
Received September 21, 2020, accepted November 1, 2020, date of publication November 9, 2020,
date of current version November 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3036899

Privacy-Preserving Reinforcement Learning Using
Homomorphic Encryption in Cloud
Computing Infrastructures
JAEHYOUNG PARK 1, (Graduate Student Member, IEEE),
DONG SEONG KIM 2, (Senior Member, IEEE),
AND HYUK LIM 3, (Member, IEEE)
1School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea
2School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD 4072, Australia
3AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea

Corresponding author: Hyuk Lim (hlim@gist.ac.kr)

This work was supported in part by the National Research Foundation (NRF) through the Ministry of Science and ICT (MSIT) of Korean
Government under Grant 2020R1F1A1060941, in part by the Institute of Information and Communications Technology Planning and
Evaluation (IITP) grant funded by MSIT, Resilient Cyber-Physical Systems Research, under Grant 2014-3-00065, and in part by the IITP
funded by MSIT through the Artificial Intelligence Graduate School Program (GIST) under Grant 2019-0-01842.

ABSTRACT Reinforcement learning (RL) is a learning technique that enables state-dependent learning
through feedback from an environment and makes an action decision for maximizing a reward without prior
knowledge of the environment. If these RL techniques are used for data-centric services running on cloud
computing, serious data privacy issues may occur because it is required to exchange privacy-related user data
for RL-based services between the users and the cloud computing platform.We consider using homomorphic
encryption (HE) scheme, which enables cloud computing platforms to perform arithmetic operations without
decrypting ciphertexts. Using the HE scheme, users are allowed to deliver only ciphertexts to the cloud
computing platform for using RL-based services. We propose a privacy-preserving reinforcement learn-
ing (PPRL) framework for the cloud computing platform. The proposed framework exploits a cryptosystem
based on learning with errors (LWE) for fully homomorphic encryption (FHE). Performance analysis and
evaluation for the proposed PPRL framework are conducted in a variety of cloud computing-based intelligent
service scenarios.

INDEX TERMS Privacy preserving, homomorphic encryption, reinforcement learning, Q-learning.

I. INTRODUCTION
In recent years, artificial intelligence (AI) technologies have
developed tremendously, and AI services have been actively
utilized in our daily life. In order to provide AI services,
a huge amount of computing and storage resources are
required continuously and reliably. Because the computing
and storage resources are limited at the customer’s side,
cloud computing is expected to play an important role in
an AI service platform to solve the problem of lack of
the computing and storage resources. Cloud computing is a
technology that enables customers’ personal data and pro-
cesses to be stored and executed remotely using virtualization
technologies such as virtual machines (VMs) and containers

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

running on a data center connected to the Internet. Due to
the advantages in terms of deployment and use costs, system
reliability, and ease of use and management, it greatly con-
tributes to the development and production of AI services and
applications [1].

Reinforcement learning (RL) is one of the most important
learning strategies that are being actively researched with aim
of providing artificial intelligence in various application areas
such as energy, healthcare, finance and so on [2], [3]. RL
algorithms develop a policy that finds behaviors that maxi-
mize a reward using state and performance observations in a
given environment. In a complex and dynamic environment,
a number of training iterations for RL algorithms are required
to reach a competent performance. Therefore, the cloud com-
puting infrastructure is quite useful to implement high-quality
RL-based services, especially when many users need to share

203564
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-9850-9221
https://orcid.org/0000-0003-2605-187X
https://orcid.org/0000-0002-9926-3913
https://orcid.org/0000-0001-8781-7993

J. Park et al.: Privacy-Preserving RL Using Homomorphic Encryption in Cloud Computing Infrastructures

and process a vast amount of shared data. However, users who
want to use RL services must send their sensitive personal
information such as health care and financial data to cloud
servers in the cloud computing infrastructure, and thus seri-
ous data privacy issues may be raised [4].

