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ABSTRACT Wireless sensor networks (WSNs) is composed of a large number of tiny sensors. These
energy-constrained sensors are deployed in a variety of environments to collect data such as temperature,
humidity, and light intensity. Therefore, how to suppress the impact of environmental noise on the collection
accuracy and extend the lifetime of WSNSs is one of the prominent issues. This article proposes an optimized
dictionary updating learning-based compressed data collection algorithm (ODUL-CDC) to suppress the
impact of environmental noise on the accuracy of WSNs data collection and extend the life cycle of WSNs.
The proposed algorithm uses the dictionary learning method to obtain a sparse dictionary by learning from
the training data. The collection error caused by environmental noise is positively correlated with the degree
of self-coherence of the sparse dictionary. Therefore, the self-coherence penalty term is introduced during
the dictionary updating process, which can reduce the over-fitting of the training data in the dictionary
learning process. Moreover, the self-coherence penalty term endows the learned sparse dictionary with a
low-self-coherence structure. Experimental and simulation results show that, as compared with discrete
cosine transform(DCT), K-SVD and IDL learning-based data collection methods, the proposed algorithm
exhibits the highest increase in recovery accuracy of 3.2% in the signal-to-noise ratio (SNR) range of 30-50
dB, the sampling ratio range of 25%-40% and the sparsity range from 3 to 30. Furthermore, the energy
consumption is significantly less than that of the compared methods, which helps improve the network
lifetime.

INDEX TERMS Wireless sensor networks, compressed data collection, sparse representation, dictionary

learning, ODUL-CDC.

I. INTRODUCTION

Wireless sensor networks (WSNs) are composed of
large-scale and self-organized sensor nodes that are capable
of sensing, data storage, and communication [1]. WSNs
have numerous applications, such as in industrial automa-
tion [2], [3], smart cities [4], traffic network [5], military
reconnaissance [6], and the measurement of humidity or
temperature environmental data [7]. Although sensor nodes
have the ability to collect data, transmit data, store data
and simply process data, these capabilities are relatively
weak. Therefore, the communication distance of each sensor
node is very limited in the actual deployment. In the long-
distance data transmission, it needs to rely on the forwarding
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of adjacent sensor nodes, that is, multi hop transmission.
Therefore, in practical applications, sensor nodes not only
need to transmit their own data, but also need to under-
take the task of data forwarding of neighboring nodes. The
ability of a single sensor node is very limited, so it needs
to cooperate with other nodes to achieve the corresponding
functions and complete the given tasks. Because it is difficult
to recharge or replace the limited power supply of ordinary
nodes, the development of energy-efficient data collection
methods is becoming crucial [8].

In the typical WSNs data collection process, the sensor
nodes periodically perceive the physical environment infor-
mation and send the collected sensor data to the base sta-
tion node via multi-hop forwarding. Sensor nodes not only
transmit their own data, but also forward the data of other
nodes. The nodes closer to the base station participate in
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more forwarding, and are more likely to fail due to energy
exhaustion. This has become a bottleneck problem that affects
the life cycle of WSNs.

In recent years, the new information processing theory
called compressed sensing (CS) [9]-[11] has provided a novel
idea to solve the energy bottleneck problem in WSNs data
collection. In the CS data collection method, data compres-
sion and collection are integrated into a single process, and
the high computational and communication burden is trans-
ferred to the base station. Finally, in the sink node, incomplete
data are reconstructed through various complex reconstruc-
tion algorithms.

Bajwa et al. [12] first proposed a WSNs data collection
scheme based on CS theory, which transmits analog projec-
tion signal of sensing data through synchronous amplitude
modulation to reduce data collection delay and energy loss.
However, this scheme transmits analog signals and requires
strict time synchronization between nodes, so it is not widely
used. Haupt et al. [13] also proposed a WSNs data collection
method based on CS theory. This method emphasizes the
management of CS coding process, and proposes a coding
mechanism based on random gossip, which enables WSNs
to use CS to store and recover data on multiple nodes, rather
than limited to one sink node. Similar to the method proposed
by [12], this method also uses synchronous amplitude mod-
ulation to transmit analog projection signal of sensing data.
Luo et al. [14] proposed compressed data gathering (CDG).
CDG performs CS compression coding in the multi hop path
of WSNs, which reduces the amount of sensor data trans-
mission and allocates the communication cost to each node
equally. However, due to the introduction of compression
coding mechanism, the amount of data transmission of the
terminal node increases. On the contrary, the CDG method
is not as efficient as the original data collection method,
when the sensor data is not very sparse. In order to solve
this problem. Luo et al. [15] proposed a hybrid CS solution
from another perspective: the end node still uses the original
data transmission, and the intermediate node judges whether
to use CS coding transmission or traditional transmission
according to the amount of data transmission. Wu et al. [16]
proposed a data collection method for WSNs based on CS
theory. This method uses a sparse measurement matrix, which
contains only one non-zero element in each row. It can
effectively reduce the number of nodes participating in each
CS measurement. It can effectively reduce the number of
nodes participating in each CS measurement. In other words,
it can reduce the amount of data transmission and prolong
the network lifetime. Leinonen et al. [17] proposed a data
collection method based on sequence compressed sensing,
which adopted a processing framework based on sliding win-
dow. The convergence node can recover sensor data from
CS measurement sequence efficiently, which greatly reduces
the decoding delay. A recursive CS recovery algorithm is
specially designed to make full use of the estimated value of
forward coding. The regularized weighted method is used to
solve the data to be recovered, which not only reduces the

VOLUME 8, 2020

amount of data transmission, but also improves the recovery
accuracy of data.

These methods use fixed sparse dictionaries. However, the
application scenarios of WSNs are diversified, and the sparse
characteristics of sensor data are different under different
application scenarios [18]. Fixed sparse dictionaries lack the
ability to adapt to diverse scenarios, which limits the applica-
tion scope of compressed data collection. In addition, WSNs
are usually deployed in complex environments in which a
large amount of environmental noise will inevitably affect the
accuracy of data collection. Determining how to optimize the
design of the compressed data collection system to reduce
the impact of environmental noise is therefore a problem
worth considering.

This paper presents an optimized dictionary updating
learning-based compressed data collection (ODUL-CDC)
algorithm. The main contribution of the proposed method are
as following:

1. We develop a dictionary learning method to obtain a
dictionary with better sparse representation ability.

2. We introduce the self-coherence penalty term to reduce
the over-fitting of the sparse dictionary.

3. Experimental and simulation results demonstrate the
superiority of our method in both sparse representation
ability and energy saving.

The remainder of this paper is organized as follows.
Section II illustrates the research status of data collection
methods in WSNs. The proposed method is described in
detail in section III. Section IV uses 50 nodes to test the
accuracy of data collection. The proposed method is com-
pared with DCT, K-SVD and IDL algorithms at sampling
ratio ranges from 10% to 40%, SNR ranges from 20dB to
50dB and sparsity ranges from 3 to 30. Section V uses
1000 nodes in MATLAB software to simulate the network
energy consumption. The proposed method is compared with
DCT, K-SVD and IDL algorithms when the number of suc-
cessful reconstructions is from 40 to 160. Section VI is about
conclusion and future work.

