
Received October 9, 2020, accepted October 30, 2020, date of publication November 10, 2020, date of current version November 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3037248

Local COVID-19 Severity and Social Media
Responses: Evidence From China
TING DA AND LIANG YANG
Xi’an Microelectronics Technology Institute, Xi’an 710065, China

Corresponding author: Ting Da (dpting1222@163.com)

This work was supported by the National ‘‘13th Five-Year’’ Science and Technology Projects in China, under Grant JSZL2017203B023.

ABSTRACT
Unexpected but exceedingly consequential, the COVID-19 outbreak has undermined livelihoods, disrupted
the economy, induced upheavals, and posed challenges to government decision-makers. Under various
behavioural regulations, such as social distancing and transport limitations, social media has become the
central platform on which people from all regions, regardless of local COVID-19 severity, share their
feelings and exchange thoughts. Our study illustrates the evolution of moods expressed on social media
regarding COVID-19-related issues and empirically confirms the hypothesis that the severity of the pandemic
substantially correlates with these sentiments by analysing tweets on Sina Weibo (China’s central social
media platform). Methodologically, we leveraged Sentiment Knowledge Enhanced Pre-training, the most
state-of-the-art natural language processing pre-trained sentiment-related multipurpose model, to label Sina
Weibo tweets during the most distressed period in 2020. Given that the model itself does not provide a feature
explanation, we utilize a random forest and linear probit model with the labelled sample to demonstrate
how each word plays a role in the prediction. Finally, we demonstrate a strong negative linear relationship
between the local severity of COVID-19 and the local sentiment response by incorporating miscellaneous
geo-economic control variables. In short, our study reveals how pandemics affect local sentiment and, in a
broader sense, provides an easy-to-implement and explanatory pipeline to classify sentiments and resolve
related socioeconomic issues.

INDEX TERMS COVID-19, linear probit, random forest, Sina Weibo, sentiments.

I. INTRODUCTION
Persistent and consequential, COVID-19 has resulted in a
sequence of serious social and economic problems world-
wide. With the social distancing measures (such as commu-
nity quarantines and store closures) to counter the spread
of the virus, individuals have been forced to express their
opinions and thoughts on social media, such as Twitter in the
US and Sina Weibo in China. Concerning the potential bidi-
rectional causality between the fear engendered by the pan-
demic and socioeconomic upheavals, for instance, [1], it is
therefore crucial for policymakers to empirically investigate
the relationship between social sentiments and COVID-19
severity and to implement policies accordingly.

To statistically examine how the pandemic has shaped
sentiment changes, we propose a three-stage model that
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sequentially: (i) labels Sina Weibo tweets using the state-
of-the-art pre-trained sentiment model Sentiment Knowledge
Enhanced pre-training (SKEP) [2]; (ii) illustrates individual
word influence through a random forest (RF) and linear
probit (LP) model; and finally (iii) establishes the inverse
relationship through linear regression.

In the first stage, a sentiment analysis, in practice, primarily
addresses user reviews (e.g., [3]–[8]) and social media texts
(e.g., [9]–[14]). Major downstream tasks involve sentiment
polarity classification at the sentence or aspect level and opin-
ion extraction, among others. Conventionally, researchers
have separately built specific models for these tasks; the basis
is either artificially designed features [15] or neural networks
[11]–[14], [16].

Recently, the natural language processing community has
witnessed significant breakthroughs in pre-trained methods
for capturing general semantic representations at the word
level [17]–[19]. The learning objectives of these studies
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usually have masked language modelling [19] or next-word
prediction [18], and pre-trained results can serve as the foun-
dation for a variety of downstream sentiment analysis tasks.
For example, the Bidirectional Encoder Representations from
Transformers (BERT) model [19] has been applied to cate-
gorise randomly selected Sina Weibo tweets in an unsuper-
vised manner [21].

Aside from pre-trained models, a cohort of methods has
been proposed to classify sentiments from scratch. Speaking
of exploratory analysis, WordCloud was used to trace the
dominant public mood during the peak period of the pan-
demic in India during late March, 2020 [22]. On a broader
time scale, a WorldCloud of more than 20 million Twitter
tweets filtered by COVID-19-related keywords demonstrated
that, since the outbreak in January 2020, anger and joy were
gradually catching up to the dominant mood – fear – towards
the end of April, 2020 [23].

