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ABSTRACT Goalmodels have been used for the last two decades in various disciplines to represent business,
organizations, and individuals’ objectives. Several methodologies and standards have emerged, and various
goal analysis and evaluation algorithms have been introduced serving different sectors, including decision
support. In contrast to most researches which are based mainly on simulation to predict the satisfaction levels
of final goals, this research proposes a new framework for evaluating goal models based on the state-space
representation that is used extensively in control systems. This new approach brings the theories and literature
of state-space representation of systems to goal models, opening a new direction for using its availablemature
techniques and tools, for goal model analysis and evaluation. A hypothetical goal model, which can be used
for policymaking after the COVID-19 pandemic, is presented as an example of how the proposed framework
can be used, and the results that can be obtained.

INDEX TERMS Goal model, goal modeling, goal model evaluation, goal model reasoning.

I. INTRODUCTION
Since their introduction in the early 90s, goal models have
been used in various disciplines, especially software require-
ments analysis [1]–[3], [33]. Approaches have been devel-
oped to identify possible requirement conflicts [28] and to
evaluate whether particular conditions can eventually lead
to the satisfaction of specific requirements [29]. They have
also been used to evaluate alternative system designs [12].
Goal models have also been used for business process reengi-
neering of pre-existing processes for achieving performance
improvements [4], [23], [31], [32]. A software development
methodology has also been built around goal modeling [6].
Other applications of goal models in autonomous agent-based
systems can be found in [5], [25]; also, other examples for
applications in decision making are described in [19], [24].

A goal can be described as a desirable condition in the
world, and the goal model is a graph or a language that
represents the relationship between some goals from some
viewpoint. Goals may be formulated at different abstraction
levels, ranging from high-level strategic concerns down to
low-level technical concerns [28].

In the early 90s, while focusing entirely on software
requirements engineering, KAOS (Knowledge Acquisition in
autOmated Specification) was the first framework featuring
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goal models that gained wide popularity [1]. The framework
introduced the notion of goal reduction in which a goal can
be refined by other goals through AND/OR links. For an
intermediate goal in the model, going up in the model can
answer the question, ‘‘why do we have this goal?’’ while
going down answers ‘‘how can we reach this goal?’’
i∗ framework emerged in 1995 by Eric Siu-Kwong Yu

in 1995 in his Ph.D. thesis [31]. It used the notion of the
intentional element as a hypernym for goal, task, resource,
and softgoal, which can be defined as a state in the world
desired to be achieved without sharply defined criteria.
In addition to the ‘‘how’’ and ‘‘why’’ dimensions in goal
models, it introduced a new dimension, ‘‘who’’, and pre-
sented the intentional dependency among stakeholders in the
system.
i∗ influenced NFR (Non-functional Requirements Frame-

work) and formed a basis for other frameworks and method-
ologies like Tropos [6], GRL (Goal-oriented Requirements
Language), and iStar 2.0 [9], which represents the core con-
cepts of i∗. The evolution of the goal model approaches
and frameworks are graphically illustrated in [10]. GRL is
a part of the URN, which became an ITU standard for
elicitation, analysis, specification, and validation of require-
ments [15]. Several years later, Techne [16] proposed models
supporting optional goals and preferences. More elaborate
discussions about goal modeling methodologies can be found
in [10], [13], [17].
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FIGURE 1. A hypothetical goal model that policymakers can think to handle the coronavirus
COVID-19 pandemic.

Goalmodels are promising in the field of strategic planning
and public policy decision support, where a goal model can
serve as the depiction of policymaker understanding of how
to achieve his final goals [19], [24]. Figure 1 illustrates an
example goal model that policymakers can think to handle
the coronavirus COVID-19 pandemic. In this figure,G7 is the
final, or root goal in the model, and all other goals contribute
to each other and finally contribute to it. G1, G3, and G4 are
leaf goals that no other goals contribute to them. Goals may
contribute positively or negatively to other goals. For exam-
ple, G6 contributes positively to G8, while G9 contributes
back negatively to G6.
A Policymaker may need to estimate which leaf goals need

attention first (consequently, the required fund) for the final
goal to be satisfied as early as possible. These estimates can
be obtained from goal model evaluation techniques. Goal
model evaluation techniques can be used to evaluate satis-
faction levels of root goals from satisfaction levels of leaf
goals. Some other techniques work top-down, trying to find
an initial set of satisfaction levels of leaf goals that can lead
to the satisfaction of root goals.