II. LITERATURE REVIEW

In order to improve the efficiency of data collection in WSNss,
many methods have been proposed. Jiang et al. [19] proposed
a trust based energy efficient data collection algorithm. The
algorithm realizes the data acquisition of large-scale Internet
of things system. In [20], a new energy-based heuristic maxi-
mum coverage small lifetime (MCSL) giving high priority to
the sensors with maximum residual battery life and covering
a minimum of uncovered target and avoiding redundant cov-
ering of critical target has been proposed. And experimental
results clearly state that the proposed algorithm performs
better in terms of network lifetime in all the scenarios (i.e.,
varying sensors, and targets). Menaria et al. [21] proposed
a novel fault tolerance approach named node-link failure
fault tolerance model (NLFFT Model) in WSN, to handle
the faults that occur either by link or node failure during
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data transmission from the sensor to the sink or base sta-
tion. The proposed algorithm improves the performance of
WSN in terms of end-to-end delay and power consumption.
Li et al. [22] proposed a Data Collection scheme based on
Denoising Autoencoder (DCDA). In the data training phase,
a Denoising Auto Encoder (DAE) is trained to compute the
data measurement matrix and the data reconstruction matrix
using the historical sensed data, which makes the data col-
lection more energy-efficient. Velmani and Kaarthick [23]
proposed a Velocity Energy-efficient and Link-aware Cluster-
Tree (VELCT) scheme for data collection in WSNs, which
would effectively mitigate the problems of coverage distance,
mobility, delay, traffic, tree intensity, and end-to-end con-
nection. Abdulaziz and Simon [24] proposed Multi-channel
network Coding Clustering (MuCC) for mobile data gath-
ering within challenging wireless environments. MuCC is
novel in its usage of both multi-channel and network cod-
ing techniques to improve both throughput and reliability.
Wu and Tseng [25]developed an efficient distributed wake-up
scheduling scheme for data collection in a sensor network that
achieves both energy conservation and low reporting latency.
Ang et al. [26] proposed analytical approaches to determine
the node energy consumption for large-scale wireless sensor
networks mobile data collector schemes and gave models
for determining the optimal number of clusters for minimiz-
ing the energy consumption. Li et al. [27] investigated a
novel optimal scheduling strategy, called EHMDP, aiming to
minimize data packet loss from a network of sensor nodes
in terms of the nodes’ energy consumption and data queue
state information. Cohen et al. [28] designed and analyzed
a data collection protocol based on information theoretic
principles. It provided a simple codebook construction with
very simple encoding and decoding procedures. The data
collection protocol considers information security without
energy consumption. In [29] a time-division-multiple-access-
based energy consumption balancing algorithm is proposed
for the general k-hop WSNs, where one data packet is col-
lected in one cycle. The proposed algorithm has good per-
formance in terms of energy efficiency and timeslots (TS)
scheduling. Caione et al. [30] proposed a fully distributed
method: each node autonomously takes a decision about
the compression and forwarding scheme to minimize the
number of packets to transmit. An enhanced version of the
algorithm is also introduced to take into account the energy
spent in compression. Wei et al. [31] proposed a distributed
clustering algorithm, Energy-efficient Clustering (EC), that
determines suitable cluster sizes depending on the hop dis-
tance to the data sink, while achieving approximate equal-
ization of node lifetimes and reduced energy consumption
levels. Li et al. [32] proposed a novel scheduling optimization
problem for energy harvesting mobile sensor network, that
maximizes the amount of collected data under the constraints
of radio link quality and energy harvesting efficiency, while
ensuring a fair data reception. Kang er al. [33] proposed a
delay-efficient traffic adaptive (DETA) scheme for collecting
data from sensor nodes with minimum energy consumption.
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The DETA scheme minimizes data collection delay by
constructing delay-efficient, collision-free schedule, and by
using a special mechanism to enable every node to self-adapt
with the changes of data traffic.

Most of the methods developed in previous WSNs CS data
collection research use a fixed orthogonal basis to sparsely
represent the sensor signal. Chen et al. [34] used discrete
cosine transform (DCT) as the sparse representation basis of
sensor signals. Xiang er al. [35] used diffusion wavelets as
sparse representation bases for sensor signals. Wu et al. [36]
proposed to use the difference matrix as the sparse represen-
tation basis of sensor signals via the use of the sparsity of the
sensor sample values in adjacent time intervals.

However, due to the diversity of WSNs application scenar-
ios, different scenarios have different sparse characteristics,
and detailed expression is difficult with a fixed sparse basis.
Moreover, the use of a fixed sparse basis requires addi-
tional human intervention. For different application scenar-
i0s, an appropriate sparse basis must be selected in advance.

Luo et al. [37] proposed the use of a variety of fixed
sparse representation bases to improve the sparse repre-
sentation ability of sensor signals. In other words, in this
method, multiple orthogonal sparse bases are combined into
an over-complete redundant basis. However, this method
still depends on the advanced determination of several fixed
sparse bases, and it lacks the ability to adapt to various
scenarios. Quern et al. [38] proposed an adaptive construction
method for sparse representation bases based on principal
component analysis (PCA). First, the historical data are taken
as the sample matrix, and the covariance matrix of the sample
matrix is then diagonalized. Finally, the eigenvector matrix
obtained by diagonalization is used as the sparse represen-
tation basis of the sensor signal. However, this construction
method can easily over-fit historical data, which leads to
the poor sparse representation ability for real data excluding
historical data.

To adapt to diverse and dynamic signals, a dictionary is
learned from a group of training signals. The goal is to obtain
a dictionary that can use a few atoms to decompose the
signals. The method of optimal directions (MOD) [39] and
K-SVD [40] are two well-known traditional algorithms for
learning a dictionary that leads to a much more compact
representation. Alsheikh er al. [41] used a dictionary learning
algorithm to adaptively construct the sparse representation
basis for sensor signals. Before WSNs starts the collection
of normal compressed data, a portion of the uncompressed
sensor data is transmitted as the training data for a dictionary
learning algorithm.

Duarte-Carvajalino and Sapiro [42] proposed a method by
which to simultaneously learn the dictionary and optimize the
sampling matrix. This method is based on the minimal mutual
coherence between the dictionary and the projection matrix.
Kumar and Rajawat [43] presented a dictionary learning
framework for fingerprinting indoor locations.