To solve data privacy issues in the cloud computing based
AI service environment, homomorphic encryption (HE) [5]
can be considered as a promising approach because it enables
a third party to perform arithmetic operations on ciphertexts
without decrypting them. Using HE scheme, users with sen-
sitive personal data send only ciphertexts to cloud computing
platform without providing decryption key information for
using AI services. HE scheme can be roughly divided into
partially homomorphic encryption (PHE), which has only one
addition or multiplication homomorphism, and somewhat
homomorphic encryption (SHE), which has both addition and
multiplication homomorphism. In PHE schemes, since only
one of homomorphic addition or multiplication operations is
available, it is difficult to implement various functions for
implementating complex AI algorithms. On the other hand,
although SHE schemes have both addition and multiplication
homomorphism, the number of homomorphic operations that
can be performed continuously without decryption is limited
because random errors inserted in ciphertexts for improving
security level are accumulated as the number of successive
homomorphic operations increases.

Several privacy-preserving reinforcement learning (PPRL)
algorithms have been proposed to provide RL-based services
without leaking user’s sensitive information by using HE
schemes [6], [7]. However, there are still critical problems to
be solved for the implementation of PPRL algorithms using
HE schemes in a cloud computing environment. First of all,
the efficiency issue of PPRL algorithms is the most chal-
lenging because HE scheme significantly incurs the computa-
tional and communication overhead for implementing PPRL
algorithms. Liu et al. proposed a secure multiparty computa-
tion (SMC)-based PPRL algorithm using additive homomor-
phic encryption (AHE) [6]. The communication overhead of
the distributed cryptosystem used in their proposed scheme
is quite high because it requires a lot of multi-party com-
munication. When multiple parties have to cooperate with
each other to process data in the SMC-based cloud systems,
data needs to be synchronized, and it may result in a longer
service latency. Second, in the SHE schemes, the number
of homomorphic operations that can be performed contin-
uously without decryption is limited because the random
errors are accumulated. To overcome the limited number
of homomorphic operations, Gentry designed a fully homo-
morphic encryption (FHE) scheme. The proposed scheme
suppressed the increasing error by developing a bootstrap-
ping algorithm [8]. Although the bootstrapping algorithm can
suppress the growth of errors, the computational complexity
of the entire algorithm increases as it requires a periodic
execution of the bootstrapping with a high computational
complexity to refresh accumulated errors. Third, in order to
use the PPRL algorithm in a cloud computing environment,

it is necessary to safely collect data from multiple users and
perform learning using the collected data. However, in the
HE scheme, since it is impossible to perform homomorphic
operation between ciphertexts encrypted with different keys,
only data from users using the same key can be shared in
a cloud computing. If the same key is used among multiple
users, it is difficult to preserve data privacy among them.

To solve the aforementioned problems, we propose the
secure centralized computation PPRL (SCC-PPRL) scheme
for a secure Q-learning using FHE scheme in a cloud com-
puting environment. The proposed SCC-PPRL scheme stores
and processes the data in a single cloud server without any
support of third-parties to reduce communication overhead
and avoid the synchronization problem. The proposed algo-
rithm can restrict the growth of errors in the FHE scheme
without a bootstrapping algorithm by enabling the error
growth to be cancelled out during the iterative Q-value com-
putation. In addition, the proposed algorithm exchanges the
state and action information in a binary-encoded form to
simplify the encrypted Q-table updating operations. The pro-
posed algorithm also provides confidentiality to the users
that share the same FHE key in a cloud system by applying
a public key encryption based on Rivest–Shamir–Adleman
(RSA) algorithm to the exchange of FHE data between the
cloud server and users encrypted by the shared FHE key. The
main contributions of this work are summarized as follows:
• We propose the SCC-PPRL algorithm using FHE
scheme in a cloud computing environment. Compared
to the PPRL algorithm using SMC in a cloud computing
environment, the proposed algorithm is more efficient in
terms of communication overhead because it stores and
processes the data in a single cloud server.

