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ABSTRACT In the intelligent ship field, with the upgrading of ship maintenance mode, the human-centered
system maintenance will be gradually replaced by the artificial intelligence decision methods. To improve
the training speed and testing accuracy of the state estimation model, an optimized Support Vector
Machine (SVM) driven approach by Improved Artificial Bee Colony (IABC) was proposed to solve
the global parameters optimization problem. First, the IABC method was achieved from three aspects:
nectar source initializing, employed bee global neighborhood searching, and scouts mutation neighborhood
searching. Second, the multi-class SVM with one-against-one classifiers was selected, and the best global
parameters were achieved by the IABC. Third, the optimized SVM model was adopted in the testing to
verify the effectiveness of state estimation. Finally, the elaborated methodology was applied to two actual
ship systems to get the analysis results. The effectiveness was verified by using two examples. The results
show the following: the IABC optimized SVM can obtain the global optimal parameters at a faster speed
than the traditional ABC optimized method; the IABC optimized method can help the training start with
better initial parameters, and get a higher classification accuracy rate than the traditional ABC optimized
method. Based on the comparative analysis results, the IABC optimized SVM shows an obvious advantage
of parameter optimization in the training process, and it can also significantly improve the model training
efficiency and achieve a higher state estimation accuracy. The optimized SVM by IABC is an effective state
estimation method in ship systems.

INDEX TERMS Marine engineering, support vector machine, artificial bee colony, state estimation.

I. INTRODUCTION
With the development of the intelligent ship field, more
sophisticated sensors in marine engine room systems were
installed to collect data. To fully exploit the meaning of
information and realize an intelligent upgrade of ship mon-
itoring and maintenance mode, it is necessary to study some
specific methods to improve the reliability and accuracy of
state identification in the engine room systems.

In the traditional view, ship maintenance has been con-
sidered an unnecessary high expenditure area, and advanced
monitoring methods have not yet been widely applied [1].
Nevertheless, the intelligent maintenance in ships has been
made in the past years and is rapidly progressing [2]. For
this, Hountalas [3] developed a diesel engine performance
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model that can account for both normal and faulty conditions.
Chandroth [4] proposed a method combined vibration data
with cylinder pressures data for the condition monitoring of
the main engine. Accordingly, the thermodynamic model of
marine engine has been developed and used to achieve condi-
tion monitoring [5], [6]. Accordingly, Li et al. [7] developed
a self-learning algorithm to perform fault diagnosis in the
combustion system of a marine diesel engine. In addition,
Dikis and Lazakis [8] developed a machinery risk analysis
tool that can perform condition monitoring and maintenance
support by combining real-time machinery information. Fur-
thermore, Gkerekos et al. [9], [10] developed a self-learning
model for the condition monitoring of ship machinery based
on vibration measurements and further performed a more
thorough optimization step for deriving a more robust model.
Kowalski et al. [11] used various signals that are emitted by
the engine as a data input for a pattern classifier, and presented
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a one-vs-one extreme learning ensemble-based fault diagno-
sis method in marine 4-stroke diesel engines. Wang et al. 12]
adopted the LASSO (Least Absolute Shrinkage and Selection
Operator) regression algorithm to implement feature vari-
ables selection, and proposed a novel ship fuel consumption
prediction model. Coraddu et al. [13] and Cipollini et al. [14]
introduced a regression method to achieve a component
degradation estimate in amarine combined diesel-electric and
gas propulsion plant. Cipollini et al. [15] then further used
the same dataset to compare supervised and unsupervised
algorithms for fault detection. Raptodimos and Lazakis [16]
investigated an unsupervised neural network to achieve run-
ning state monitoring of a two stroke marine diesel engine
by identifying clusters containing data representing abnormal
states. Zhang et al. [17] used a single-parameter threshold
method and radar chart analysis method to evaluate the health
status of ships’ power equipment, and converted the evalua-
tion results into health score values. Cheliotis et al. [18] intro-
duced a data condition and performance hybrid imputation
method for energy efficient operations of marine systems,
which combined data mining with first-principle knowledge
and was implemented in a dataset acquired from the main
engine system of an oceangoing vessel. Zhang et al. 19]
established a real-time state evaluation system for the power
quality of an electric propulsion ship using the fuzzy ana-
lytical hierarchy process method, which strengthened the
supervision for the ship electric power system. Liu et al. [20]
applied the fault diagnosis method combining rough set and
optimized Support Vector Machine (SVM) to the state identi-
fication of the marine main engine, and achieved good results
on the multi-category classification problem.