Qualitative approaches for goal model evaluation assign
initial labels representing the satisfaction level to leaf
goals [8]. These labels are then propagated upwards involving
new labels to be assigned to the next goals directly, or in case
of conflicts, requiring human interaction to resolve. In [11],
the authors introduced a similar forward propagating algo-
rithm adding the deniability of the goal as a second indepen-
dent dimension to the labels assigned to goals, removing the

chance of conflict, and the requirement for human interaction
during the execution of the algorithm. Qualitative approaches
for goal model evaluation yield coarse values that cannot
be satisfactory when more fine-grained outputs are required.
In [18], a quantitative approach for evaluating KAOS-based
goal models was introduced based on a probabilistic approach
to represent partial satisfaction of goals. The authors in [11]
extended their qualitative approach and provided a quan-
titative version of their algorithm. Quantitative approaches
for goal model evaluation based on fuzzy logic have been
presented in [7], [27]. Further analysis of various goal model
reasoning techniques is presented in [14].

Tools have been developed for the implementation of var-
ious satisfaction evaluation methodologies and algorithms.
Among these tools is jUCMNav [26], which is a graphical
editor and analysis tool for URN. It is open-source and based
on the Eclipse platform. It supports the qualitative or quan-
titative evaluation of GRL models. jUCMNav has also been
used in other research efforts as a platform for implement-
ing other evaluation algorithms and adding specific features,
e.g., [2], [22]. OpenOME is another open-source Eclipse-
based graphical tool for modeling and analysis of require-
ments using i∗ concepts. Another notable tool is CGM-Tool,
which supports modeling and reasoning on constrained goal
models, is written in Java, and is also based on Eclipse [20].
Most tools are dedicated to requirements engineering and
have been developed in the context of specific methodology
and model type. They require adaptations to be suitable for
use in other techniques.
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The mentioned satisfaction analysis techniques consider
only what value the final goal will eventually take, ignoring
the time profile of satisfaction levels of both leaf goals (the
inputs) and the root goal (the output). Additionally, these
techniques ignore the nature of specific goal satisfaction
dynamics, e.g., the required time for goals to be satisfied after
their precedents were fully satisfied.

This paper proposes a new methodology for goal model
evaluation based on the state-space representation model
that has extensive uses in control engineering. The proposed
methodology allows using time series for the inputs to leaf
goals, and obtain the time series of the satisfaction level
of the final goal, which is the outcome from goal model
evaluation. Specific goal dynamic characteristics (in terms
of goal satisfaction latency) for specific goals can also be
defined and considered, bringing more accurate and realistic
results. This way, we can extend what-if scenarios into what
and when, which can be useful in decision making.
A tool has also been implemented for graphical editing of

goal models using i∗ goal model conventions. The tool can
also detect leaf goals allowing graphical manipulation of their
satisfaction input levels and providing an instant visualization
of the time profile of the satisfaction level of the output root
goal. For the execution of the state-space model, the tool
uses the signal module of SciPy [30], the free and open-
source, cross-platform, widely available Python library for
scientific and technical computing. This library was intro-
duced around 2001 and is still actively maintained and used
in various scientific and technical areas.

Section II presents a brief introduction to the state-space
representation model of systems and its rationale. Section III
describes the proposed methodology, the principles behind,
and the notion of goal model fusion. The goal model fusion
algorithm is then presented and is followed by a complete
example to demonstrate the whole process and hence how the
goal model can be evaluated. The results for that example are
then presented and discussed in Section IV.

II. STATE-SPACE REPRESENTATION OF SYSTEMS
State-space representation of a system is a mathematical
model of a physical system as a set of input, output, and
state variables related by first-order differential equations.
This model has been extensively used in modern control
engineering. Today the approach is not only being used in
the analysis and design of control systems but also became
a well-known methodology in other areas like finance and
economics. Moreover, state-space techniques gained great
support for software tools, frameworks, and programming
languages.