• In the proposed algorithm, the growth of errors in the
FHE scheme is restricted without the bootstrapping
algorithm by enabling the error growth to be cancelled
out during the iterative Q-value computation.We numer-
ically evaluate the error suppression performance of the
proposed scheme.

• The confidentiality among users who share the same
FHE key is guaranteed by applying RSA encryption to
the data exchange encrypted with the shared FHE key in
multiple users cloud environment.

• We perform theoretical analysis of the proposed PPRL
algorithm in term of computational and communication
overhead, and simulation studies of the proposed scheme
in a variety of scenarios.

The remainder of this paper is organized as follows.
Section II presents the related works on HE and privacy pre-
serving machine learning in a cloud computing environment.
In Section III, we describe the preliminaries for understand-
ing the RL algorithm and FHE scheme. Section IV describes
the systemmodel for the proposed PPRL algorithm in a cloud
computing environment, and Section V explains the PPRL
algorithm using FHE algorithm. Section VI and Section VII
present theoretical analysis and simulation results, respec-
tively, to verify the performance of the proposed PPRL

VOLUME 8, 2020 203565

J. Park et al.: Privacy-Preserving RL Using Homomorphic Encryption in Cloud Computing Infrastructures

scheme. Finally, Section VIII summarizes the study and con-
cludes the paper.

II. RELATED WORK
A. HOMOMORPHIC ENCRYPTION
Data privacy issues have been steadily and extensively
raised. For example, unreliable service providers can access
decrypted content for operations to deliver services and
decryption key in cryptosystem can be stolen by attackers. HE
technologies have been actively researched as a technology
that can protect data privacy by allowing third parties to
perform arithmetic operations on ciphertexts directly with-
out decryption [9]. After Rivest et al. proposed the privacy
homomorphism, which is the basic concept of HE [5], a sig-
nificant amount of research has been conducted to imple-
ment feasible HE schemes. Gentry first proposed FHE that
can arbitrarily compute on encrypted data by using ideal
lattices, and developed bootstrapping and squashing algo-
rithms to refresh the ciphertext [8]. As Gentry demonstrated
the feasibility of HE techniques, many studies have been
actively conducted to improve the efficiency of FHE scheme.
Van Dijk et al. developed an integer-based FHE that uses
simple integer arithmetic operations. They improved the
efficiency of the FHE scheme while maintaining the secu-
rity level of the existing FHE scheme [10]. FHE schemes
based on ring learning with errors (RLWE) and learning
with errors (LWE) were developed in [11] and [12], respec-
tively. Brakerski et al. used RLWE assumption to simplify
the lattice analysis, making the FHE scheme simpler and
more efficient [11]. Brakerski and Vaikuntanathan also used
LWE assumption to propose efficient FHE techniques and
introduced a new dimension-modulus reduction technique to
shorten the ciphertext and reduce the complexity [12]. Until
recently, many studies have been conducted to improve FHE
efficiency by utilizing the previous studies [13], [14].

B. PRIVACY PRESERVING MACHINE LEARNING USING
HOMOMORPHIC ENCRYPTION IN A CLOUD
COMPUTING ENVIRONMENT
Research on machine running using cloud computing has
been actively conducted, as the need for fast and efficient
processing of massive data generated by rapid growth in
hardware, software, and communications technologies [1],
[15]–[17]. As a lot of data from many users has been con-
centrated on cloud servers, data protection concerns have
been raised [4]. In order to overcome privacy issues of
machine learning algorithms in cloud computing environ-
ments, privacy-preserving machine learning algorithms were
developed using HE scheme [6], [18], [19]. For the purpose
of preserving user’s data privacy, Ibtihal et al. [18] utilized
HE for outsourced images in cloud computing environments,
and Sun et al. [19] developed a privacy-preserving machine
learning classification algorithm using FHE scheme.