Effective state estimation methods in the ship systems
can provide decision support for proactive maintenance and
improve the automation and intelligence of ships. Existing
methods have disadvantages such as poor parameter opti-
mization ability and lowmodel training efficiency. Especially
when faced with complex large-scale engine room electrome-
chanical systems, the generalization and versatility of these
methods have been challenged.

This article aims to present an SVM-driven methodology
to achieve a multi-state estimation for the ship systems.
To improve the performance of state estimation, the method
will present an optimized SVM model, which can be trained
via the data obtained online and labeled in different system
states. To enhance the training speed and testing accuracy
of the state estimation model, an improved Artificial Bee
Colony (ABC) method will be studied to find the global
optimal parameters in the training process. To verify the
effectiveness of state estimation, two ship systems will be
selected to obtain comparative analysis results compared with
the traditional optimization method, and some objective con-
clusions will be drawn finally.

II. PROPOSED METHODOLOGY
The methodology elaborated in this article includes a prepro-
cessing method for the acquired dataset (part one), an IABC

FIGURE 1. Visual representation of the proposed methodology.

method for global parameter optimization (part two), and
an SVM driven multiple classification approach using the
optimized global parameters (part three) [21]. The flowchart
of the proposed methodology is presented in Fig. 1.

A. RAW DATA PREPROCESSING
The data required for SVM model training can be processed
by the following steps:

Step 1: Abnormal data filtering.
Due to recording inconsistencies, human error, or sen-

sor faults, the input training data xi should be filtered out,
if its elements with values beyond µ±3σ , where µ is the
mean value of each element and σ is the standard deviation.
According to the 3σ rule, most abnormal data points of the
training dataset will be filtered out without affecting the vast
majority of normal points.

Step 2: Dataset splitting.
The remaining dataset is split into training (70%) and test-

ing (30%) sub-datasets. The former is used to train the model
and optimize parameters, and the latter is used to evaluate
the generalization ability of the model. To verify the per-
formance of the SVM model, the K-folding cross-validation
method [22] is performed on the training sub-datasets
to generate the model training dataset and validation
dataset.

Step 3: Dataset normalizing.
Due to the different dimensions of the raw data, it is

necessary to normalize the training and testing sub-datasets
for the continuity of model training and learning. Formula (1)
can be used to normalize the original data [23].

y = 2×
x − xmin

xmax − xmin
− 1

if xmax = xmin, then y = xmin (1)

where y is the value after sample normalization, x is the
raw value of the sample sequence, and xmax , xmin are the
maximum and minimum values in the sample set.
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B. IMPROVED ABC ALGORITHM
The ABC method is a global optimization algorithm based
on the intelligent foraging behavior of honey bee swarm,
proposed by the Karaboga team in 2005 [24]. The ABC can
take all kinds of possible solutions existing in the solution
space as the nectar sources, that is, the position of each nectar
source represents a possible solution of the problem, and its
quality is measured via its fitness value [25]–[27]. To enhance
the global optimization capability, we have made some
improvements over this algorithm, and call it an Improved
ABC (IABC) in this article. The processing of the IABC
algorithm is shown in Fig. 2 and the relevant description is
as follows.

Step 1: Population parameters initialization.
Set the maximum number of iterations and searches as NI

and NR. Generate employed bees and onlookers correspond-
ing to the number of nectar sources. If the number of nectar
sources representing solutions of the optimization problem
is N, and the dimension of each solution is D, the N nectar
sources can be generated randomly as

xi = (xi,1, xi,2, . . . , xi,D) , i = 1, 2, . . . ,N (2)

where i is the nectar source ID.
If the initial solutions are not reasonable, they will have

a great influence on the optimization performance of the
whole algorithm. Therefore, to increase the diversity of the
initial populations, make the initial solutions distribute in
the solution space evenly, an unlearning improvement strat-
egy [28], [29] will be adopted as follows:

First, generate randomly N nectar sources via (3).