Comparing the state-space approach to classical control,
which uses frequency domain, state-space can be used with
time-variant, nonlinear systems of multiple inputs and multi-
ple outputs [21].

For a system having output y1 for an input u1, and output
y2 for an input u2, if the system has the output equals y1+ y2
for an input u1 + u2, then the system satisfies the property

FIGURE 2. State-space representation of a system.

TABLE 1. The components of Equations (1) and (2), and their
characteristics.

of superposition. Moreover, if a system has an output of y
for an input u, and output of βy for an input βu, then the
system is homogeneous. If a system follows superposition
and is homogeneous, then the system is linear. Generally, the
system can be defined by the two equations:

Ėx = AEx + BEu (1)

Ey = CEx + DEu (2)

Moreover, if system parameters, the matrices A, B, C ,
and D, do not change with time, the system is called time-
invariant. Equation (1) specifies how the state can change
with the time as a function of the current state value Ex and
the system input Euwhereas Equation (2) relates Ex and Eu to the
system output Ey. Table 1 lists all components of equations (1)
and (2) and summarizes the effect of the four system param-
eters on the system.

III. THE PROPOSED FRAMEWORK
The proposed framework is based on the analogy between
systems, which is a known technique that uses the solutions
from one science field and applies it to another field of
interest. To the best knowledge of the author, the analogy
between control system theory and goal modeling has not
been studied. A goal that contributes to another goal has some
analogy to systems theory where the output from a system
component can be introduced as input to another, forming a
larger system.

In the state-space representation of a system, the system
is viewed as a set of inputs, outputs, and state variables.
The system is defined in terms of four matrices A, B, C ,
and D. These matrices relate these components to each other.
The initial conditions of the system can also be defined
as the value of the state vector at time 0. In the proposed
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FIGURE 3. Achieving different goal satisfaction latencies based on α,
in case of an input with the Heaviside step function.

methodology, goals are considered analogous to system com-
ponents, so they can also be defined in terms of the four matri-
ces A, B, C , and D as in Equations (1) and (2). For simplicity,
we can omit the D matrix from Equation (2) as it always has
a null value. In our proposed evaluation framework, a default
set of matrices is initially assigned to each goal in the goal
model. The objective is to get a single set of matrices with
the same dynamic characteristics as the original goal model.
This set of matrices directly relates the inputs to the leaf goals
to the outputs of the root goals, which means that applying
the same input values to both the original goal model, and
to the reduced one would produce the same results at any
time. The transformation of the original goal model into a
single goal with a single set of matrices is called goal model
fusion.

A goal is assigned the set of matrices initially: A = [−1],
B = [1], C = [1] representing the simple single-input single-
output system defined by the equations ẋ = u−x and y = x. If
a goal has additional inputs, then the initial Bmatrix assigned
to it should have a number of columns equal to the number of
its inputs, with each column having a ratio representing the
weight of participation of this particular input to all inputs.
This simple single state system has a state vector Ex ∈ R1. The
output of the system at any time is directly equal to this state
value, and the next state variable value comes directly from
the input u. From a goal model point of view, this represents
a simple propagation latency from one goal to another. For
example, if the input to a goal with this initial set of matrices,
at time t = 0 is the Heaviside step function u(t) = 1, then the
satisfaction of the goal will take the form of S(t) = 1− e−t .
Due to the nature of individual goals in the goal models,
a goal may require more time to reach satisfaction even if its
input has already reached satisfaction. This variable latency
can be expressed based on the parameter α in the equation
S(t) = 1−e−αt as shown in Figure 3. Based on the techniques
from control theory, the initial set of matrices to be assigned
initially to a goal can then be A = [−α], B = [α], C = [1].

A. GOAL MODEL FUSION
A goal model usually starts with a target goal, breaking it
into several sub-goals. It then passes through a several break-
downs and refinement iterations until no further breakdown

can be possible. From an evaluation point of view, the goal
model can be viewed as a transformation that indirectly
relates the external inputs that lead to leaf goals satisfactions
to the satisfaction level of the root goal. Goal model fusion
provides a means to relate the inputs of the leaf goals directly
to the achievement of root goals.