In terms of technical classification, for instance, the per-
formance of a collection of classifiers, such as decision tree,
random forest (RF), and support vector machine (SVM),
for labelling sentiments of COVID-specific Twitter tweets,
was evaluated [24]. Another implementation of classical
machine learning methods, Naive Bayes and logistic regres-
sion, focuses on not only assigning numerical sentiment
scores, but also classifying tweet categories into fear, sadness,
and anger. It turns out that both algorithms achieve decent
prediction accuracy, particularly when tweets are short [25].
For another instance, a pipeline consisting of the classic
BiLSTM + attention + CRF model was applied to simul-
taneously label COVID-related sentiments and extract emo-
tional words [26]. In other applications, a recurrent neural
network (RNN) incorporating details of the topic themes was
also implemented to zoom in on predicting the deviation
of emotional polarity from being neutral, and it obtained
finer sentiment ordinals than the established popular Python
package, ‘‘TextBlob’’ [27].

In our study, we adopted SKEP as the sentiment clas-
sification model since it builds upon previous pre-training
tricks (particularly [19], [20]) and integrates three key pieces
of sentiment knowledge, namely, sentiment words, word
polarity, and aspect-sentiment pairs, into pre-training and
therefore produces more informative representations specific
to sentiment-related tasks. Moreover, various SKEP experi-
ments have confirmed its superiority over most of the leading
pre-trained models.

In addition to technical studies on acquiring the accurate
classification of COVID-19 sentiments, several studies have
been dedicated to establishing the causality between moods
and real socioeconomic variables during the pandemic. For
instance, examining firm-level labelled public opinions (e.g.,
news articles) from Truvalue Labs’s data on environmen-
tal, social, and governance (ESG), it was shown that fewer
negative stock returns are usually accompanied by more pos-
itive public sentiment towards a company’s response (e.g.,
measures to avoid large-scale layoffs) [28]. The socioeco-
nomic factors driving an individual’s sentiments on Twitter

about reopening the economy has also been investigated [29].
Regarding China’s financial markets, a time-series sentiment
index was constructed using SVM based on China’s official
news media, as well as Weibo; the results showed how senti-
ment could amplify a pandemic-induced economic crisis by
a positive relationship between COVID-19 sentiments and
stock returns [30]. From a global perspective, cross-country
text media sentiment was analysed using a panel regression,
concluding that the US stock market responds more sensi-
tively to sentiment than confirmed cases [31].

In short, our contributions are fourfold.
First, we utilize the most advanced pre-trained sentiment

model, SKEP, to classify tweets on social media, which not
only runs fast but also produces sensible predictions.

Second, because SKEP, as a neural network, does not
report how each feature (i.e., word) plays a role in assigning
labels, we further provide feature explanations (importance
and sign) using an RF and LP model.

Third, by aggregating tweets and labels at the province
level, we demonstrate a strong, inverse linear relation-
ship between the local COVID-19 confirmed cases and the
mean sentiment responses. The results empirically confirm
the common hypothesis that a more severely affected area
will experience a significant decrease in sentiment polarity
towards pessimism.

Fourth, our pipeline balances accuracy, interpretability,
and convenience, while existing approaches have either
entailed time- and resource-consuming neural network train-
ing specific to the problem for decent performance (but
lost interpretability) or sacrificed accuracy for convenience
by utilizing traditional general-purpose machine learning
algorithms.

II. FRAMEWORK
As illustrated in Fig. 1, the model pipeline consists of a
preprocessing step followed by SKEP, a pre-trainedmodel for
classifying Sina Weibo’s tweet sentiments and further analy-
ses. Two sets of studies were conducted after SKEP. First,
coupled with China’s provincial COVID-19 confirmed case
data from February 2020, we implemented a linear regression
to demonstrate causality from the local COVID-19 severity
to sentiment drop, by accounting for various socioeconomic
endogeneity concerns and heterogeneity across provinces.

Second, because the pre-trained SKEPmodel is, by nature,
a neural network, the model itself does not provide a feature
explanation. To shed light on how each word plays a role in
driving the prediction, we performed an RF to select influen-
tial words, and we ran an LPmodel to capture the sign of each
word. Overall, the motivation here was to open the black box
of SKEP and confirm the validity of the SKEP classification
through an RF and LP.

Fig. 2 demonstrates masking procedure and the joint opti-
misation. Note that the English words in quotation marks
are translations of the original Chinese words above them;
in our analysis, we work directly with tokenised Chinese
words, not their translation. In short, masking corrupts the
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FIGURE 1. Three-stage model pipeline.

input sequence in light of K, and the pre-training objectives
are to maximally recover the masked information through a
transformer. The three pieces of objectives are: (i) sentiment
word prediction (x7); (ii) word polarity classification (x5 and
x7); and (iii) aspect-sentiment pair prediction (x1). Note also
that the algorithm does not predict the sentiment word on x5,
because it has already been predicted on x1.