_
x i,d= xmin,d + sd

(
xmax,d − xmin,d

)
, d = 1, 2, . . . ,D (3)

where d is the dimension of nectar source I, xmin,d and x max,d
mean the upper and lower bounds of d dimension value, and
sd is the random number among [0,1].
Second, generate N inverse nectar sources via (4).

x̆i,d = xmin,d + xmax,d−
_
x i,d (4)

Finally, by merging the two types of nectar sources, calcu-
lating and sorting their fitness, the best N nectar sources as
the initial populations can be selected via (5).

j = arg max
j=0,...,2N

fit
(
(
_
x
⋃
x̆)j
)

xi =
(
_
x
⋃
x̆
)
j

i = 1, 2, . . . ,N
(5)

where:fit is the fitness computing function.
Step 2: Employed bees neighborhood search phase.
In the traditional ABC method, the employed bees will

search new nectar source via (6), and update the position of
the nectar source according to the search results to form a new
nectar source xi as a new solution.

x(k)
i,d
= x(k−1)

i,d
+ r

(
x(k−1)
i,d

− x(k−1)
j,d

)
, j 6= i (6)

FIGURE 2. Visual representation of the process of IABC algorithm.

where k is the number of searches, i or j is the nectar source
ID, d is the dimension of the nectar source, and r is the random
number among [−1,1].

It can be seen that (6) does not include the global optimal
value, so the algorithm has insufficient searching ability near
the global optimal value, which can lead to a slow update
speed and easily fall into a local optimal solution. Therefore,
the neighborhood search method can be improved by intro-
ducing a global search factor [30] as

x(k)
i,d
= x(k−1)

i,d
+ r

(
x(k−1)
i,d

− x(k−1)
j,d

)
+ y, j 6= i

y = s1
(
xgbest,d − x

(k−1)
i,d

)
+ s2

(
xcbest,d − x

(k−1)
i,d

)
(7)

where r is the random number among [–1,1], s1 and s2 are the
random numbers among [0,1], xgbest,d is the d-th element of
the global best solution found so far, and xcbest,d is the d-th
element of the best solution in the current iteration.

After the new nectar source xi is generated, the fitness fi
is calculated via (8) accordingly. Then, by comparing with
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the original nectar source, the greedy selection strategy is
adopted to retain the information of the nectar source i with
greater fitness.

fi = fit(xi) =

{
1
/
(1+ ti) if ti ≥ 0

1+ |ti| if ti < 0
(8)

where ti is the objective function value of the i-th nectar
source xi corresponding to the optimization problem.

Step 3: Onlookers neighborhood search phase.
After the employed bees complete their search task, they

will return to share the nectar source information (solution
and fitness) with the onlookers. Each onlooker will calcu-
late the preference probability via the fitness according to
the roulette wheel selection method (9) to select the nectar
source.

pi = fi

/
N∑
n=1

fn (9)

where pi is the preference probability of the nectar source i,
and fi is the fitness of it.
After selecting the nectar source, the onlookers adopts

the same improved searching and updating method as the
employed bee, and uses the greedy selection strategy to gen-
erate a new nectar source i and a fitness fi.

Step 4: Scouts neighborhood search phase.
If the fitness of a nectar source xi is not improved within

NR search times, the nectar source will be discarded, and the
corresponding employed beewill transform into a scout, then,
a new alternative nectar source will be searched via (10).

x(0)i = xmin + r (xmax − xmin) (10)

where the superscript 0 means the nectar source i is a new
original nectar source, xmin and xmax mean the upper and
lower bounds of D-dimension value of nectar source, and
r is a D-dimension random number among [–1,1] for each
dimension.

Similar to (6), the search method (10) does not include the
global optimal value. To improve the searching ability near
the global optimal value, the search method can be updated
as follows:

x̂1 = xrandi = xmin + s1 (xmax − xmin) (11)

if
D∑
d=1

s1,d ≤
D
2
,

x̂ 2 = xmutation1
i = xi + s2

(
1−

n I

NI

)D (
xgbest−xi

)
(12)

if
D∑
d=1

s1,d >
D
2
, (13)

x̂3 = xmutation2
i

= xi + s3

(
1−

n I

NI

)D (
xcbest − xi

)

x(0)i = x̂j = arg max
j=1,2,3

fit
(
x̂j
)

(14)

where s1, s2, s3 are all D-dimension random number among
[0,1], and nI is the number of the current iteration.
After finding a new nectar source xi via (14), the scout will

change back to an employed bee, and go to step 2 of the next
iteration to update the nectar source.

Step 5: End of optimization.
If the number of iterations reaches the maximum number

NI , or the fitness of a certain nectar source reaches the thresh-
old preset, the optimization process will end, and the best
nectar source found so far will be memorized and output to
the SVM model for testing.