Goal model fusion is an iterative process where every
step involves the fusion of the furthest goal into its next
goals. The furthest goal is the one having the maximum
number of hops in its shortest path to the root goal. Each
step combines matrices, states, and inputs of the further goal
into its subsequent goals without losing any information. The
fusion process ends with a single goal representing the whole
goal model with a single set of matrices maintaining all the
original model dynamics.

FIGURE 4. Fusion of Gs into its next goal Gt .

For a simple configuration, as seen in Figure 4, letGs be the
furthest goal from the root goal, which should then be fused
intoGt .Gt gets input fromGs only, so itsBmatrix has a single
column B = [1], and ut = ys. Gt is said to be extended by
Gs. Starting with Equations (1) and (2):

Ėxt = At Ext + Bt Eut
= At Ext + Bt Eys
= At Ext + BtCs Exs,
Ėxs = As Exs + Bs Eus,

Eyt = Ct Ext

which can be written in matrix form as:[
Ėxt
Ėxs

]
=

[
At BtCs
0 As

] [
Ext
Exs

]
+

[
0
Bs

]
Eus

Eyt =
[
Ct 0

] [ Ext
Exs

]

These two equations suggest a new goal G′t as a replacement
of the original Gt after fusion of Gs along with its inputs Eus

into it. The new equivalent goal G′t has A
′
t =

[
At BtCs
0 As

]
,

B′t =
[
0
Bs

]
, C ′t =

[
Ct 0

]
. If the goal model has loops,

then the inherited input from Gs to G′t , Eus, may also include
output from other goals, in addition to external inputs that
come from outside the goal model to leaf goals. In the case
of Gs affecting more than one target (e.g., G2 contribution to
G5 andG6 in Figure 6(c)), then the same process is applied to
each of these targets before Gs can be removed from the goal
model.
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FIGURE 5. Fusion of a goal with a self-loop into its next goal.

The next goalGt may possibly have inputs from goals other
thanGs. In this case, Bt is divided horizontally intom sections
corresponding to the number of the inputs of Gt , with the
input from Gs, ys one of them.

Ėxt = At Ext +
[
Bt1 Bt2 . . . Btm

]

Eut1
Eut2
...

Eutm



= At Ext +
[
Bt1 Bt2 . . . Btm

]

Eys
Eut2
...

Eutm



= At Ext + Bt1Cs Exs +
[
0 Bt2 . . . Btm

]


0
Eut2
...

Eutm

 ,
Ėxs = As Exs + Bs Eus,

Eyt = Ct Ext

which can be written as:

[
Ėxt
Ėxs

]
=

[
At Bt1Cs
0 As

] [
Ext
Exs

]
+

[
0 Bt2 . . . Btm
Bs 0 . . . 0

]
Eus
Eut2
...

Eutm


Eyt =

[
Ct 0

] [ Ext
Exs

]

suggesting a new goal G′t after fusion of Gs along with

its inputs Eus into Gt with A′t =
[
At Bt1Cs
0 As

]
, B′t =[

0 Bt2 . . . Btm
Bs 0 . . . 0

]
, and C ′t =

[
Ct 0

]
In goal models with loops, the fusion of leaf goals into their

next goals eventually results in a goal with a self-loop like the
one shown in Figure 5

Ėxt = At Ext + Bt Eys
= At Ext + BtCs Exs,

Ėxs = As Exs +
[
Bs1 Bs2

] [ Eus
Eys

]
= As Exs +

[
Bs1 0

] [ Eus
0

]
+ Bs2Cs Exs,

Eyt = Ct Ext

In matrix form, the above equations can be written as:

[
Ėxt
Ėxs

]
=

[
At BtCs
0 As + Bs2Cs

] [
Ext
Exs

]
+

[
0
Bs1

]
Eus

Eyt =
[
Ct 0

] [ Ext
Exs

]