We explain the details of each stage separately as follows.

A. STAGE 1 – SENTIMENT KNOWLEDGE ENHANCED
PRE-TRAINING
While conventional sentiment analyses are prone to sep-
arately examining different types of sentiment knowledge
for diverse downstream applications, SKEP simultaneously
learns three types of sentiment knowledge (i.e., sentiment
words, word polarity, and aspect-sentiment pairs). Such a
joint training process endows the model with greater versa-
tility than assorted sentiment analysis tasks.

Considering the training procedure, SKEP first conducts
an automatic mining of sentiment knowledge K from the
unlabelled input text sequence X (Section II-A1). Guided by
K, the algorithm then masks a portion of texts to generate a
corrupted version of training data X ′ (Section II-A2). (X ,X ′)
are actually parallel data. Next, SKEP uses a transformer to
recover sentiment information for X ′ (Section II-A3).
Eventually, for a given input sentence, the ultimate state

vector of [CLS], the classification token, is considered the
overall representation, from which the sentiment probability
is calculated by inserting a classification layer on top of the
transformer encoder.

We discuss steps 1 to 3 in greater detail in the following
subsections.

1) SENTIMENT KNOWLEDGE MINING
SKEP mines sentiment knowledge based on a simple and
intuitive approach, i.e., point mutual information (PMI) [32],

which is widely used in information retrieval. PMI generally
indicateswhether one sees a pair of words togethermore often
than if they are independently. The PMI score is calculated by

PMI (x1, x2) = log
p(x1, x2)

p(x1) · p(x2)
, (1)

where p(·) is the probability estimated by counts.
For the purpose of obtaining sentiment knowledge, the

model is interested in only the word pairs that involve at least
a sentiment seed word s̃. In the pre-trained version, the set of
seed words contains 25 positive and 21 negative words. The
algorithm then computes a word polarity score for a candidate
word x∗, WP(x∗) as

WP(x∗) =
∑

WP(s̃)=+

PMI (x∗, s̃)−
∑

WP(s̃)=−

PMI (x∗, s̃). (2)

In other words, the word polarity is computed by calculating
the difference between its PMI scores with all of the positive
seeds against all of the negative ones. A positive WP(x∗)
means that x∗ is a positive word and vice versa. After obtain-
ing sentiment words, SKEP extracts aspect-sentiment pairs
defined by a sentiment word with its closest word, which is
a noun. The distance between the centered sentiment word
and the candidate noun is empirically set to be at most three
tokens at most. Sentiment words and their aspect-sentiment
pairs are then collected as mined sentiment knowledge K.

2) SENTIMENT MASKING
Inspired by BERT, which first proposed the masked language
modelling objective to pre-train the transformer encoder and
achieved tremendous improvement of multifarious down-
stream tasks, SKEP also introduces a masking process to
create a noisy version of the original text sequence.

However, SKEP differs from BERT in the units to be
masked and how the units are selected. In BERT, the unit
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FIGURE 2. SKEP structure.

is only a token. In SKEP, however, the units are sentiment
words and aspect-sentiment pairs gathered by K and likely
other tokens.Moreover, by treating each token equally, BERT
uniformly selects the items to be masked. In contrast, SKEP
sequentially performs the following process: First, the algo-
rithm randomly selects at most two aspect-sentiment pairs
in a sequence and replaces each token in them by [MASK].
Second, a subset of the remaining unmasked sentiment words
is masked, but the total number of tokens masked up until
this step could not exceed 10%. Finally, provided insufficient
masked tokens (e.g., less than 10%), SKEP would meet the
number constraint on the total masked tokens by replacing
some common tokens by [MASK].

As illustrated in Fig. 2, ‘‘pandemic’’ and ‘‘serious’’ are
substituted by [MASK] because they are aspect-sentiment
pairs, and ‘‘to deal with’’ becomes [MASK] because it is a
sentiment word.

3) SENTIMENT PRE-TRAINING OPTIMISATION
Given the corrupted data X ′ after the masking procedure,
the transformer encoder is then asked to recover the masked
sentiment information. Accordingly, the algorithm optimises
against the objective defined as the sum of the three types of
losses:

losstotal = losssw + losswp + lossap, (3)

where losssw, losswp, and lossap are, respectively, the objec-
tives for the three sorts of masks created in Step 2 – sentiment
word, word polarity, and aspect-sentiment pairs.