C. SVM CLASSIFICATION METHOD
The SVM method was first proposed by Cortes and Vapnik
in 1995 [31]. It is based on the Structural Risk Minimiza-
tion (SRM) principle rooted in the statistical learning theory,
and can give a better generalization ability. In the SVM,
the SRM is achieved through a minimization of the upper
bound of the generalization error 32].

1) LINEAR BINARY SVM CLASSIFIER
Given training sample set D = {(x1, y1), (x2, y2),. . . , (xM ,
yM )}, yi∈{–1,1}, M is the number of samples. The samples
are assumed to have two classes namely positive class with
the labels yi = 1 and negative class with the labels yi = –1.
For the samples, it is possible to determine a hyperplane f(x)
= 0 to separate them.

f (x) = WT x+ b = 0 (15)

whereW is the normal vector, which determines the direction
of the hyperplane, and b is a scalar.

Via the sign equation f(x), a distinct separating hyperplane
should satisfy the constraints (16) to classify input data in
either positive class or negative class.{

f (xi) = 1 if yi = 1
f (xi) = −1 if yi = −1

(16)

Further, the constraints (16) can also be presented as

yif (xi) = yi(WTxi + b) ≥ 1, i = 1, 2, . . . ,M (17)

The optimal hyperplane of two data sets is required to
have a maximum distance between itself and the nearest data.
The nearest data used to define the margin are called sup-
port vectors. The maximum distance is called the maximum
margin, and can be obtained as a solution to the following
optimization problem:

min
W ,C,ξ

1
2
‖W‖2

s.t. yi(WTxi + b) ≥ 1, i = 1, 2, . . . ,M (18)

By introducing the Lagrange multiplier αi ≥ 0, the opti-
mization can be simplified to an equivalent Lagrange dual
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problem:

min
W ,b,α

L(W , b, α) =
1
2
‖W‖2 +

M∑
i=1

αi

(
1− yi(WTxi + b)

)
=

1
2
‖W‖2 −

M∑
i=1

αiyi(WTxi + b)+
M∑
i=1

αi

(19)

For the optimal point, via the saddle-point equations (20),
the results can be obtained as shown in (21).

∂L(W , b, α)
∂W

= 0,
∂L(W , b, α)

∂b
= 0 (20)

W =
M∑
i=1

αiyixi,
M∑
i=1

αiyi = 0 (21)

Then, the dual optimization formula (22) can be derived by
inserting (21) into (19).

max
α

L(α) =
M∑
i=1

αi −
1
2

M∑
i=1

M∑
j=1

αiαjyiyjxTi xj

s.t.
M∑
i=1

αiyj = 0, αi ≥ 0, i = 1, 2, . . . ,M (22)

By solving the dual optimization problem, αi can be
solved, which is corresponding to the training sample (xi, yi).
Because (22) has inequality constraints, the above process
satisfies the Karush-Kuhn-Tucker (KKT) condition, for any
training sample (xi, yi) and αi, the conclusion can be derived
as follows:
αi ≥ 0,
yif (xi) ≥ 0,
αi (yif (xi)− 1) = 0.

⇒


αi = 0,
or
αi > 0 and yif (xi) = 1.

(23)

where the xi, which corresponding to αi> 0, is called a
support vector, and most of the other training samples will
be abandoned after training due to the fact that they do
not contribute to the classification model, so by inserting αi
into (21),W can be solved, and by insertingWinto (15), b can
further be calculated via

b =
1

MSV

MSV∑
i=1

(WTxi − yi) (24)

whereMSV is the number of support vectors, xi is the support
vector, and via the calculated W, b, the SVM classification
decision model can be expressed as

f (x) = WT x+ b =
MSV∑
i=1

αiyixTi x+ b (25)

In most situation, the training sample set D is linearly
inseparable, that is, not all samples can meet the constraints,
and there are always some samples cannot be divided cor-
rectly. To solve this problem, the soft margin and kernel func-
tion can be introduced in the process of SVM classification.

2) SOFT MARGIN SVM
The soft margin allows the SVM classifier to make errors in
some samples. By introducing the soft interval mechanism,
the optimization problem (18) can be expressed as

min
W ,C,ξ

1
2
‖W‖2 + C

M∑
i=1

ξi

s.t.