Furthermore, to preserve data privacy in RL algo-
rithms, PPRL algorithms were developed. Sakuma et al. [7]

proposed the privacy-preserving distributed RL that can pre-
serve data-privacy between distributed agents by using AHE
scheme developed by Paillier [20]. In the cloud comput-
ing environment, Liu et al. proposed an SMC based PPRL
framework for dynamic treatment regimes by using the prop-
erty of the AHE [6]. However, the SMC based algorithm
developed in [6] has a high communication overhead and
data synchronization issues because it is implemented using
the distributed cryptosystem. However, research on PPRL
algorithms that do not rely on third-party agents in a cloud
computing environment has not been carried out yet.

III. PRELIMINARY
A. REINFORCEMENT LEARNING
RL is a learning algorithm concernedwith how agents defined
in an environment recognize the current state and then select
an action or sequence of actions to maximize cumulative
reward. The basic RL model is based on Markov decision
process, and it consists of agent state space S, action space A,
and reward space R. At every discrete time step t , the agent
has a current state st ∈ S and possible action space A(st). The
agent takes an action at ∈ A(st) and receives a new state st+1
and reward rt+1 from the environment. Agents in RL develop
a policy π : S → A on the basis of these interactions with the
environment to maximize the cumulative reward.

In this paper, RL is implemented by using the Q-learning
algorithm [21]. In the Q-learning algorithm, the optimal pol-
icy is learned by updating the Q-function, which estimates the
reward to be obtained by taking action on the current state.
The Q-function initially has a constant value. The agent takes
action at on the state st at time t , and then the state transitions
to a new state st+1. At this time, reward rt+1 is obtained from
the environment, and the Q-function is updated as follows:

Q(st , at)← (1− α) · Q(st , at)+ α
{
rt+1

+γ max
a∈A

Q(st+1, a)
}
, (1)

where α is the learning rate, and γ is the discount factor.
The agent can obtain the optimal action on the given state
by selecting the maximum Q-value through the procedure of
Q-function update. However, if the agent always takes the
maximum Q-value, the agent may retrieve the local maxi-
mum value. To improve the performance of the Q-learning
algorithm, an ε-greedy policy is adopted, in which an action
is randomly chosen with probability ε, where ε is a positive
small number between 0 and 1 [22]. Therefore, the probabil-
ity of selecting action at on current state Pπ (st , at) can be
represented as

Pπ (st , at) =


1− ε +

ε

|A|
, if at = at∗

ε

|A|
, if at 6= at∗

where |A| is the cardinality of the action set A and at∗ =
maxat∈A Q(st , at). Thus, the frequency of exploration is deter-
mined by adjusting the ε value. Since there is tradeoff issue

203566 VOLUME 8, 2020

J. Park et al.: Privacy-Preserving RL Using Homomorphic Encryption in Cloud Computing Infrastructures

between exploitation and exploration, the problem of deter-
mining ε is important in the RL algorithm [22].
Every Q-value is determined by a pair of a state and an

action, and they are stored in a (the number of states) × (the
number of actions) table form called Q-table.

B. HOMOMORPHIC ENCRYPTION BASED ON LEARNING
WITH ERRORS
HE allows arithmetic operations to be performed directly on
ciphertexts without decrypting them. In this paper, a FHE
scheme based on LWE-based cryptosystem is utilized for
the implementation of PPRL algorithm. In the LWE-based
cryptosystem, we select all the modulus of the encryption
scheme as the powers of 10 to represent a decimal sys-
tem. Let M denote plaintext space, mi ∈ M denote the
i-th element of M , and p ∈ N denote the cardinality of M .
The set of plaintexts is bounded by

{
mi ∈ Z : − p

2 ≤ mi ≤
p
2

}
.