Technically, losssw is defined to maximise the probability
of recovering the original sentiment word based on the trans-
former encoder. The purpose here is remarkably different
from that in BERT, which popularised such a masking tricks.
In BERT, masked words were first randomly selected, but
SKEP restricts the masked words to those that are sentiment-
related. Thus, SKEP is more appropriate for sentiment tasks.

In addition, considering the masked sentiment token,
losswp gauges the difference between the word polarity (pre-
dicted by the output of the transformer encoder) and the polar-
ity of the original sentiment word (obtained inK). In addition,

lossap measures how our prediction of the masked aspect-
sentiment pairs is different from the original version. The
ultimate state of the classification token [CLS] (the represen-
tation of the entire text sequence) is used here to predict the
pairs.

B. STAGE 2: RF AND LP
The central idea is that, assuming that SKEP makes reason-
able predictions about tweets, then what are the important
features (i.e., words) considered by the model, and do they
satisfy our common sense? Because SKEP itself does not
offer a feature importance score, we turn to an RF that not
only enjoys sound in-sample and out-of-sample performances
but also measures feature contribution.We also employ an LP
model with the most important features selected by the RF
to assign a coefficient to each word, indicating whether the
occurrence of the word will drive the algorithm to label it as
1 or 0.

1) RF INPUT
In our study, the outcome is a binary variable, indicating
whether a piece of tweet text is a positive (i.e., 1) or negative
(i.e., 0) sentiment labelled by SKEP. The input is the classical
term-frequency-inverse-document-frequency (tf-idf) matrix,
W , with documents (i.e., tweets) in the rows and distinct
words in the columns. In other words, Wij, the (i, j)th entry
in W , is the number of times the jth word in vocabulary is
shown in the ith document scaled by a factor. In tf-idf, in any
column j, the factor is chosen as

log
( Total number of documents
Number of documents containing word j

)
,

where frequent words effectively have low weight. The pro-
cedure helps to reduce the noise engendered by meaningless
stop words and to condense the feature space.

In the experiment, we performed two further cleaning steps
(remove digits and punctuation) prior to the tf-idf transfor-
mation. These steps are widely used in text preprocessing,
because the goal here is to focus only on how meaningful
words will play parts in classifying sentiments, not digits
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or punctuations. In particular, these steps were not included
in Stage 1 because the pre-trained SKEP model could auto-
matically address numbers and punctuations without any
interference.

Moreover, for simplicity and interpretation concerns,
we considered only 1− gram of words, and the tokenisation
was performed using a particular version of PKUSEG [33],
an algorithm for Chinese word segmentation that specializes
with social media texts. After further removing the stopwords
(in total, 1, 396 commonly used English and Chinese stop
words), we obtain a set of features that only consist of a single
word in the corpus, instead of consecutive words.

2) RF MECHANISM
RF is a multipurpose algorithm that can be used for classi-
fication and regression tasks; it grows a collection of deci-
sion trees and makes predictions based on voting systems.
In practice, RF selects a bootstrap sample of tweets and feeds
them into an empty decision tree. At each node of the tree,
the algorithm chooses the feature that could best improve
impurity, a measure of how ‘‘pure’’ the split of the sample is
after carving out the observations at the optimised threshold
of this particular feature. The process is repeated for many
times to obtain a ‘‘forest’’ (i.e., collection) of trees. In the last
stage, the algorithm asks each tree to make a classification
and sets the winner of the majority vote as the final prediction
of the input tweet.

In particular, the trick that empowers RF to achieve a
decent out-of-sample prediction accuracy and to train faster
than the bagging of trees is that, at each split decision, the
tree is only allowed to consider a subset of all features [34].
We use the convention in our experiment that the subset
contains

√
p predictors, where p is the total number of fea-

tures. The rationale is that, in the presence of a set of strong
features, most trees will very likely choose one of these strong
predictors in their initial splits, resulting in a similar tree
structure at the end. Voting based on these highly correlated
trees would not achieve as much reduction in variance as
voting by uncorrelated trees. Thus, by ensuring that each tree
looks only at a random subset of predictors, RF affords other
predictors the opportunity to play a role in forming the split
and therefore renders the trees uncorrelated.

3) FEATURE IMPORTANCE
Once the model is trained, we identify the features that play
prominent roles in driving up the prediction performance.
Similar to the node split process in the decision tree, in RF,
the condition determining whether a particular feature should
be chosen as the one to split observations is also based on
impurity. Specifically, each decision tree in the RF selects the
feature that could maximally reduce impurity at each round
of node splitting. Thus, the contribution of each feature could
be calculated by averaging the decrease in impurity induced
by the feature across all trees.