{
yi(WTxi + b) ≥ 1− ξi i = 1, 2, . . . ,M
ξi ≥ 0, i = 1, 2, . . . ,M ,

(26)

where ξ i is called slack variable, which presents the distance
between the margin and the examples xi that lying on the
wrong side of the margin, and C is called penalty factor,
the larger C, the more intolerable the existence of errors,
the easier to over-fit, and vice versa.

Similar to (18), the equivalent Lagrange dual function
of (27) can be obtained via the Lagrange multiplier method.

min
W ,b,α,ξ,µ

L(W , b, α, ξ, µ)

=
1
2
‖W‖2 + C

M∑
i=1

ξi

+

M∑
i=1

αi

(
1− ξi − yi(WTxi + b)

)
−

M∑
i=1

µiξi (27)

where αi ≥ 0, µi ≥ 0 are Lagrange multipliers. For the
optimal point, let the partial derivative of L as follows:

∂L(W , b, α)
∂W

= 0,
∂L(W , b, α)

∂b
= 0,

∂L(W , b, α)
∂ξ

= 0

(28)

Then, the following results can be obtained

W =
M∑
i=1

αiyixi,
M∑
i=1

αiyi = 0, C = αi + µi (29)

So, the dual optimization problem can be derived by insert-
ing (29) into (27) as

max
α

L(α) =
M∑
i=1

αi −
1
2

M∑
i=1

M∑
j=1

αiαjyiyjxTi xj

s.t.
M∑
i=1

αiyj = 0, 0 ≤ αi ≤ C, i = 1, 2, . . . ,M

(30)

Similar to (22), the process of the soft margin SVM satis-
fies the KKT condition too, and can be shown as

αi ≥ 0, µi ≥ 0,
yif (xi)− 1+ ξi ≥ 0,
αi (yif (xi)− 1+ ξi) = 0,
ξi ≥ 0, µiξi = 0

⇒


αi = 0,
or
αi > 0 and
yif (xi) = 1− ξi.

(31)

where xi represents a support vector when the Lagrange
multiplier αi > 0.
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According to (29), (31): if αi <C, then µi > 0, and
ξ i = 0, that is, the sample is just on the boundary of the
maximum margin; if αi = C, then µi = 0, so further if
ξ i ≤ 1, the sample will fall within the maximum margin, and
if ξ i > 1, the sample will be misclassified. It can be seen
that the model of soft margin SVM is only related to the
support vectors, so the decision model can be expressed as
same as (25).

3) NON-LINEAR SVM
The SVM classification method mentioned above is very
efficient, but many data sets are not linearly separable in most
cases. For the non-linear classification tasks, a non-linear
vector function 8 (x)= (81(x),82(x),. . . ,8l(x)) can be used
to map the n-dimensional input vector x to a l-dimensional
feature space (l> n). The mapping can make the input data
become linearly separable in l-dimensional space. This leads
to the non-linear decision formula (32) as

f (x) = sign

(MSV∑
i=1

αiyi
(
8 T(xi),8(x)

)
+ b

)
(32)

Because the dimension of feature space may be very high
or even infinite, it is usually difficult to directly calculate
the dot product of the feature space mappings of the original
data points. The problem can be solved by using the kernel
function κ , stated as

κ(xi, xj) =
〈
8(xi),8(xj)

〉
= 8T(xi),8(xj) (33)

By introducing the kernel function κ , the dual formula and
the non-linear decision formula can be rewritten as shown as
follows:

max
α

L(α) =
M∑
i=1

αi −
1
2

M∑
i=1

M∑
j=1

αiαjyiyjκ(xi, xj) (34)

s.t.
M∑
i=1

αiyj = 0, 0 ≤ αi ≤ C, i = 1, 2, . . . ,M

f (x) = sign

(MSV∑
i=1

αiyiκ(xi, x)+ b

)
(35)

The commonly used kernel functions include polynomial
kernel, Gaussian kernel and sigmoid kernel functions. Among
them, the Gaussian kernel function (36) has the advantages
of fast convergence, nonlinear mapping and less parame-
ters [33], and will be adopted in this article.

K
(
xi, xj

)
= exp

(
−
∥∥xi − xj∥∥2 /2σ 2

)
(36)

where σ is the kernel parameter, the larger σ is, the less
support vectors are identified, and vice versa.