forming a new goal G′t with input us only, A′t =[
At BtCs
0 As + Bs2Cs

]
, B′t =

[
0
Bs1

]
, and C ′t =

[
Ct 0

]
B. FUSION OF GOAL MODELS SUPPORTING NEGATIVE
CONTRIBUTION
So far, a goal is associated with a value that represents
its satisfaction level ranging from 0, which represents total
denial, to 1, which represents total satisfaction. This is guar-
anteed by starting with inputs that fall in this range. For
goals with multiple inputs, weights are used to fulfill this
property. To support goal models with possible negative
contributions between goals, e.g., the relation between G9
and G6 in the goal model in Figure 1, we need to keep
the goals’ denial values in a separate channel. Each connec-
tion from one goal to another in the goal model is repre-
sented by two separate channels; the suffix s will be used
to denote the satisfaction channel, and the suffix d for the
denial channel. The values in each channel still range from
0 to represent no satisfaction/denial to 1 for complete sat-
isfaction/denial. The absolute satisfaction/denial level of a
goal can then be determined by subtracting the denial value
from the satisfaction value of the goal, resulting in a value
ranging from −1 for total denial to 1 for total satisfac-
tion, which can be normalized again to a value that ranges
from 0 to 1.

For positive contribution relation from a goalGs to another
goal Gt , the s-channel of Gs is connected to the s-channel
of Gt and the same is for the d-channel. The satisfac-
tion of Gs leads to satisfaction in Gt and denial of Gs
also leads to denial of Gt . On the other hand, for nega-
tive contribution, the s-channel of Gs is connected to the
d-channel of Gt , and the d-channel of Gs is connected to
the s-channel of Gt . This exchange in channels reflects that
the satisfaction of Gs leads to a denial of Gt and vice
versa.

If a goal has connections from m other goals, then the
actual input vector Eu has 2m components since each con-
nection from these goals requires two inputs, one for the
satisfaction channel, and the other for the denial channel, i.e.,
Eu =

[
u1s u1d u2s u2d . . . ums umd

]T . The
goal output Ey now has always two outputs, again one for the

s-channel and the other is for the d-channel, i.e., Ey =
[
ys
yd

]
.

For a goal that has n states, A, B, and C matrices have the
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dimensions of n× n, n× 2m, and 2× n respectively:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

 ,

B =


b11s b11d b12s b12d . . . b1ms b1md
b21s b21d b22s b22d . . . b2ms b2md
...

...
...

...
. . .

...
...

bn1s bn1d bn2s bn2d . . . bnms bnmd

 ,
C =

[
c11 c12 . . . c1n
c21 c22 . . . c2n

]
According to the latency parameter α of a goal, the initial

value of A matrix will be
[
−α 0
0 −α

]
, and C will take[

1 0
0 1

]
. For a goal with a single input, B will be assigned

the value
[
α 0
0 α

]
. For a goal with m-inputs, B will take the

form
[
B1 B2 . . . Bm

]
, where each part of this matrix

Bi corresponds and input i with weight wi. For a positive

contributing input i, Bi = wi

[
α 0
0 α

]
, and for negative

contribution, Bi = wi

[
0 α

α 0

]
. The sum of all wi should

always equal to 1.

C. GOAL MODEL FUSION ALGORITHM
The goal model is defined in terms of a set of goals G,
and a set of links between them L. The objective of the
algorithm is to simplify the goal model into a single goal and
a set of inputs. The algorithm achieves this by finding the
furthest leaf goal and merging it into the goals it contributes
to, maintaining the inputs of the leaf goal. This operation is
repeated until no further fusion is possible.

Algorithm 1 Goal Model Fusion G, L
1: procedure GoalModelFusion(G,L)
2: Groot ← FindRootGoal(G,L)
3: while Length(L) > 0 do F Links between goal still

exist
4: G1← FurthestGoal(Groot ,G,L)
5: Targets← OutgoingFrom(G1,G,L)
6: for all G2 ∈ Targets do
7: G2← Combine(G1,G2)
8: end for
9: DeleteGoal(G1)
10: end while
11: end procedure

D. EXAMPLE
The goal model in Figure 6(a) corresponds to the example
goal model in Figure 1. u1, u3, and u4 correspond to the

1: procedure FurthestGoal(Groot ,G,L)
2: MAX_DEPTH ← 999999
3: Depths← InitializeList(G.length,MAX_DEPTH )
4: Depths[Groot ]← 0
5: while MAX_DEPTH ∈ Depths do
6: for all l ∈ L do
7: if Depths[l.to] 6= MAX_DEPTH then
8: Depths[l.from] ←