Nevertheless, these existing methods do not consider
environmental noise. Therefore, this paper presents an
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optimized dictionary updating learning-based compressed
data collection (ODUL-CDC) algorithm. The sparse dictio-
nary is learned from the training data to improve the sparse
representation ability of sensor data in different application
scenarios. The reconstruction error caused by environmental
noise is positively correlated with the self-coherence of the
learned dictionary. Thus, the self-coherence of the learned
dictionary is added as a penalty term during the dictionary
updating step. The self-coherence penalty term can reduce
the over-fitting of the training data in the dictionary learning
process.

lll. THE ODUL-CDC ALGORITHM

In this section, we propose ODUL-CDC algorithm. In this
algorithm, dictionary learning is used to adaptively con-
struct the sparse dictionary in compressed data collection.
The sparse dictionary is learned from the training data to
improve the ability of sparse representation for sensor data
in different application scenarios. Furthermore, the self-
coherence penalty term introduced by ODUL-CDC algorithm
can reduce the over fitting of training data in the process of
dictionary learning, which can improve the ability of sparse
representation. By introducing self-coherence penalty term,
ODL-CDC algorithm makes the learned sparse dictionary
have low self-coherence structure, which can effectively sup-
press the impact of environmental noise on the accuracy
of data collection. The main contents of the algorithm are
presented as follows.

A. COMPRESSED SENSING DATA COLLECTION MODEL

A typical compressed sensing data collection model is illus-
trated in Figure 1. It is assumed that there are N nodes
(excluding sink nodes) on a multi-hop transmission path.
Each node senses the environment to obtain sensor data, and
x; represents the sensor data collected by node S;.

[ ‘éMl‘xl.i BiaXs

P, By1X, + Py
#x, $ix + o,
P

Sensor Node S; Sensor Node S Sensor Node S

Sink Node

Sensor Node Sy

FIGURE 1. Compressed data collection model on a multi-hop path.

In the compressed sensing data collection model, each
node no longer directly transmits its own sensor data, nor
directly forwards the sensor data of other nodes; instead,
it transmits the weighted sum of multiple sensor data [15]. For
example, node S sends M weighted data ¢1x; to its parent
node Sy, where @1 = {¢p11, P21, - - - ,¢M1}T is the random
measurement vector of node S;. After receiving these data,
node S> adds the sensor data collected by itself to obtain the
new weighted data ¢1x; + ¢ox2, and sends the data to the
parent node S3. Then, the sink node receives M weighted
data by repeating the operation. This is expressed by an
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M -dimensional column vectory as follows.
N

Y= i (1

It is expressed in matrix form as

11 o2 - v X
¢ P - PN X2
y= ) ) . ) ) =®x, (2)
om1 M2 - dun XN
where ® € RM*V is the measurement matrix and x € RY is
the sensor data vector.
If x is sparse in some sparse dictionary D € RV *K where

K is the atomic number of the dictionary and K > N, then
x is expressed as

x = D@, (€)

where vector § = [0, 6, --- ,GN]T is the corresponding
sparse coefficients of x such that ||0]|, = K <« N. The
orthonormal basis ¥ can be constructed from various bases,
e.g., DCT, wavelets, curvelets, etc.

Equation (2) can then be written in the following form:

y = ®DO = Af, )

where A = ®D is called the sensing matrix. Because the
number of rows in matrix A is less than the number of
columns, Eq. (4) is an underdetermined system of linear
equations. If there are no other additional conditions, Eq. (4)
will yield infinite solutions. CS theory points out that when
0 satisfies the sparsity assumption and the sensing matrix A
satisfies certain conditions, the unique exact solution of 6 can
be obtained from Eq. (4).

To solve the problem of which conditions are satisfied for
Eq. (4) to obtain the unique exact solution, Candes and Tao
first proposed the restricted isometry property (RIP) [27].

Definition 1 (Restricted Isometry Property) [44]: S is a
positive integer. If there is an isometric constantég € (0, 1),
for any vector § € {016 € RX, |0 < S} whose sparsity
is S-, the following formula always holds.

(1—385) 11015 < 14813 < (14 85) 10113 Q)

The matrix A is said to satisfy the RIP with order S.
Equation (4) will thus have a unique exact solution.

If the condition of CS is satisfied, the estimated value of the
sparsity coefficient can be obtained by solving the following
optimization problem.

0 = argmin [0, .
0cRK

s.t. ®DO =y (6)

The original signal can then be recovered by using the
formula £ = Df.

The objective function in Eq. (6) is an lp-norm function.
Because the /p-norm function is non-convex, Eq. (6) is a non-
convex optimization. The global optimal solution of Eq. (6)
is an NP-hard problem, and it cannot be solved in polynomial
time. Various greedy algorithms have been proposed to obtain

205127



IEEE Access

J. Chen et al.: Compressed Data Collection Method for WSNs Based on Optimized Dictionary Updating Learning

an approximate solution, and include orthogonal matching
pursuit (OMP) [45], regularized OMP (ROMP) [46], and
compressive sampling matching pursuit (CoSaMP) [47].
Fortunately, this problem is equivalent to the following
/1 minimization problem under certain conditions. Thus,
the recovery can be obtained using linear programming (LP)
techniques to search for resolution of the following.

0 = argmin 0], ,
0cRK

s.t. ®DO =y @)

B. DICTIONARY LEARNING METHOD

The sparse dictionary used in the existing WSNs data col-
lection methods based on the compressed data collection
model, such as DCT, is a fixed orthogonal matrix. How-
ever, the deployment environment of WSNs is complex and
changeable, and sensor data in different application scenarios
will have different sparse characteristics. Therefore, it is diffi-
cult to describe the sensor data with a fixed dictionary. For this
reason, it is necessary to use a dictionary learning method to
learn corresponding sparse dictionaries from different types
of sensor data, which can improve the ability of CS data
collection to adapt to diverse application scenarios.

Here, {x"}iL=1 is used as a set of training data for dictio-
nary learning, where x' € RV represents a data vector and
L represent the amount of training data. Thus, the data matrix
X e RV*L X =[x!, %%, ..., xI] canbe yielded. The general
form of conventional dictionary learning methods can be then
reformed as

min IX=DCl7. stVi, leillo < S. ®)

where | - || represents the matrix Frobenius norm,
D e RM*K denotes the sparse redundant dictionary, and
C e RE*L denotes the sparse matrix.

C. INFLUENCE OF ENVIRONMENTAL NOISE ON
COLLECTION ACCURACY
In actual situations, environmental background noise will
interfere with the collection of compressed data, which will
make the measurement data contain noise components. From
equations (2), (3) and (4), we can see that the noise is
mixed with the original data x. In the process of data col-
lection, firstly, we sparse represent the mixed noise data in
the dictionary. Then the compressed sensing theory is used
to collect data. Finally, the original data is restored by the
reconstruction algorithm is. In the process, the greater the
degree of self-coherence of the dictionary, the smaller the
accuracy of data collection. In order to solve this problem,
a self-coherence penalty item is introduced in this section to
make the learned sparse dictionary have a low self-coherence
structure, which can effectively suppress the impact of envi-
ronmental noise on the accuracy of data collection.