Sorting feature importance from high to low, we retain a
subset of all word features and feed them into the linear probit

model. The goals are twofold. First, by maintaining a small
number of features, we are able to interpret the words that are
informative to sentiment classification. Second, by restricting
to only, say, the top 50 features, we are able to pass them as
the regressors in the linear probit model that will estimate the
sign for each word, without worrying about the issue that the
number of regressors exceeds observations.

4) LP
The LP model is a special case of the cross-sectional linear
regression model, as outlined in the next chapter. The model
was established as follows:

EY = X Eβ + ε, (4)

We discuss various empirical concerns in the next section.
The upshot is E[εi|Xi] = 0, the central identifying condition
in linear regression that ensures the unbiasedness, consis-
tency, and asymptotic normality of the estimated Eβ, although
the LP model will yield predicted values outside {0, 1}, the
set of Y .
In fact, we ask for less from the LP. We are only concerned

with the predicted signs of each word. In other words, the of
the estimated coefficients illustrate whether the occurrence of
words, such as ‘‘ICU’’ or ‘‘shortage’’, will drive the predicted
sentiment label to 1 or 0. In this way, the results of the LP
model serve as a supplement to the feature importance given
by the RF (the latter has no sign). Furthermore, we imple-
mented the LP model after the RF because we wanted to
ensure that there would be fewer features than observations.
Otherwise, the LP model would fail to provide coefficient
estimates.

C. STAGE 3: LINEAR REGRESSION
In the final step, we empirically confirm the causal relation-
ship between COVID-19 andWeibo sentiment at the province
level. The model is

Senti = α + β · log(Casesi)+
∑
j

γ
(j)
i · C

(j)
i + εi, (5)

where Senti is the proportion of positive sentiments in
provincei, α is the intercept, log(Casesi) is the log of con-
firmed cases, andC (j)

i ’s are various control variables account-
ing for baseline provincial heterogeneity such as population,
GDP per capita, and the share of manufacturing industry,
among others.

Our baseline gauge of provincial exposure to COVID-19
is the locally confirmed cases. We prefer confirmed cases
to deaths because the distribution of deaths is extremely
skewed to the left with only one province, Wuhan, exceed-
ing 50 and reaching 2,761 by the end of February
2020. In contrast, the number of confirmed cases is
more smoothly distributed across provinces and has rea-
sonable variation to obtain a low variance of estimated
coefficients.
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1) EMPIRICAL CONCERNS
To ensure that (5) truly captures the impact of the local
pandemic severity on sentiment responses, we consider three
major endogeneity concerns: (i) omitted variable bias; (ii)
simultaneity; and (iii) sample selection bias. Satisfying all of
these conditions, the coefficient estimates truly capture the
one-way causality from Casesi to Senti.
Considering the potential omitted variables, the main iden-

tifying assumption of (5) is that log(Casesi) is indepen-
dent of other time-varying regional economic shocks, and
Senti is estimated from only Sina Weibo tweets that contain
COVID-19-related keywords. Thus, β should reveal only
the influence of local pandemic severity, rather than other
potentially omitted shocks in εi.
In addition, considering simultaneity, there is no obvi-

ous reverse causation from Senti to log(Casesi) because the
growth of confirmed cases is primarily affected by govern-
ment regulations based on epidemiological knowledge and
is coordinated by provincial and central governments, rather
than local sentiments. In this light, there is no potential simul-
taneity problem; and therefore, β should reflect only the one-
way causation of the pandemic on local sentiments.

In short, accounting for the omitted variable bias and
bidirectional causality between the responses and the main
regressor, model (5) views the outbreak of COVID-19 as an
exogenous shock, and the coefficient of log(Casesi) should
therefore measure the direct effect of the pandemic on social
media sentiments.