Min(Depths[l.from],Depths[l.to]+ 1)
9: end if
10: end for
11: end while
12: Gfurthest ← Groot
13: for all g ∈ G do
14: if Depths[g] > Depths[Groot ] then
15: Gfurthest ← g
16: end if
17: end for
18: return Gfurthest
19: end procedure

1: procedure Combine(Gs,Gt )
2: nt ← SIZE(At )
3: ns← SIZE(As)
4: n← At + As
5: A← ZeroMatrix(n, n)
6: SubMat(A, 0 : nt , 0 : At.width)← At
7: SubMat(A, nt : n, 0 : As.width)← As
8: i← the index corresponding to Gs in Gt .inputs
9: Bi← the part of Bt corresponding to i
10: SubMat(A, 0 : nt , nt : n)← Bi × Cs
11: if Gs.inputs contains input from Gs then F A

self-loop in Gs
12: j← the index corresponding to Gs in Gs.inputs
13: Bj← the part of Bs corresponding to j
14: SubMat(A, nt : n, nt : n) ← SubMat(A, nt :

n, nt : n) +Bj × Cs
15: Delete the jth part of Bs and Bs.inputs
16: end if
17: m← Length(Gt .inputs) + Length(Gs.inputs) −1
18: B← ZeroMatrix(n,m)
19: SubMat(B, 0 : nt , 0 : i)← SubMat(Bt , :, 0 : i)
20: SubMat(B, nt : n, i : i+ Bs.width)← Bs
21: SubMat(B, 0 : nt , i+ Bs.width : m)← SubMat(Bt , :

, i+ 1 : Bt .width)
22: C ← ZeroMatrix(1, n)
23: SubMat(C, :, 0 : 1])← Identity(1)
24: inputs← SubList(Gt .inputs, 0 : i)
25: inputs← ListExtend(inputs,Gs.inputs)
26: l ← SubList(Gt .inputs, i+ 1 :)
27: inputs← ListExtend(inputs, l)
28: DeleteRelation(Gs,Gt )
29: return Goal(A,B,C, inputs)
30: end procedure
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external inputs that lead to the satisfaction of the leaf goals
G1, G3, and G4. All goals are assigned A matrix with a value

of
[
−1 0
0 −1

]
, and C matrix with a value of

[
1 0
0 1

]
. Goals

G1, G2, G3, G4, G7, and G9 have a single input, so they

are assigned B matrix with a value of
[
1 0
0 1

]
, whereas

G5 and G8 have two inputs each, so they are assigned B

matrix with a value of
[
.5 0 .5 0
0 .5 0 .5

]
. B6 has a value of[

.33 0 .33 0 0 .33
0 .33 0 .33 .33 0

]
corresponding to the

positive contribution from G3 and G2, and the negative con-
tribution from G9. Negative contribution results in a vertical
flipping of its corresponding part of matrix B.
Round 1: The furthest goal from the root goal G7 is G1.

G1 is combined into its target G2, leaving

A2 =


−1 0 1 0
0 −1 0 1
0 0 −1 0
0 0 0 −1

 ,

B2 =


0 0
0 0
1 0
0 1

 , C2 =

[
1 0 0 0
0 1 0 0

]
.

u1 (which is inherited from G1) replaces y1 in G2 inputs. The
relation from G1 to G2 is deleted, and G1 is then removed
from the model.
Round 2:G2,G3,G4,G9 now have the same distance from

G7, so any of them can be selected. We arbitrarily takeG2.G2
has contributions to both G6 and G5, resulting in

A6 =


−1 0 .33 0 0 0
0 −1 0 .33 0 0
0 0 −1 0 1 0
0 0 0 −1 0 1
0 0 0 0 −1 0
0 0 0 0 0 −1

 ,

B6 =


0 0 .33 0 0 .33
0 0 0 .33 .33 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

 ,

C6 =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
.

u1 replaces y2 in G6 inputs, and the relation from G2 to G6 is
deleted. For G5,

A5 =


−1 0 .5 0 0 0
0 −1 0 .5 0 0
0 0 −1 0 1 0
0 0 0 −1 0 1
0 0 0 0 −1 0
0 0 0 0 0 −1

 ,

B5 =


.5 0 0 0
0 .5 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , C5 =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
.