Here, e is used as the random Gaussian noise vector. The
mean square error (MSE) is used to estimate the performance
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of reconstructing the sparse random vector 6:
R 2
MSE = Ep [”o - oM, )

where @ denotes an estimated value of # and Eg ¢ (-) denotes
the mathematical expectation concerning the joint distribu-
tion of the random vectors @ and e. The well-known oracle
estimator assumes that the positions of nonzero entries in the
sparse vector @ are known asasetI" C {1,2,---, N}. Thus,
Eq. (4) has the following form:

y= ®DI-0r + e, (10)

where IT denotes the matrix obtained by only preserving the
corresponding columns of the identity matrix of the set I', and
Or € RS denotes the vector obtained by deleting the set of
entries from the set I". The formulation of the oracle estimator
is then given as follows [48]:

—1
MSE = o 2Er |:Tr ((1£0T<1>T<I>Dlr) )} (1n

where Tr (-) denotes the trace of the matrix.
To reduce the MSE caused by environmental noise,

Tr [(IFDTQTQDIF)_I] in Eq. (11) is considered to be as
small as possible. The term Tr [(I?DT<1>T<I>D11~)7]] is pos-
itively correlated to the self-coherence of the sparse dic-

. 2., . ..
tionary. Therefore, D'D -1 || P s introduced to dictionary
learning as a self-coherence penalty item.

D. OPTIMIZED DICTIONARY UPDATING LEARNING
Considering the preceding discussion, the cost objective func-
tion of the final form of the ODUL-CDC problem is

. 2 MpT 2
min |X —DC|> + = HD D —IH
D.C 2 F
st Vi, lleillo < S, (12)

where A is the trade-off factor.

ODUL-CDC is solved in a two-step iterative approach,
which alternates between sparse coding and dictionary updat-
ing procedures.

1) SPARSE CODING

In the sparse approximation stage, the dictionary D is fixed,
and the sparse representation matrix C of the training data X
in the dictionary D is solved.

mCin IX —DC||%  s.t.Vi, lcillg<S$ (13)
Equation (13) can be solved by the OMP algorithm [45].

2) DICTIONARY UPDATING

In the dictionary updating stage, matrix C is fixed and the
new dictionary D is solved according to the following opti-
mization problem.

A 2
min |X — DC|% + = HDTD —IH (14)
D 2 F
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Equation (14) is evidently a convex problem, which must
have a total optimal solution.
Let F (D) = |X — DC|% + % |D"D —I| 3. so that
VF (D) =2 (DCCT - XCT) + 20 (DDTD - D). (15)

Because VF (D) is a convex function, when F (D) reaches
the minimum value, there must be VF (D) = 0, that is,

(DCCT - XCT) +D (DTD _ 1) —0. (16)
The following equation can be obtained from Eq. (16).
-1
D =XxC" (CCT A (DTD - 1)) 17)

Equation (17) is used as the approximate estimation of
the optimal solution of optimization problem (14), that
is, the dictionary is updated with the following formula during
the iteration process:

DDy, = XCT (CCT T (D,{Dk —I))_l . as)

where Dy 1 is the dictionary updated in the (K + 1)-th itera-
tion. After obtaining the new dictionary Dy 1, the columns of
Dy 1 should be normalized in turn. Finally, the pseudo-code
of the ODL-CDG algorithm is shown in Algorithm 1.

Algorithm 1 ODUL-CDC Algorithm
Input: Y, <I>,AX, A, Estop
Output: D, X
Main procedure:
While ||Diy1 — Dilly > €s10p do
Cy41 = argmin [|X — DiC| 7,
c

s.t. Vi, ||Cill < 8
-1

Dy = XC} (CkCl + A (DIDy — 1))

Normalize the columns of Dy 1,

k=k+1
End while
D =Dj41
Compute 6:6 = argmin ||@]|;, s.t.®DO =y
N . fcRK
X =D¢

E. STEPS OF THE ODUL-CDC ALGORITHM
The ODUL-CDC algorithm consists of five steps.

1) Employing collection tree protocol (CTP) to con-
struct a tree network topology with sink node as root
node. In the process of tree topology construction,
node i records Ci as the total number of nodes in the
subtree whose root node is node i. For example, in the
example in Figure 2, the total number of subtree nodes
of node 6 is 5.

2) The sink node constructs a seed which can generate
random number, and sends the seed to each node in the
network in the form of broadcast. After receiving the
seed, combined with its own node ID number, the node
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FIGURE 2. Schematic diagram of ODUL-CDC algorithm.

generates a series of pseudo-random numbers as the
random measurement vector of the node.

3) According to the random seed, each node calculates the
random measurement vector of all nodes in its subtree.

4) This step is the dictionary learning stage. The node
adopts the non compression transmission mode, that
is, the compression ratio of data transmission is 1. The
measurement times M is equal to the number of nodes
N. When the sink node collects enough sensor data,
the sensor data can be used as the training set. The
sparse dictionary D is obtained by using the dictionary
learning algorithm proposed in previous section.

5) This step is compressed data collection. The nodes
transmit data by compressed sensing theory shown
in Figure 2. The sink node will finally receive the
weighted sum vector as shown in formula (2). The
original data of all sensors can be recovered by
OMP algorithm.

The flowchart of the proposed ODUL-CDC algorithm is
illustrated in Figure 3.

IV. EXPERIMENT AND ANALYSIS

To verify the effectiveness of the proposed ODUL-CDC algo-
rithm, simulation experiments were carried out on the WSNs
experimental platform developed by the Beihang Sensor Net-
work and Instrument Laboratory [49]. The sensor nodes and
node distribution used in the experiment are respectively
presented in Figures 4 and 5.

The experimental data used in the simulation experiment
were temperature and humidity data recorded by 50 sen-
sor nodes from November 5, 2019, to December 3, 2019.
The recording interval was 10 min, and each node recorded
4000 points of temperature data and 4000 points of humidity
data. In chronological order, the first 400 data points were
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The sink node is the root node.
Construct tree topology.

v

Each sensor node transmits the original data
to the sink node by multi hop.

v

D, is a random matrix, £=0

v

D, =Xl (¢,cl +A(D[D 1))

C,. = arg;nin“X—DkC“zF . stvifcf<s

Normalize the columns of Dy.;, k=k+1

HDk+1 - DkHz > Estop

The compressed sensing method is used to
collect data. |

0= arg '1'1'1'1'11'“&9”1”_" s.t. DO =y
8eRF

v

Recover the original data

x=Dé

End
FIGURE 3. The flowchart of the proposed ODUL-CDC algorithm.

divided into training sets, and the last 3600 data points were
divided into test sets. The experimental process was divided
into three steps:

1) The ODUL algorithm was used to learn the sparse
dictionary D on the training data set;

2) The sparse representation ability of dictionary D was
evaluated on the test data set;

3) The compressed data collection algorithm was run
on the test data set, and the data collection accuracy
was evaluated under different environmental noise
intensities.
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FIGURE 4. Sensor node used in the experiment.
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FIGURE 5. Schematic diagram of sensor node distribution.

A. DATA COLLECTION ACCURACY

A fixed DCT matrix, the dictionary learned by K-SVD, and
the dictionary learned by IDL [50] were selected as compar-
ison objects. The specific parameters used in the experiment
are reported in Table 1.