4) MULTI-CLASS SVM
The discussion above is binary classification and the label
values are 1 and −1. In ship systems, however, there are
always more than two classes of system states that need to

FIGURE 3. Structure of the OAO multi-class SVM model.

be estimated. Therefore, the multi-class classificationmethod
will be further discussed based on the binary classification
method. There are many ways to solve multi-class SVM clas-
sification, such as directed acyclic graph (DAG), binary tree
(BT), one-against-one (OAO), and one-against-all (OAA)
methods [34]. Among them, theOAOmethod is awidely used
and verified multi-class method that has a shorter training
duration and higher training accuracy, when the number of
sample labels is not large [35], [36].

If k is the number of classes, there will be k(k–2)/2 binary
classifiers in OAO model, and each one trains data from two
classes. For the training data Dij = {(x1, y1), (x 2, y2),. . . ,
(xT , yT )}, yt∈{–1,1}, the optimization problem of the binary
classifier C(i, j) in OAO can be expressed as

min
W ij,bij,ξ ijt

1
2

∥∥∥W ij
∥∥∥2 + C T∑

t=1

ξ
ij
t

s.t.


(W ij)T8(xt )+ bij ≥ 1− ξ ijt , if yt = i

(W ij)T8(xt )+ bij ≤ −1+ ξ
ij
t , if yt = j

ξ
ij
t ≥ 0 i = 1, 2, . . . ,M

(37)

where xt is the training data, yt is the label of xt , and T is the
number of the training dataDij. The equivalent Lagrange dual
function of (37) can be obtained via the Lagrange multiplier
method. Similar to (35), the decision formula of binary SVM
between class i and class j is

f (x) = sign

(MSV∑
t=1

α
ij
t ytκ(xt , x)+ b

ij

)
(38)

After the training of each classifier, the process of
multi-classification is shown in Fig. 3. In the process, the vot-
ing strategy will be adopted: for each unknown sample, all
classifiers constructed will be used, and each classifier votes
on its classification results via decision formula (38); if the
result is identified as the i-th class, the number of votes

206724 VOLUME 8, 2020



H. Cao et al.: Optimized SVM-Driven Multi-Class Approach by IABC to Estimating Ship Systems State

FIGURE 4. The layout of the BW data acquisition and monitoring points.

TABLE 1. Parameter description and unit.

in the i-th class will be increased by 1, and the output is
the highest cumulative number of votes obtained via the
‘‘MaxWins’’ strategy, which is the prediction classification of
this unknown sample; in case that two classes have identical
votes, the one with the smaller index will be selected.

D. IABC OPTIMIZED SVM METHOD
It can be seen from (36), (37) and (38) that the key param-
eters that affect the performance of the SVM classifier are
the penalty factor C and the kernel parameter σ . For that,
the IABC method will be adopted to optimize the two critical
parameters as follows [37]:

Step 1: Raw data preprocessing.
According to the steps of the data preprocessing mentioned

above to achieve the data process.
Step 2:IABC algorithm initializing.
Set the following parameters: the size of the bee colony,

the number of nectar sources, the maximum number of
searches for each nectar source NR, the maximum number of
iterations NI , and the value ranges of the penalty factor C and
the kernel function parameter σ .

Step 3: Objective function setting.
To evaluate the quality of the SVM classifiers, the training

(70%) sub-dataset preprocessed will be adopted as input data

FIGURE 5. Sample data trends with 5 states.

in the SVM model training, and the objective function of
SVM will be set according to classification accuracy as

t = ft(vacc) = 1− vacc (39)

where vacc is the classification accuracy in the range [0,
+1], and t is the target value of the optimization process,
the smaller the better, 0 is the best.
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TABLE 2. Descriptive statistics of the data samples.

FIGURE 6. Initial nectar sources producing and selecting.

Step 4: Model training and parameters optimizing.
Adopt the IABC method mentioned above to optimize the

SVMmodel parameters C, σ . According to the nectar source
fitness (8), all the possible solutions can be optimized through
the respective searching activities of the three honeybees.

Step 5: Model classification performance checking.
The obtained optimal parameters C, σ in the previous step,

namely the global optimal nectar source, are used to construct
the SVM model. Then, the testing (30%) sub-dataset will be
used to evaluate the generalization ability of the model.