2) MODEL TRAINING
To paraphrase the linear model in the context of machine
learning, (5) can be written as

Y = X · Eβ + ε, (6)

where Y is an n by 1 vector containing sentiment responses
by each province – in our case, n = 31 since we have 31
provinces in China. X is an n by p matrix where p is the
number of features. Eβ is the unknown parameter vector to
estimate and ε is the residual.
The classical loss function for linear regression is the mean

squared error (MSE):

loss = ||Y − X Eβ||2 = (Y − X Eβ)T (Y − X Eβ), (7)

Instead of applying gradient descent to minimise MSE in
(7), we note that there actually exists an closed-form solution.
Indeed, expanding (7), we would obtain

loss = (Y − X Eβ)T (Y − X Eβ) (8)

= Y TY − 2 EβTXT y+ EβTXTX Eβ (9)

The partial derivative of the loss with respect to Eβ is
∂loss

∂ Eβ
= −2XTY + 2XTX Eβ (10)

Setting the partial derivative to 0, we obtain the normal
equation

XTX Eβ = XTY (11)

Assuming thatX has full column rank, the optimal Eβ is thus

Eβ∗ = (XTX )−1XTY (12)

3) EVALUATING MODEL PERFORMANCE
Unlike other mainstream machine learning algorithms that
apply various analogies to MSE as the measure of goodness
of fit, linear regression usually uses other techniques, such as
R2, to gauge model performance, because MSE has already
been optimised globally by solving the first-order condition.
In our model, we follow the convention of using R2 because
it offers a straightforward explanation for how a prediction is
close to the true value.
R2 consists of three components – all relevant to the sum

of squares.

SSTO =
n∑
i=1

(yi − ȳ)2 (13)

SSR =
n∑
i=1

(ŷi − ȳ)2 (14)

SSE =
n∑
i=1

(yi − ŷi)2 (15)

In the formula, ȳ is the mean of all responses, and ŷi’s are
predictions. SSTO, SSR, and SSE represent the total sum of
squares, regression sum of squares, and error sum of squares,
respectively. From this perspective, a good model should
have a large proportion of SSTO explained by SSR. That is,
R2 = SSR

SSTO should be relatively large.

III. EMPIRICAL UNITS
A. DATA OVERVIEW
We focus on the empirical study on February 2020, the most
distressed period in China during COVID-19, because the
factors driving the decline in sentiments are less susceptible
to noise (e.g., unawareness before the spike in case growth,
post-February store reopening, and establishment of tempo-
rary hospitals), compared with the periods before and after
February 2020. Such a restriction helps to clarify the causality
from the local COVID-19 severity to the sentiment responses
– the message to be conveyed in the 3rd stage.

Using data sources, our Sina Weibo tweet data were col-
lected by [35]. The dataset has already been filtered (using
a set of pre-defined COVID-19-related keywords) so that
we are provided with only COVID-19-related Sina Weibo
tweets. As shown in Table 1, there are a total of 10, 815, 385
public SinaWeibo tweets sent in February 2020. To determine
the relationship between the local pandemic statistics and
sentiment responses, we only considered tweets that contain
GPS coordinate information, leaving us with 352, 696 tweets.
We further mapped these (latitude and longitude) pairs to
the 31 provinces and special districts in China and obtained
343, 528 observations; the decrease was mainly due to the
GPS coordinates outside of China. In addition, the average
length of Sina Weibo tweets decreased. One might wonder
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why the mean length was reduced to only 93.62 charac-
ters after restricting the sample to those containing GPS
information. In fact, many of the deleted tweets are from
official accounts with lengthy content and chained reposts
with duplicated paragraphs. Typical types of these accounts
are nationwide serious news reports, entertainment news, and
doctors/hospitals giving advice about protecting people from
the pandemic. In most cases, the GPS information is inten-
tionally cloaked to show the professionalism of the official
accounts.

TABLE 1. Basic data statistics.

We performed a series of cleaning steps in columns 3 to 4
of Table 1, as illustrated in Fig. 1. Sequentially, we removed
tags, URLs, @’s, ‘‘show the map’’ (a string that always
comes after GPS coordinates), and any empty observations
engendered due to the cleaning. Thus, a total of 340, 519
observations with an average length of 76.5 were obtained.
The mean was large, more than 76 characters, because many
emojis were recorded in their English names (e.g., ‘‘[good]’’),
increasing the counts of characters.

Moreover, from columns 4 to 5, we performed two more
cleaning steps for RF: removing digits and punctuations.
Finally, a total of 340, 456 Sina Weibo tweets were obtained,
but the average length further decreased to 66.85 characters.

FIGURE 3. The count of Weibo tweets by province in February 2020.

Figs. 3 and 4 present the distribution of Sina Weibo tweets
count and mean lengths across provinces, respectively. Both
figures suggest that the range in either statistic is reasonable
with no obvious and influential outliers. Particularly, Fig. 4
suggests that the lengths of tweets are comparable across
provinces.

The other part of the input used in our empirical study
is the province-level daily COVID-19 confirmed cases in
China. The data come primarily from the National Health
Commission of the People’s Republic of China and were

FIGURE 4. Mean length of Weibo tweets by province in February 2020.

formally collected by [36]. For the SinaWeibo data, we focus
on the trend of COVID-19 confirmed cases on February 2020.

