, 2020

V. CONCLUSION

The implementation of an adaptive nonlinear IMC based
U-model in a robot operating system (ROS) was undertaken
in preparation for real-time experiments. The development of
the new controller adaptive nonlinear IMC based U-model
node in a C++ algorithm was executed successfully in the
Rvis 3D environment and compared to the existing mission
controller. The nonlinear IMC based U-model approach only
required a suitable initial condition range from 0 to 1 for
all the parameters, weights, and appropriate learning rate
values for better stability and convergence speed. This non-
linear control approach can minimise the time duration of the
controller design by implementing an adaptive learning rate
method for the unknown control system compared with the
PID control approach. The formulation and implementation
of the adaptive nonlinear U-model based IMC model are
much simpler than other complex mathematical modelling
and control approaches. The results showed all the con-
trol tracking in surge, sway, and heave directions converged
to the desired reference values. The real time experiment
showed good results with all the controllers converging to
the desired values except in the heave direction for which the
controller required an extra period of steady state reference
value instead of just 10 seconds. However, the results were
considered acceptable and satisfactory because the controller
was able to follow the reference values.
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