TABLE 1. Experimental parameters of the OUDL-CDC algorithm.

Symbol Parameter Value
N Number of nodes 50
M Compressed transmission data 20

volume
L Length of training data set 400
K Dictionary atomic number 100
A Trade-off factor 0.1

The measurement matrix used for the compressed data col-
lection was a Gaussian random matrix, and the environmen-
tal noise was artificially simulated Gaussian random noise.
To reduce the impact of the randomness of the experiment,
each group of experiments was repeated 50 times, and the
average value was taken as the final experimental result.
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The accuracy of data collection (ADC) is defined as follows.
1 n
ADC = (1- — Hpo —xH ) % 100%  (19)
( VN 2

As presented in Table 2 and Figure 6, the signal-to-noise
ratio (SNR) was 40 dB, and the sampling ratio ranged from
10% to 40%. As can be seen from the figure, ODUL-CDC
exhibited poor performance when the sampling ratio was low.
However, when the sampling ratio was high, the ODUL-
CDC dictionary outperformed the DCT, K-SVD, and IDL
dictionaries in terms of the relative reconstruction error. The
fixed dictionary, DCT, was the worst case, as the DCT dic-
tionary could not sparsely represent synthetic data of vary-
ing diversity using a fixed structure. In comparison, the
ODUL-CDC, K-SVD, and IDL dictionaries were better than

TABLE 2. The data collection accuracy of DCT, K-SVD, IDL, and ODUL-CDC
under different sampling ratios.

SAMPLING 11 _epc IDL  K-SVD DCT
RATIO
10% 64.9% 732%  722%  66.8%
13% 68.8% 75.8%  749%  70.9%
16% 70.8% 779%  763%  72.5%
19% 72.6% 802%  77.5%  73.9%
22% 78.8% 80.7%  78.5%  752%
25% 84.8% 81.1%  802%  76.2%
28% 87.5% 85.1%  83.4%  79.4%
31% 89.9% 88.7%  86.5%  82.2%
34% 93.1% 922%  883%  86.1%
37% 93.8% 92.7%  913%  90.2%
40% 94.9% 93.1%  92.7%  91.1%

SNR =40dB

100% T T

—#%— ODUL-CDC
IDL based

95% [ | —*— K-SVD based

—%— DCT based

90%

85%

80% [

75%

Accuracy of Data Collection

70%

65%

60% .
10% 15% 20% 25% 30% 35% 40%
Sampling ratio

FIGURE 6. The data collection accuracy of DCT, K-SVD, IDL, and ODUL-CDC
under different sampling ratios.
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the DCT dictionary, as they could adapt to sparsely represent
synthetic data via training.

Similar results can be observed in Table 3 and Figure 7.
As was determined from the experiments, the results of
ODUL-CDC were better than those of IDL, K-SVD, and
DCT because the self-coherence penalty suppressed the influ-
ence of noise on the accuracy of data collection.

TABLE 3. The data collection accuracy of DCT, K-SVD, IDL, and ODUL-CDC
under different sampling ratios.

SNR ODUL-CDC IDL K-SVD DCT
20dB 82.7% 81.7% 80.7% 75.5%
23dB 85.2% 84.3% 83.7% 79.5%
26dB 87.5% 85.1% 84.7% 83.8%
29dB 88.5% 86.7% 86.1% 84.8%
32dB 89.2% 88.2% 86.8% 85.5%
35dB 91.1% 89.8% 87.5% 86.9%
38dB 91.8% 90.2% 88.9% 88.2%
41dB 92.4% 90.7% 89.8% 88.8%
44dB 93.2% 92.8% 90.2% 89.7%
47dB 94.3% 93.1% 91.6% 90.8%
50dB 94.7% 93.5% 92.8% 91.8%

Sampling Ratio = 40%

100% T

—*— ODUL-CDC
IDL based

—#—K-SVD based

95% f | —*—DCT based 4

90%

85%

Accuracy of Data Collection

80%

75%

70% L L L L
20 25 30 35 40 45 50

Signal of Noise Ratio(dB)

FIGURE 7. The data collection accuracy of DCT, K-SVD, IDL, and ODUL-CDC
under different sampling ratios.

As presented in Table 4 and Figure 8, when the sampling
ratio was 40% and the SNR was 40dB, the ODUL-CDC dic-
tionary outperformed the DCT, K-SVD, and IDL dictionaries
in terms of the accuracy of data collection. This because that
the self-coherence penalty term introduced by ODUL-CDC
can reduce the over fitting of training data in the process of
dictionary learning, which can improve the ability of sparse
representation. The experimental results demonstrate that the
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TABLE 4. The data collection accuracy of DCT, K-SVD, IDL, and ODUL-CDC
under different sparsity.

SPARSITY ODUL-CDC IDL K-SVD DCT
3 86.9% 86.5% 85.8% 84.7%
6 88.7% 88.1% 87.4% 86.4%
9 91.6% 90.4% 89.1% 88.6%
12 92.7% 91.4% 90.9% 90.1%
15 93.4% 92.3% 91.5% 90.9%
18 94.9% 93.8% 92.9% 92.3%
21 95.2% 94.5% 93.8% 93.1%
24 95.7% 95.0% 94.2% 93.7%
27 96.8% 96.4% 95.4% 94.9%
30 97.5% 97.1% 96.5% 95.6%

Sampling Ratio = 40%,SNR = 40dB
100% T T T

—#— ODUL-CDC
IDL based
—#— K-8VD based

—#— DCT based

95% |

90%

Accuracy of Data Collection

85%

80%

5 10 15 20 25 30
Sparsity

FIGURE 8. The data collection accuracy of DCT, K-SVD, IDL, and ODUL-CDC
under different sparsity.

ODUL-CDC algorithm performed at least 3.2% better than
the other three algorithms in terms of data collection accuracy
when the sparsity ranged from 3 to 30, the SNR ranged from
30 to 50 and the sampling ratio ranged from 25% to 40%.

B. IMPACT OF THE TRADE-OFF FACTOR ON THE
ODUL-CDC ALGORITHM

Note that the ODUL-CDC algorithm contains a variable
parameter, namely the trade-off factor A, the value of which
is bound to affect the algorithm performance. For this reason,
the influence of the value of A on the performance of the
ODUL-CDC algorithm was analyzed via simulation exper-
iments. The experimental results reported in the previous
section indicated that the performance of the ODUL-CDC
algorithm on the temperature data set was very similar to that
on the humidity data set. Therefore, the effect of A on the
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performance of the ODUL-CDC algorithm was only tested
on the temperature data set.

First, the simulation experiment was conducted to analyze
the influence of A on the sparse representation ability of
the ODUL-CDC algorithm. In the simulation, the sparsity
was fixed to 10, the value of A was gradually increased
from 0 to 0.4, and the sparse representation error of the dictio-
nary trained by the ODUL-CDC algorithm on the temperature
data set was tested. The simulation results are presented
in Figure 9.