Fig. 5 shows the day-to-day percentage growth in the total
number of confirmed cases in February 2020. In general,
the growth rate in new cases dropped towards the end of
February, except for Hubei (which modified its statistical
caliber to include the individuals whose clinical evidence
implies infection but formal test results had not yet come
out) and another province (spotted a new cluster of infected
individuals).

B. STAGE 1
Equipped with cleaned data, in the first stage, we applied
the pre-trained SKEP model (available at https://
github.com/baidu/Senta) on cleaned Sina Weibo
tweets. In fact, the pre-trained model could accomplish three
tasks (as they have been jointly optimised): (i) sentence-level
sentiment classification (1 for positive and 0 for negative); (ii)
aspect-sentiment prediction; and (iii) opinion extraction. The
use of the aspect-sentiment module might look appealing, but
the implementation was not easy in our study because the
‘‘aspect’’ word for COVID-19 takes various forms in Sina
Weibo tweets and could even be absent from the content.
Thus, we adopted a sentence-level sentiment analysis of the
tweets.

Fig. 6 compares the daily percentage changes in
country-wide confirmed cases versus the mean sentiment.
As explained in the previous section, the spike in cases on
February 12, 2020, was not an incorrect record due to the
change in Hubei’s caliber. Overall, we observed a gradual
decrease in new cases, and the change in sentiments became
more stabilized towards the end of the month.

C. STAGE 2
To demystify and validate the SKEP prediction, we per-
formed an RF to rank the importance of words appearing in
the 1−gram vocabulary of input texts and ran an LPmodel to
examine whether seeing the occurrence of a word would drive
the sentiment classification towards 1 or 0. As shown in the
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FIGURE 5. Day-to-day growth of COVID-19 confirmed cases during February 2020.

FIGURE 6. Change in cases vs. change in sentiment in February 2020.

figure, we implemented various cleaning steps to filter out
noise and tokenised Sina Weibo tweets using the particular
version of PKUSEG specialized for social media texts.

In Particular, we first applied a 5-fold stratified cross-
validation to confirm that the hyperparameter set makes
sense. In each fold, the ratio of 0’s to 1’s is approximately
1 to 2, and the ratio of training observations to testing is
approximately 4 to 1. All three measures (precision, recall,
and F1-score) in Table 2 exceed 80% on average, validating
that the parameters that we chose in RF are reasonable.

We next used the same set of parameters but trained RF
on the population of input texts. We invoked the sklearn
package in Python to complete the training and automatically
produced feature importance scores based on the information
gain.

The top panel in Fig. 7 visualizes the importance scores
of the top 50 most important words selected by the RF.
We trained the RF on the original Weibo tweets written in
Chinese, and all of the words on the x-axis were translated
from their Chinese counterparts. However, there are still two
noisy words: ‘‘<unk>’’ (i.e., unknown Chinese character or
symbol) and ‘‘·,’’ but the remaining 48 words are all semanti-
cally meaningful. Finally, on the x-axis, we have ‘‘sad’’ along
with ‘‘sad2’’ and ‘‘happy’’ along with ‘‘happy2’’ because
each word is translated from the Chinese words that are
almost identically express the ‘‘sad’’ and ‘‘happy’’ moods.

TABLE 2. Mean five-fold cross-validation results of random forest.

Among the 50 most important words, words directly
related to COVID-19, such as ‘‘epidemic,’’ ‘‘virus,’’ and
‘‘mask,’’ are indeed considered to be influential in classifying
the mood. In addition, common sentiment words, such as
‘‘sad,’’ ‘‘happy,’’ and ‘‘come on,’’ play a substantial part in
making the prediction.

To better understand the sentiment polarity of each word
in the context of COVID-19, we implemented an LP model
with the tf–idf scaled occurrence of the top 50 most important
words being the input and SKEP prediction as the response.
The bottom panel of Fig. 7 visualizes the estimated coeffi-
cients with 0 as the horizontal reference line. A positive (neg-
ative) coefficient indicates that the focal word would drive
the prediction towards 1 (0), ceteris paribus. For example,
‘‘come on,’’ ‘‘hope,’’ and ‘‘love’’ all have relatively large
positive coefficients, suggesting that they strongly express
a positive sentiment. Furthermore, words, such as ‘‘sad,’’
‘‘disappointed,’’ and ‘‘tears’’ are all negative sentiments, indi-
cating that tweets containing them are most likely to be
pessimistic. The coefficient of ‘‘epidemic’’ itself is minor
in magnitude, likely because this word usually occurs in a
mixture of contexts. Sometimes, people express their worries
with ‘‘epidemic’’ included, and in other cases, people also
cheer each other up also with ‘‘epidemic’’ in the tweet.