In addition, Zq represents a set of integers modulo q = L · p,
where L is a parameter for LWE encryption and is used as
a boundary of errors inserted into the ciphertext to enhance
security. The secret key sk is selected as an integer vector
of size N from the uniform distribution, such that sk ∈ ZNq .
Then, the ciphertext ηA(mi) of the plaintext mi is obtained by

ηA(mi) = [(−Xi · sk + Lmi + ei) mod q, XTi] ∈ C = ZN+1q ,

(2)

where Xi ∈ ZNq is a random vector sampled from the uniform
distribution, ei is an injected error randomly sampled from
{1, 2, . . . , r} as a uniform probability, r is a positive inte-
ger less than L/2, and C is the ciphertext space. Hereafter,
the ciphertext encrypted by (2) is represented asmi instead of
ηA(mi) for readability. Note that the random error ei is injected
into a ciphertext in the encryption process. Even if a large
number of pairs {mi,mi} are given for solving sk , the problem
is extremely difficult, since the security of the cryptosystem
is based on the worst-case hardness of lattice problem. It is
called a learning with error problem [23]. In the decryption
process, let sv := [1, skT]T denote the secret key vector and
‖·‖ denote the rounding operation; then the ciphertext mi is
decrypted as follows:∥∥∥∥ (mi · sv) mod q

L

∥∥∥∥ = ∥∥∥∥Lmi + eiL

∥∥∥∥→ mi. (3)

Since ei is less than L/2, the decryption result is
obtained successfully. Note that a plaintext is bounded by{
−
p
2 ≤ mi ≤

p
2

}
. To represent negative integers in this sys-

tem, if the decrypted result from (3) is greater than p/2,
we subtract p from the result to make it negative.

Let EncA and Dec denote encryption using (2) and decryp-
tion functions, respectively, and +C is an addition operation
on the ciphertext space. Homomorphic addition operation is
represented as follows:

EncA(m1)+C EncA(m2)

= m1 + m2

= [(−Xadd · sk + Lmadd + eadd) mod q, Xadd], (4)

whereXadd is (X1+X2),madd is (m1+m2), and eadd is (e1+e2).
Then, the result of homomorphic addition in (4) is decrypted
using the decryption function (3) as follows:∥∥∥∥L(m1 + m2)+ e1 + e2

L

∥∥∥∥→ m1 + m2 (5)

as long as m1 + m2 ∈ M and (e1 + e2) is less than L/2.
As shown in (5), since ei is a positive value, the magnitude
of the error in the ciphertext accumulates as the number of
homomorphic addition operations performed in succession
without decryption increases. As a result of many homomor-
phic addition operations, a decryption error can occur in case
that the sum of errors

∑
ei is greater than L/2. Note that the

maximum value of injected random errors is r . The upper
bound of accumulated error for each homomorphic addition
can be calculated by Badd = 2 · r . In the case of homo-
morphic subtraction operation, its procedure for encryption
and decryption is the same as that of the homomorphic addi-
tion operation, and the homomorphic subtraction operation is
denoted by −C .
In the FHE scheme, homomorphic multiplication is a

more complicated operation than homomorphic addition.
Moreover, since the magnitude of error growth is larger in
homomorphicmultiplication, an effective homomorphicmul-
tiplication operation is required to reduce the magnitude of
error growth within the error boundary in the LWE-based
cryptosystem. For the implementation of homomorphic mul-
tiplication, the multiplicand is encrypted using (2), whereas
the encryption function for the multiplier is changed. Let
R be [100, 101, . . . , 10log q−1] ⊗ IN+1, where the Kronecker
product is denoted by ⊗ and IN+1 is denoted by the identity
matrix of size N + 1. Then, the encryption function for the
multiplier is represented as follows [24]:

ηB(mi)=mi · R+ EncA(0log q(N+1)×1) ∈ Zlog q(N+1)×(N+1)
q ,

(6)

where 0log q(N+1)×1 is a zero vector of size log q(N + 1)× 1.
Hereafter, the ciphertext encrypted by (6) is represented as m̃i
instead of ηB(mi) for readability. Let ci denote an element of
ciphertext mi; it can be represented as ci =

∑log q−1
k=0 cki · 10

k ,
where cki is the (k+1)-th single digit of ci. Then, the function
that decomposes the argument is defined as follows:

D(mi)= [c01,c
0
2,. . . ,c

0
N+1,. . . ,c

log q−1
1 , clog q−12 , . . . , clog q−1N+1].