0.13

0.125
0.12
0.115
sl
0. 105
0.1
0.095

Sparse Representation Error
(=]

0.09 E ; 5
0 0.1 0.2 0.3 0.4

A

FIGURE 9. The influence of the parameter A on the sparse representation
error.

In the initial stage, with the gradual increase of A from O,
the sparse representation error of the ODUL-CDC algo-
rithm gradually decreased. This is because the self-coherence
penalty term introduced in the ODUL-CDC algorithm started
to take effect with the increase of A from 0, which reduced
the overfitting of the training data in the dictionary learning
process. However, when A was greater than a certain value
(such as A > 0.1), the sparse representation error increased
as A increased. This is because, when the value of A was
too large, the penalty effect of the self-coherence penalty
term was too strong, which inhibited the sparse representation
ability of the dictionary for sensor data.

Then the influence of A on the data collection error of
the ODUL-CDC algorithm was then analyzed via simulation
experiments. In the simulation, the SNR was fixed at 10,
the value of A was gradually increased from 0O to 0.4, and
the error of the compressed data collection based on the
ODUL-CDC algorithm on the temperature data set was
tested. The simulation results are presented in Figure 10, and
are very similar to the results displayed in Figure 9.

With the increase of A from 0, the data collection
error gradually decreased. However, compared with that
in Figure 9, the curve in Figure 10 has a larger drop. This
is because, as A increased from 0, the sparse representa-
tion ability of the dictionary trained by the ODUL-CDC
algorithm gradually increased. More importantly, the self-
coherence penalty term in the ODUL-CDC algorithm began
to take effect, and the dictionary’s ability to suppress envi-
ronmental noise gradually increased. Therefore, under the
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FIGURE 10. The influence of the parameter A on the data collection error.

superimposition of these two factors, the decrease in the
data collection error was greater than the decrease in the
sparse representation error. Similar to the results presented
in Figure 9, when A was greater than a certain value, the data
collection error also increased as A increased. This is because,
when the value of A was too large, the sparse represen-
tation ability of the ODUL-CDC algorithm deteriorated.
In summary, the value of A must be weighted for specific
applications.

V. SIMULATION ON ENERGY CONSUMPTION AND
ANALYSIS

To verify the effect of the ODUL-CDC-based WSNs data
collection method on the improvement of the network sur-
vival time, MATLAB software [51] was used to simulate
and analyze the proposed algorithm. In the simulation, nodes
were randomly deployed in an area of 500 x 500 m, and
the sink node was located in the center. Each node had an
initial energy of 1 J. We assume that the distance between
the receiving node and the sending node is d. other specific
simulation parameters are shown in table 5.

TABLE 5. Parameters of energy consumption simulation.

PARAMETER Value
Number of nodes 1000
Initial energy 1]
o 20 m
Data size 16 bit
Egy 120 nJ/bit
Epy 100 nJ/bit
E p 0.01 nJ/(bit-m?)
Area 500X 500m?>

Routing algorithm Collection Tree Protocol (CTP)
2.4-GHz Inverted F Antenna

250 kbps

Antenna type
Speed of the network

If d is less than the threshold dpyax, according to the
free space attenuation model, the transmitting power of the
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sending node will exhibit a quadratic attenuation as the dis-
tance d increases. If d is greater than dpax, according to
the multi-path attenuation model, the transmitting power
of the sending node will exhibit a fourth-power attenuation as
the distance d increases. E7 (k, d) represents the energy con-
sumed by the node to send k bits of data, and Eg (k)represents
the energy consumed by the node to receive & bits of data. The
following equations therefore hold:

(Ere +d* X Eamp) x k. d < drpres

(Erx +d* X Eamp) x k. d = dppres,
(20)

ER (k) = kERx, (21)

Er(k,d) =

where E7y is the energy consumed by the sending circuit
to send 1 bit of data, Egx is the energy consumed by the
receiving circuit to receive 1 bit of data, and Eap is the
energy consumption of the transmission amplifier circuit.

It was regarded as a successful reconstruction when
the relative reconstruction error was less than O0.1.
Table 6 and Figure 11 present the comparison of the energy

TABLE 6. The total energy consumption of different dictionary
learning-based data collection methods.

Number of
successful ODUL-CDC IDL K-SVD DCT
reconstruction
40 1.856 2.088 2.232 2.768
60 2.434 2.782 2.948 3.552
80 3.012 3.476 3.664 4.336
100 3.590 4.170 4.380 5.120
120 4.168 4.864 5.096 5.904
140 4.746 5.558 5.812 6.688
160 5.324 6.252 6.528 7.472
gt . . . .

—*— ODUL-CDC
IDL based

| [ —*—K-SVD based

—*— DCT based

Energy Consumption(uJ)

1 L . L L
40 60 80 100 120 140 160

Number of Successful Reconstruction

FIGURE 11. The total energy consumption of different dictionary
learning-based data collection methods.
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consumption of the ODUL-CDC algorithm and other dictio-
nary learning-based data collection methods. Data collection
methods based on dictionary learning need to initially access
the entire data as training data, and then learn a new dictionary
from the training data. Therefore, methods based on dictio-
nary learning consume more energy in the initial stage of data
collection. Thus, the stage after the dictionary learning was
completed was chosen to compare the energy consumption.

Table 6 and Figure 11 demonstrates that the ODUL-CDC
algorithm achieved the best energy-saving effect, as the intro-
duced self- coherence penalty dictionary effectively sup-
pressed the reconstruction error of the algorithm. Therefore,
under the same reconstruction accuracy, the data collection
method based on ODUL-CDC should collect more CS mea-
surement data than the other three algorithms.

VI. CONCLUSION AND FUTURE WORKS
This paper presented an energy-saving data collection algo-
rithm for WSNs based on ODUL-CDC. The sparse dictionary
is learned from the training data to improve the sparse repre-
sentation ability of sensor data in different application sce-
narios. To reduce the recovery error caused by environmental
noise, a self-coherence term of the learned dictionary is intro-
duced as a penalty term during the dictionary updating stage.
The introduced self-coherence term endows the ODUL-CDC
algorithm with an improved sparse representation ability and
noise suppression ability. The experimental results demon-
strated that the ODUL-CDC algorithm exhibited the highest
increase in recovery accuracy of 3.2% as compared to the
DCT, K-SVD, and IDL methods when the SNR ranged from
30 to 50, the sampling ratio ranged from 25% to 40% and the
sparsity range from 3 to 30. The simulation results showed
that, compared with the data collection methods based on
IDL, K-SVD, and DCT, the ODUL-CDC algorithm exhibited
a significantly reduced energy consumption with the same
recovery accuracy, thereby contributing to an improved net-
work life.

Future, as the ODUL-CDC algorithm is only applied in
a small environment with simple noise, it can be extended
and applied in large-scale WSNs with more complex noise.
In addition, other measurement matrices, such as the sparsest
measurement matrices, can be used in this work to further
reduce the energy consumption.