u1 replaces y2 in G5 inputs, and the relation from G2 to G5 is
deleted. G2 can then be removed from the model.
Round 3: G3 is combined into G6 leaving

A6 =



−1 0 .33 0 0 0 .33 0
0 −1 0 .33 0 0 0 .33
0 0 −1 0 1 0 0 0
0 0 0 −1 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1


,

B6 =



0 0 0 0 0 .33
0 0 0 0 .33 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


,

C6 =

[
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

]
.

u3 replaces y3 in G6 inputs, and the relation from G3 to G6 is
deleted, and G3 can then be removed.
Round 4:G4 is the furthest goal toG7; it is then combined

into its target G5.

A5 =



−1 0 .5 0 0 0 .5 0
0 −1 0 .5 0 0 0 .5
0 0 −1 0 1 0 0 0
0 0 0 −1 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1


,

B5 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


,

C5 =

[
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

]
.

u4 replaces y4 in G5 inputs, and the relation from G4 to G5 is
deleted, and G4 can then be removed.
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FIGURE 6. Fusion of the example goal model in Figure 1.
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Round 5: G9 is combined into its target G6.

A6 =



−1 0 .33 0 0 0 .33 0 0 .33
0 −1 0 .33 0 0 0 .33 .33 0
0 0 −1 0 1 0 0 0 0 0
0 0 0 −1 0 1 0 0 0 0
0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 −1


,

B6 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


,

C6 =

[
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

]
.

y8 replaces y9 in G6 inputs, and the relation from G9 to G6 is
deleted, along with G9.
Round 6: G6 is combined into its target G8.

A8=



−1 0 .5 0 0 0 0 0 0 0 0 0
0 −1 0 .5 0 0 0 0 0 0 0 0
0 0 −1 0 .33 0 0 0 .33 0 0 .33
0 0 0 −1 0 .33 0 0 0 .33 .33 0
0 0 0 0 −1 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 −1



,

B8 =



0 0 0 0 0 0 .5 0
0 0 0 0 0 0 0 .5
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0



,

C8 =

[
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0

]
.

FIGURE 7. The main window of the goal model editing tool.

FIGURE 8. Goal model evaluation dialog.

u1, u3, and y8 replace y6 in G8 inputs, and the relation from
G6 to G8 is deleted, along with G6.
Round 7: G5 is combined into its target G8, shown at the

bottom of the next page.
Another instance of u1 and u4 replace y5 in G8 inputs, and

the relation from G5 to G8 is deleted, along with G5.
Round 8: G8 is combined into the root goal G7, shown at

the bottom of the 11th page..
The two instances of u1 along with u3 and u4 replace y8 in

G7 inputs resolving the loop in G8. The relation from G8 to
G7 is deleted as well as G8. Now, the goal model has been
wholly fused into its root goal G7, and the matrices A7, B7,
C7 fully determine the dynamic behavior of the original goal
model. Using traditional control engineering tools can then be
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used to evaluate and analyze the effect of the original inputs
u1, u3, and u4 on the satisfaction level of the root goal G7.

IV. RESULTS
A tool has been developed to implement the proposed
methodology for goal model evaluation. The tool includes a
graphical user interface (based on PyQT5) for editing goal
models based on i∗ concepts and terminologies. A screen-
shot of the main window of the tool is shown in Figure 7.
Upon triggering the evaluation feature, the goal model fusion

algorithm is executed, yielding a set of three matrices defin-
ing the relation between the external inputs and the root goal.
A window is then shown featuring a set of slider widgets
corresponding to the external inputs of the goal model (u1:
input to ‘‘G1: Successful Media Campaigns’’, u3: input to
‘‘G3: Lockdown’’, u4: input to ‘‘G4: Medical Sup-plies Avail-
able’’). Figure 8 is a screenshot of that window, showing
the curves of satisfaction level (S), the denial level (D), and
the absolute satisfaction level (Abs) of the root goal ‘‘G7:
Better Public Safety’’. These curves are instantly updated