III. METHODOLOGY APPLICATION
Two example systems of a real ship were selected to verify
the effectiveness of the proposedmethod. The first is a Ballast
Water system (BW), which as an important auxiliary system
for adjusting the floating state of ships, and the second is
a central Cooling Water system group (CW), which com-
bines a Sea Water cooling system (SW), a Low Temperature
FreshWater cooling system (LTFW), and aHigh Temperature
Fresh Water cooling system (HTFW). Both example systems
have a scattered equipment layout, complex pipe network,

206726 VOLUME 8, 2020



H. Cao et al.: Optimized SVM-Driven Multi-Class Approach by IABC to Estimating Ship Systems State

FIGURE 7. Parameter optimization process.

and numerous valves, so it is difficult to perform manual
maintenance during system operation. But the purpose of
method verification here is different. The former focuses on
the recognition of fault states, while the latter focuses on the
recognition of normal states. The data required for model
training and testing was acquired through the online Data
Acquisition System (DAS) of the ship in different system
states.

A. WORKING STATE IDENTIFICATION OF BW
1) STATE DEFINITION AND PARAMETER SELECTION
The working states of the BW were be summarized as S1 to
S5: normal working state (S1), sea chest filter blocked (S2),
ballast pump wear (S3), valve stuck (S4), and sea water
pipeline leakage (S5). Based on the system working principle
and the abstract system layout diagram, it can be derived that
the system states have a strong relationship with the following
system parameters: the fluid pressure monitoring points P1,
P2, P3, P4, P5, P6, P7, P8; the flow monitoring points Q1,
Q2, Q3, Q4; the ballast pump motor output power Pm. The
acquisition points of all parameters are shown in Fig. 4, and
the description of each parameter is shown in Table 1.

FIGURE 8. Multi-class SVM state estimation results in testing.

2) DATA ACQUISITION AND PREPROCESSING
According to the 5 system states, after abnormal data filtering
via 3σ rule, there are 300 samples acquired through DAS left,
where the data trends according to 5 states are shown in Fig. 5.
The static feature statistics are shown in Table 2, including
the mean, minimum and maximum values of each feature,
the standard deviation, and the values at different (25%,
50%, and 75%) quantiles. By data splitting, the number of
samples for each state is 60, including 42 (70%) training sam-
ples and 18 (30%) testing samples, and due to the different
dimensions of the state data, used (1) to further achieve data
normalization.

3) IABC INITIALIZATION
Set the maximum number of iterations NI = 100, the max-
imum number of searches for each nectar source NR = 50,
the number of nectar sources N = 40, the optimization range
of parameters C, σ is 0–100, and generate employed bees and
onlookers corresponding to the number of nectar sources.

Adopt the unlearning improvement strategy via (3), (4)
and (5) to generate 40 initial nectar sources as shown
in Fig. 6.
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FIGURE 9. The layout of the CW data acquisition and monitoring points.

4) SVM INITIALIZATION
Set the K-folding parameter k= 6, adopt OAO classifier (38)
as the basic system state estimation model, and select the
Gaussian function (36) as the kernel function, so the penalty
factor C and the kernel parameter σ will be the optimized
parameters via IABC.

5) MODEL TRAINING AND PARAMETERS OPTIMIZING
According to the nectar source fitness (8), the solution (C, σ )
can be optimized through the respective searching activities
of the three kinds of honeybee from the initial nectar sources
selected (as shown in Fig.6 D). The trends of the classification
accuracy between IABC optimized SVM (IABC-SVM) and
traditional ABC optimized SVM (ABC-SVM) are shown
in Fig. 7, and more details are shown in Table 3.

6) CLASSIFICATION PERFORMANCE TESTING
The obtained optimal parameters C, σ in the previous step
were used to construct the SVM model. Then, the testing
(30%) sub-dataset was used to evaluate the generalization
ability of the model in the process of testing. The results of

TABLE 3. Comparison of training performance.

TABLE 4. Comparison of testing performance.

model testing are shown in Fig. 8, and more details are shown
in Table 4.
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FIGURE 10. Sample data trends with 5 states.

B. WORKING STATE IDENTIFICATION OF CW
1) STATE DEFINITION AND PARAMETER SELECTION
The working states of the CW were be summarized as S1 to
S5: mooring state with A/E 1 running (S1), mooring state
with A/E 2 running (S2), mooring state with A/E 3 running
(S3), low load at sea with a single A/E running (S4), and
high load at sea with two A/Es running (S5). Based on
the system working principle and the abstract system layout
diagram, it can be derived that the system states have a strong

TABLE 5. Parameter description and unit.

relationship with the following system parameters: the fluid
pressure monitoring points P1, P2, P3; the flow monitoring
points Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11; the
temperature monitoring points T1, T2, T3, T4, T5, T6, T7, T8,
T9, T10, T11, T12. The acquisition points of all parameters
are shown in Fig. 9, and the description of each parameter
is shown in Table 5.