REFERENCES

[1] L. Maschi, A. Pinto, R. Meneguette, and A. Baldassin, “Data summa-
rization in the node by parameters (DSNP): Local data fusion in an IoT
environment,” Sensors, vol. 18, no. 3, p. 799, Mar. 2018.

[2] M. Zhou, G. Fortino, W. Shen, J. Mitsugi, J. Jobin, and R. Bhattacharyya,
“Guest editorial special section on advances and applications of Internet
of Things for smart automated systems,” IEEE Trans. Autom. Sci. Eng.,
vol. 13, no. 3, pp. 1225-1229, Jul. 2016.

[3] S.Chen,Z. Wang, H. Zhang, G. Yang, and K. Wang, “Fog-based optimized
kronecker-supported compression design for industrial IoT,” IEEE Trans.
Sustain. Comput., vol. 5, no. 1, pp. 95-106, Jan. 2020.

[4] Y.Ren, T. Wang, S. Zhang, and J. Zhang, “An intelligent big data collection
technology based on micro mobile data centers for crowdsensing vehicular
sensor network,” Pers. Ubiquitous Comput., pp. 1-17, Aug. 2020, doi:
10.1007/s00779-020-01440-0.

205134

[5]

[6]

[7]

[8

[t

[9

[t

[10]
(11]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

J. Tan, W. Liu, T. Wang, M. Zhao, A. Liu, and S. Zhang, “A high-accurate
content popularity prediction computational modeling for mobile edge
computing using matrix completion technology,” Trans. Emerg. Telecom-
mun. Technol., p. €3871, Jan. 2020, doi: 10.1002/ett.3871.

M. P. Burisi¢, Z. Tafa, G. Dimi¢, and V. Milutinovi¢, “A survey of military
applications of wireless sensor networks,” in Proc. MECO, Jun. 2012,
pp. 196-199.

M. Wu, L. Tan, and N. Xiong, ““Data prediction, compression, and recovery
in clustered wireless sensor networks for environmental monitoring appli-
cations,” Inf. Sci., vol. 329, pp. 800-818, Feb. 2016.

D. Izadi, J. Abawajy, S. Ghanavati, and T. Herawan, ““A data fusion method
in wireless sensor networks,” Sensors, vol. 15, no. 2, pp. 2964-2979,
Jan. 2015.

E.J. Candes and M. B. Wakin, “An introduction to compressive sampling,”
IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21-30, Mar. 2008.

R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag.,
vol. 4, no. 24, pp. 118-121, Aug. 2007.

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289-1306, Apr. 2006.

W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, “Compressive wireless
sensing,” in Pro. 5th Int. Conf. Inf. Process. sensor Netw., Apr. 2006,
pp. 134-142.

J. Haupt, W. U. Bajwa, M. Rabbat, and R. Nowak, “Compressed sens-
ing for networked data,” IEEE Signal Process. Mag., vol. 25, no. 2,
pp. 92-101, Mar. 2008.

C. Luo, F. Wu, J. Sun, and C. W. Chen, “Compressive data gathering
for large-scale wireless sensor networks,” in Proc. 15th Annu. Int. Conf.
Mobile Comput. Netw. (MobiCom), 2009, pp. 145-156.

J. Luo, L. Xiang, and C. Rosenberg, “Does compressed sensing improve
the throughput of wireless sensor networks?” in Proc. IEEE Int. Conf.
Commun., May 2010, pp. 1-6.

X. Wu, Y. Xiong, P. Yang, S. Wan, and W. Huang, “Sparsest random
scheduling for compressive data gathering in wireless sensor networks,”
IEEE Trans. Wireless Commun., vol. 13, no. 10, pp. 5867-5877, Oct. 2014.
M. Leinonen, M. Codreanu, and M. Juntti, “Sequential compressed sens-
ing with progressive signal reconstruction in wireless sensor networks,”
IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1622-1635, Mar. 2015.
W. Li, H. Xu, H. Li, Y. Yang, P. K. Sharma, J. Wang, and S. Singh,
“Complexity and algorithms for superposed data uploading problem in
networks with smart devices,” IEEE Internet Things J., vol. 7, no. 7,
pp. 5882-5891, Jul. 2020.

B. Jiang, G. Huang, T. Wang, J. Gui, and X. Zhu, “Trust based energy effi-
cient data collection with unmanned aerial vehicle in edge network,” Trans.
Emerg. Telecommun. Technol., p. €3942, Mar. 2020, doi: 10.1002/ett.3942.
Manju, S. Singh, S. Kumar, A. Nayyar, F. Al-Turjman, and L. Mostarda,
“Proficient QoS-based target coverage problem in wireless sensor net-
works,” IEEE Access, vol. 8, pp. 74315-74325, 2020.

V. K. Menaria, S. C. Jain, N. Raju, R. Kumari, A. Nayyar, and E. Hosain,
“NLFFT: A novel fault tolerance model using artificial intelligence to
improve performance in wireless sensor networks,” IEEE Access, vol. 8,
pp. 149231-149254, 2020.

G. Li, S. Peng, C. Wang, J. Niu, and Y. Yuan, “An energy-efficient
data collection scheme using denoising autoencoder in wireless sensor
networks,” Tsinghua Sci. Technol., vol. 24, no. 1, pp. 86-96, Feb. 2019.
R. Velmani and B. Kaarthick, “An efficient cluster-tree based data collec-
tion scheme for large mobile wireless sensor networks,” IEEE Sensors J.,
vol. 15, no. 4, pp. 2377-2390, Apr. 2015.

M. Abdulaziz and R. Simon, “Mobile data collection using multi-channel
network coding in wireless sensor networks,” in Proc. IEEE 40th Conf.
Local Comput. Netw. (LCN), Oct. 2015, pp. 205-208.

F.-J. Wuand Y.-C. Tseng, “Distributed wake-up scheduling for data collec-
tion in tree-based wireless sensor networks,” IEEE Commun. Lett., vol. 13,
no. 11, pp. 850-852, Nov. 2009.

K. L.-M. Ang, J. K. P. Seng, and A. M. Zungeru, “Optimizing energy
consumption for big data collection in large-scale wireless sensor net-
works with mobile collectors,” IEEE Syst. J., vol. 12, no. 1, pp. 616-626,
Mar. 2018.

K. Li, W. Ni, L. Duan, M. Abolhasan, and J. Niu, “Wireless power
transfer and data collection in wireless sensor networks,” IEEE Trans. Veh.
Technol., vol. 67, no. 3, pp. 2686-2697, Mar. 2018.

A. Cohen, A. Cohen, and O. Gurewitz, ‘‘Efficient data collection over mul-
tiple access wireless sensors network,” IEEE/ACM Trans. Netw., vol. 28,
no. 2, pp. 491-504, Apr. 2020.

VOLUME 8, 2020


http://dx.doi.org/10.1007/s00779-020-01440-0
http://dx.doi.org/10.1002/ett.3871
http://dx.doi.org/10.1002/ett.3942

J. Chen et al.: Compressed Data Collection Method for WSNs Based on Optimized Dictionary Updating Learning

IEEE Access

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

J. Long, M. Dong, K. Ota, and A. Liu, “A green TDMA scheduling
algorithm for prolonging lifetime in wireless sensor networks,” IEEE Syst.
J., vol. 11, no. 2, pp. 868-877, Jun. 2017.