(7)

With this function,mi can be obtained by the arithmetic oper-
ation of the formula D(mi) · R = mi for any mi ∈ Z1×(N+1)

q .
Let ×C denote multiplication on the ciphertext space. The
homomorphic multiplication is represented with the secret
vector sv as follows:

(m1 ×C m̃2) · sv = D(m1) · (m2R+ O) · sv

= m2m1 · sv+ D(m1) · em2 , (8)

VOLUME 8, 2020 203567

J. Park et al.: Privacy-Preserving RL Using Homomorphic Encryption in Cloud Computing Infrastructures

where O is Enc(0log q·(N+1)×1) and em2 is the error vector
inside ciphertext O. Then, the result of homomorphic mul-
tiplication is decrypted as follows:∥∥∥∥m2(Lm1 + e1)+ D(m1) · em2

L

∥∥∥∥→ m2m1 (9)

as long as m1 m2 ∈ M and |m2 e1 + D(m1) · em2 | is less
than L/2. The upper bound of accumulated error for each
homomorphic multiplication can be calculated by Bmul =
r · p/2 + 9 · r · log q · (N + 1). Note that the elements of
D(m1) range from 0 to 9.

IV. PROPOSED RL SERVICE MODEL FOR PRIVACY
PRESERVATION
In this paper, we consider a RL scenario that operates in
a cloud system using centralized storage and computation.
As shown in Fig. 1, users collect data through interactions
with a given environment, the collected data is delivered to the
cloud server, and the data is exploited to provide RL services
in the cloud. Here, Q-learning algorithm is adopted for RL
service, and the cloud platform (CP) manages the Q-table for
the Q-learning, which is updated using the shared data from
multiple users.

FIGURE 1. System model for privacy-preserving reinforcement learning
with a huge number of states.

In this scenario, we propose a cryptosystem that can pre-
serve users’ data privacy in the cloud environment where
the privacy sensitive data from multiple users is collected,
shared, and processed. The proposed cryptosystem utilizes
the LWE-based FHE scheme to protect data privacy between
the CP and users and RSA based public key scheme to
protect the privacy among multiple users in the cloud. The
users in Fig. 1 share the same FHE key for performing
homomorphic arithmetic operations using the shared Q-table.
In the FHE scheme in a cloud computing environment,
the CP cannot perform homomorphic arithmetic operations
using ciphertexts encrypted if each user uses a different key,
i.e., m1

ua + m2
ub 6= (m1 + m2)

ui , where miui is a ciphetext
of mi using HE function with a secret key of user ui for i, a,

b ∈ {1, 2, . . . ,Nu}, and Nu is the number of users sharing the
Q-table.

However, if the same key is used among multiple users,
it is difficult to preserve data privacy among them. Note
that the proposed cryptosystem uses a symmetrical secret for
HE scheme. In order to provide confidentiality to users that
share the same FHE key, RSA algorithm based encryption is
applied to the exchange of data between the cloud server and
users. The privacy sensitive data encrypted with the shared
FHE key is encrypted again by RSA encryption in our cryp-
tosystem. In other words, the proposed cryptosystem utilizes
a double encryption (DE) technology that encrypts values
encrypted by FHE using RSA encryption for preserving pri-
vacy among the users. When a user requesting the service
sends user information to the CP, the encrypted value with HE
is encrypted by the CP’s public key for RSA algorithm, so that
only the CP can access the homomorphic encrypted value.
Then, when the CP delivers the result of the homomorphic
operation, the result is encrypted by the public key of the
user again so that only the user who requested the service can
access the data using the user’s private key. The ciphertexts
encrypted with public key of CP and public key of i-th user
can be denoted by εpkCP and εpkui , respectively.