A8 =



−1 0 .5 0 0 0 0 0 0 0 0 0 .5 0 0 0 0 0 0 0
0 − 1 0 .5 0 0 0 0 0 0 0 0 0 .5 0 0 0 0 0 0
0 0 − 1 0 .33 0 0 0 .33 0 0 .33 0 0 0 0 0 0 0 0
0 0 0 − 1 0 .33 0 0 0 .33 .33 0 0 0 0 0 0 0 0 0
0 0 0 0 − 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 − 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 − 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 − 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 − 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 − 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 − 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 − 1 0 .5 0 0 0 .5 0
0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0 .5 0 0 0 .5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1



,

B8 =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0



,

C8 =

[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
.
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upon changing the values of the external inputs using the
slider widgets.

The framework is tested with satisfaction levels 0, 0.5,
and 1 for each of the external inputs of the goal model. The
obtained results are listed in Table 2. The input values u1, u3,
and u4 in the table are introduced as a Heaviside step function
time series of a length of 20. The output at t = 5 and at t = 20
(which can be considered the steady-state in this example) is
sampled for each input in the table. These results are based on
a fixed value of 1 for the latency factor α for all goals, and a
fixed weight value of 1

N for N inputs contributing to the same
goal.

The output at t = 0 for all input values is not listed since it
always has the results S = 0,D = 0 due to the delay required

for goals to propagate their values. The steady-state output
for a complete denial of all external inputs (0, 0, 0) is S =
0.142,D = 0.857. This nonzero satisfaction and incomplete
denial come from the negative contribution from G9 to G6,
which is the reason also for a complete satisfaction input
(1, 1, 1) yielding S = 0.857,D = 0.142, incomplete satis-
faction and nonzero denial. Complete satisfaction in u1 with
a complete denial in other inputs leads to a S = 0.499,D =
0.499, whereas a complete satisfaction in either u3 or u4
with a complete denial in other inputs yields lower absolute
satisfaction levels. These results reflect the fact thatG2, which
is the next goal ofG1, has a double effect, contributing to two
goals simultaneously (G5 and G6). The reason for u3 is less
significant than u4 is that G3 affects G6, which has negative

A7 =



−1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 − 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 − 1 0 .5 0 0 0 0 0 0 0 0 0 .5 0 0 0 0 0 0 0
0 0 0 − 1 0 .5 0 0 0 0 0 0 0 0 0 .5 0 0 0 0 0 0
0 0 0 0 − 1 0 .33 0 0 0 .33 0 0 .33 0 0 0 0 0 0 0 0
0 0 0 0 0 − 1 0 .33 0 0 0 .33 .33 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 − 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 − 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 − 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 − 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 − 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 − 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0 .5 0 0 0 .5 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0 .5 0 0 0 .5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1



,

B7 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0



,

C7 =

[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
.
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TABLE 2. Evaluation of the goal model in Figure 1 against external inputs.

feedback from G9, while the path starting from G4 has
not.

V. CONCLUSION AND FUTURE WORK
In this paper, we introduced a framework for evaluating
goal models based on control system theories. The proposed
methodology considers the time-varying inputs resulting in a
time-varying output. It also considers specific goal dynamic
characteristics. An algorithm has been introduced for deduc-
ing the state-space matrices for the whole goal model from
individual goals. Representing a goal model in terms of
a few matrices would hypothetically give better evaluation
computation performance than other evaluation techniques.
Improving the computation time of the evaluation process
allows for more combinations of inputs to be tested against
the system being modeled. Furthermore, this new view of the
goal model opens a new area for further analysis of the goal
model dynamics.

A supporting tool has been developed to prove the concept
of this new direction. This tool has been used to obtain a state-
space model with the same characteristics as the original goal
model. Execution of the state-space model against different
input values is done using a mature, widely available, actively
maintained Python package for technical computing.

A limitation of the proposed framework is that it cannot
support nonlinear relations among goals, such as having

alternatives for goal satisfaction. Future work may include a
linearization for such relations. According to the new view of
a goal model as a system of systems, further analysis of the
goal model dynamics can be achieved. Parameters like initial
matrices, α for each goal, inputs weights can be time-varying
for more realistic results. Using the control theory concepts,
it might also be possible to find an initial set of inputs that
can lead to particular satisfaction of root goals at some point
in time.
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