C. Caione, D. Brunelli, and L. Benini, “Distributed compressive sampling
for lifetime optimization in dense wireless sensor networks,” IEEE Trans.
Ind. Informat., vol. 8, no. 1, pp. 3040, Feb. 2012.

D. Wei, Y. Jin, S. Vural, K. Moessner, and R. Tafazolli, “An energy-
efficient clustering solution for wireless sensor networks,” IEEE Trans.
Wireless Commun., vol. 10, no. 11, pp. 3973-3983, Nov. 2011.

K. Li, C. Yuen, B. Kusy, R. Jurdak, A. Ignjatovic, S. S. Kanhere, and S. Jha,
“Fair scheduling for data collection in mobile sensor networks with energy
harvesting,” IEEE Trans. Mobile Comput., vol. 18, no. 6, pp. 1274-1287,
Jun. 2019.

B. Kang, P. Nguyen, and H. Choo, “Delay-efficient energy-minimized data
collection with dynamic traffic in WSNs,” IEEE Sensors J., vol. 18, no. 7,
pp. 3028-3038, Apr. 2018.

W. Chen, M. R. D. Rodrigues, and I. J. Wassell, “A frechet mean
approach for compressive sensing date acquisition and reconstruction in
wireless sensor networks,” IEEE Trans. Wireless Commun., vol. 11, no. 10,
pp. 3598-3606, Oct. 2012.

L. Xiang, J. Luo, and C. Rosenberg, “Compressed data aggregation:
Energy-efficient and high-fidelity data collection,” IEEE/ACM Trans.
Netw., vol. 21, no. 6, pp. 1722-1735, Dec. 2013.

X. Wu, Q. Wang, and M. Liu, “In-situ soil moisture sensing: Measurement
scheduling and estimation using sparse sampling,” ACM Trans. Sensor
Netw., vol. 11, no. 2, pp. 1-29, Mar. 2015.

C. Luo, FF. Wu, J. Sun, and C. W. Chen, ‘“Efficient measure-
ment generation and pervasive sparsity for compressive data gather-
ing,” IEEE Trans. Wireless Commun., vol. 9, no. 12, pp. 3728-3738,
Dec. 2010.

G. Quer, R. Masiero, G. Pillonetto, M. Rossi, and M. Zorzi, “Sensing,
compression, and recovery for WSNs: Sparse signal modeling and mon-
itoring framework,” IEEE Trans. Wireless Commun., vol. 11, no. 10,
pp. 3447-3461, Oct. 2012.

K. Engan, S. O. Aase, and J. H. Husoy, “Method of optimal directions for
frame design,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), vol. 5, Mar. 1999, pp. 2443-2446.

M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm
for designing overcomplete dictionaries for sparse representation,”
IEEE Trans. Signal Process., vol. 54, no. 11, pp.4311-4322,
Nov. 2006.

M. A. Alsheikh, S. Lin, H.-P. Tan, and D. Niyato, “Toward a robust sparse
data representation for wireless sensor networks,” in Proc. IEEE 40th Conf.
Local Comput. Netw. (LCN), Oct. 2015, pp. 117-124.

J. M. Duarte-Carvajalino and G. Sapiro, “Learning to sense sparse
signals: Simultaneous sensing matrix and sparsifying dictionary opti-
mization,” IEEE Trans. Image Process., vol. 18, no. 7, pp. 1395-1408,
Jul. 2009.

C. Kumar and K. Rajawat, “Dictionary-based statistical fingerprinting
for indoor localization,” IEEE Trans. Veh. Technol., vol. 68, no. 9,
pp. 8827-8841, Sep. 2019.

E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans.
Inf. Theory, vol. 51, no. 12, pp. 4203—4215, Dec. 2005.

J. A. Tropp and A. C. Gilbert, “Signal recovery from random measure-
ments via orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53,
no. 12, pp. 4655-4666, Dec. 2007.

D. Needell and R. Vershynin, “Uniform uncertainty principle and signal
recovery via regularized orthogonal matching pursuit,” Found. Comput.
Math., vol. 9, no. 3, pp. 317-334, Jun. 2009.

D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal.,
vol. 26, no. 3, pp. 301-321, May 2009.

E. Candes and T. Tao, “The dantzig selector: Statistical estimation when
P is much larger than N,” Ann. Statist., vol. 35, no. 6, pp. 2313-2351,
Dec. 2007.

K. Yi, R. Feng, N. Yu, and P. Chen, “PARED: A testbed with parallel
reprogramming and multi-channel debugging for WSNs,” in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), Apr. 2013, pp. 4630—4635.

C. D. Sigg, T. Dikk, and J. M. Buhmann, “Learning dictionaries with
bounded self-coherence,” IEEE Signal Process. Lett., vol. 19, no. 12,
pp. 861-864, Dec. 2012.

A. Nayyar and R. Singh, “A comprehensive review of simulation tools for
wireless sensor networks (WSNs),” J. Wireless Netw. Commun., vol. 5,
no. 1, pp. 1947, 2015.

VOLUME 8, 2020

JUNYING CHEN received the B.S. degree from
Beihang University, Beijing, China, in 2013,
where he is currently pursuing the Ph.D. degree
with the School of Instrumentation and Opto-
electronic Engineering. His research interests
include wireless sensor networks and compressive
sensing.

FUQIANG ZHOU received the B.S., M.S., and
Ph.D. degrees in measuring, testing technologies
and instruments from Tianjin University, Tian-
jin, China, in 1994, 1997, and 2000, respec-
tively.

He joined the School of Automation Science
and Electrical Engineering, Beihang University,
Beijing, China, as a Postdoctoral Research Fel-
low, in 2000. He is currently a Professor with
the School of Instrumentation and Optoelectronic

Engineering, Beihang University. His current research interests include com-
puter vision and image processing.

ZHANSHE GUO received the B.S. degree from
the Changchun University of Science and Technol-
ogy, in 1997, and the M..S. and Ph.D. degrees from
the Changchun Institute of Optics, Fine Mechan-
ics and Physics, Chinese Academy of Sciences,
in 2000 and 2003, respectively.

He is currently an Associate Professor with
the School of Instrumentation and Optoelectronic
Engineering, Beihang University, China. His cur-
rent research interests include advanced sensor

technology and microelectromechanical systems.

JIANGWEN WAN received the B.S. degree from
the School of Geodesy and Geomatics, Wuhan
University, in 1985, and the M.S. and Ph.D.
degrees from the School of Electrical Engineer-
ing, Xi’an Jiaotong University, in 1994 and 1997,
respectively.

He is currently a Professor with the School
of Instrumentation and Optoelectronic Engineer-
ing, Beihang University, Beijing, China. His main
research interests include wireless sensor networks
and instruments.

205135