2) DATA ACQUISITION AND PREPROCESSING
According to the 5 system states, after abnormal data filtering
via 3σ rule, there are 500 samples acquired through DAS
left, where the data trends according to 5 states is shown
in Fig. 10. The static feature statistics is shown in Table 6.
By data splitting, the number of samples for each state is 100,
including 70 (70%) training samples and 30 (30%) testing
samples, and due to the different dimensions of the state data,
used (1) to further achieve data normalization.

3) IABC INITIALIZATION
Set NI = 100, NR = 50, N = 40, and the optimization range
of C, σ is 0–100. Generate employed bees and onlookers,
and adopt the unlearning improvement strategy to generate
40 initial nectar sources as shown in Fig. 11.

4) SVM INITIALIZATION
Set the K-folding parameter k= 6, adopt OAO classifier, and
select the Gaussian function as the kernel function.

5) MODEL TRAINING AND PARAMETERS OPTIMIZING
The initial nectar sources selected are shown in Fig.11 D. The
trends of the classification accuracy between IABC-SVMand
ABC-SVM are shown in Fig. 12, and more details are shown
in Table 7.
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FIGURE 11. Initial nectar sources producing and selecting.

TABLE 6. Descriptive statistics of the data samples.

6) CLASSIFICATION PERFORMANCE TESTING
The obtained optimal parameters C, σ were used to construct
the SVM model. The testing (30%) sub-dataset was used to

evaluate the generalization ability of the model. The results
of model testing are shown in Fig. 13, and more details are
shown in Table 8.
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FIGURE 12. Parameter optimization process.

TABLE 7. Comparison of training performance.

TABLE 8. Comparison of testing performance.

C. RESULTS
From the two examples, it can be seen from Fig. 7 (exam-
ple 1) and Fig. 12 (example 2) that the IABC-SVM can reach
the global optimization at a faster speed than the ABC-SVM

FIGURE 13. Multi-class SVM state estimation results in testing.

in the model training process. In addition, it can also be
seen from the trend of their average accuracy that the IABC
method can help the training start with better initial nectar
sources with 96.52% (example 1) and 98.01% (example 2)
average accuracy than the traditional ABC with 91.02%
(example 1) and 94.81% (example 2). More comparative
parameters such as the training time, the best mean accuracy,
etc. are shown in Table 3 (example 1) and Table 7 (exam-
ple 2). Form the comparative information, we can conclude
that the performance of the IABC-SVM is better than the
ABC-SVM.

From the results of model testing in Fig. 8 (example 1) and
Fig. 13 (example 2), The IABC-SVMcan get a slightly higher
classification accuracy rate than the ABC-SVM, although the
performance of the two methods tends to be the same. More
evidence about the testing performance are shown in Table 4
(example 1) and Table 8 (example 2). Therefore, it can be
derived that the IABC-SVM can show a slight advantage in
the testing process compared to the ABC-SVM.

According to the analysis above, compared with traditional
ABC optimized SVM, the IABC optimized SVM can signif-
icantly improve the model training efficiency, quickly obtain
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the global optimal parameters, and obtain a slightly better
state estimation performance in the process of model testing.

IV. CONCLUSION
The elaborated method can achieve the parameters optimiza-
tion for the multi-class SVM model and improve the model
training efficiency. Because this method can make full use
of the training dataset to find the global best parameters in
a SVM model, and avoid the uncertainty and local optimiza-
tion, it can perform a multi-states estimation for some marine
engine room systems, and get a good performance, which can
be verified in the given examples.

There is still some improvement space for the proposed
method: more different ship systems, especially some special
systems, will be tested to verify the classification accuracy
and the generalization performance; for some complex ship
systems or combined large-scale ship systems, if the number
of system parameters, which have a strong relationship with
each system state, is too large and exceeds the capacity of the
model, an effective data dimension reduction method can be
further applied to the data preprocessing stage. In addition,
an effective state prediction model can be further introduced
in the method to achieve the performance of state prediction.

With the maintenance mode upgrading of large commer-
cial ships, the method can further perform a large-scale sys-
tem state evaluation by combining multiple marine engine
room systems, and even form a unified function unit to con-
duct intelligent state evaluation and prediction for the entire
mechanical and electrical system of large commercial ships.
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