The numerical estimates of the word importance and LP
coefficients are listed in the Appendix (Fig. 9).
Overall, RF reasonably selects meaningful words to clas-

sify COVID-19-related sentiments, and LP also sensibly
assigns the word polarity of the selected words. Because all
of the trainings here are based on the Stage 1 prediction, the
RF and LP results help to corroborate the validity of using
the pre-trained SKEP model in analysing COVID-19-related
social media texts.

D. STAGE 3
With the labels obtained in Model 1, we regressed the local
sentiment responses on COVID-19 severity. On the Y side,
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FIGURE 7. Stage 2 results: Word importance and coefficients.

FIGURE 8. The negative linear relationship between COVID-19 severity and sentiment at the province level.

we collapse sentiment labels to the province level fromFebru-
ary 1, 2020, to February 29, 2020, the most distressed pan-
demic period in China. After the aggregation, we have 31
ratios between 0 and 1, indicating the share of positive moods
among all Sina Weibo tweets with location information in
each province.

On the regressor side, we conducted a log transforma-
tion to render the scale of pandemic severity comparable

across different provinces. Control variables were included
to account for baseline provincial heterogeneity, that is,
ensuring that basic geoeconomic differences across provinces
would not distort the estimation of the log(Cases) coefficient.
These variables include the 2018 share of the urban popula-
tion, total population, nominal GDP, share of the manufac-
turing, and service industries in the whole economy. The data
are from the 2018 China Statistical Yearbook.
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FIGURE 9. RF word importance scores and LP coefficients.

Table 3 presents the estimated regression coefficients for
the linear regression with two configurations: excluding and
including the control variables. Standard errors are listed in
the parentheses below each coefficient estimate. In either
setting, the coefficient of log(Cases) is significantly negative
at the 1% confidence level. The difference in magnitude (i.e.,
−0.014 compared to −0.0087) suggests that geoeconomic
differences could explain part of the variation in the local
sentiment responses to COVID-19. Remarkably, even with-
out any controls, the R2 of the univariate regression is 0.68,
indicating that 68% of the variation in sentiment is solely
driven by the pandemic.

Fig. 8 shows the estimated linear trend of the univariate
linear model compared to the true value. The graph shows
that almost all 31 provinces are closely aligned along the esti-
mated line. Hubei, the centre of the COVID-19 pandemic in
China, is slightly off the line, likely because the government
implemented assorted measures to psychologically boost the
confidence of local citizens.

In short, the linear regression validates the hypothesis that
areas that suffered more during the pandemic would have a
smaller extent of optimism on social media.

TABLE 3. Local COVID-19 severity predicts local sentiment response.

IV. CONCLUSION
In this study, we applied the most state-of-the-art pre-trained
sentiment classificationmodel, SKEP, to classify COVID-19-
related social media tweets in China. Because SKEP itself
does not provide a feature explanation, we implemented an
RF followed by an LP model with SKEP prediction as the
response variable, and we confirmed the SKEP classifica-
tion. The visualization of the RF and LP models shows
that COVID-19-related words and common sentiment words
play a substantial role in driving the prediction. Finally,
we aggregated sentiment classification from the tweet level
to the province level for all COVID-19-related tweets with
recognizable GPS information. Univariate and multivariate
linear regression results corroborate the hypothesis that more
severely affected regions tend to have a greater share of pes-
simistic moods. In fact, comfirmed COVID-19 cases alone
could explain approximately 68% of the variation in senti-
ment across provinces.

Technically, to further improve the explanatory power
of our RF and LP models, one could design and perform
even finer text preprocessing to filter out additional noise.
Future works could be devoted to improving the pre-trained
SKEP model so that it simultaneously makes predictions
and explains feature roles. In terms of drawing a broader
socioeconomic conclusion, one could also apply SKEP with
an RF and LP model on COVID-19-related tweets using data
from other regions around the world.

APPENDIX
In Fig. 9, we tabulated the top 50 most important Chinese
words (the 2nd column) chosen by the RF and their impor-
tance scores reported by sklearn. The last column contains
their English translations. In the 3rd column, we listed their
LP coefficients. Here, a positive (negative) coefficient indi-
cates that the occurrence of this word will drive the prediction
towards 1 (0), ceteris paribus.
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