The proposed system consists of multiple users, a CP, and
key generation center (KGC), and each user interacts with
a given environment. The procedure of the PPRL algorithm
using the DE scheme is as follows:
• The KGC is assumed to be a trusted agency in this
paper. Users requesting the same RL service are grouped
through the authentication process in the KGC, A sym-
metrical secret key is generated by using the LWE based
FHE scheme, and then the secret key is delivered to
the authenticated users belonging to the group through
trusted channels. It also creates public and private key
pairs based on the RSA algorithm and delivers a private
key for each user and CP through trusted channels. Then,
the public key of the CP is delivered to the users, and
the public key of the users is delivered to the CP. This
process is annotated by 1© in Fig. 1.

• The users deliver action at to maximize the reward, and
the environment reports the reward rt and state st to the
user after executing the action at as shown in 2©.

• In Fig. 1, 3© showes the user-side procedure for PPRL
algorithm. The secret key for FHE scheme is kept only
on the users’ side and is not shared over the network, and
the homomorphic encryption and decryption operations
using the symmetrical secret key can be performed only
on the users’ side. For performing the Q-learning algo-
rithm, the user encodes the state and action information
into binary vectors. The encoding procedure will be
explained in detail in Section V. The user also encrypts
reward-related data for Q-table update. To preserve data
privacy between users, the values encrypted with the
secret key using HE scheme are encrypted again with the
RSA public key of the CP, and then the double-encrypted
values are transmitted to the CP.

203568 VOLUME 8, 2020

J. Park et al.: Privacy-Preserving RL Using Homomorphic Encryption in Cloud Computing Infrastructures

• After receiving the double-encrypted value delivered by
the user, the CP performs RSA decryption using its own
RSA private key to obtain the encrypted value by HE
scheme. By using the homomorphic encrypted value,
the CP performs the Q-table updating and generates
a Q-vector for the action selection at the user side in
4©. For privacy-preserving purpose among authenticated
users, the CP encrypts the Q-vector using RSA public
key of the user requesting the RL-based service, and then
it transmits the double-encrypted values to the user.

• After receiving the double-encrypted Q-vector, the user
decrypts the vector using its own RSA private key and
the secret key for the HE scheme, and it selects an
action to maximize the cumulative reward by finding the
maximum value of the vector in a given environment as
shown in 5©. The procedures in 2© – 5© are repeated.

V. PRIVACY-PRESERVING REINFORCEMENT LEARNING
This section explains the operations of a CP and users for
the privacy-preserving RL service described in the previous
section in detail. The secure action selection algorithm per-
forms the task to find the action that canmaximize cumulative
rewards and is described in Section V-A. The secure Q-table
updating algorithm performs the task of updating the Q-table
and is described in Section V-C.

A. SECURE ACTION SELECTION ALGORITHM THAT
MAXIMIZES CUMULATIVE REWARD
We propose a secure action selection algorithm to find
an action that maximizes cumulative reward in a given
environment by using only encrypted data. The proposed
secure action selection algorithm selects a vector containing
Q-values that correspond to the current state and finds the one
element with the maximum Q-value among the Q-values in
the Q-vector.

First, we assume that the Q-table initialized with a constant
value is stored on the CP side, and all values of the Q-table
are encrypted with HE function using (2) at the system con-
figuration stage for the PPRL algorithm. Let the number of
states and actions for the Q-learning algorithm be Ns and Na,
respectively, and then the set of states and actions that the
user can have at time t be St = {s1t , s

2
t , . . . , s

Ns
t } and At =

{a1t , a
2
t , . . . , a

Na
t }, respectively. The state information is trans-

mitted in a binary vector form. Let Vt = [v1t , v
2
t , · · · , v

Ns
t]

denote a binary vector that corresponds to the current state.
If the current state st is equal to sit at time t , the i-th element
vit is set to 1, whereas the other elements of the binary vector
are set to 0, and then the vector encrypted with the FHE secret
key. Even though (Ns − 1) elements of Vt have a value of
zero, they have different encrypted values after applying HE
scheme. The other element with a value of one also has a
random value for each time it is encrypted. Therefore, the CP
cannot know the user’s state information when it receives the
encrypted Vt from the users.

FIGURE 2. Example of secure optimal action selection algorithm for
Ns = 4 and Na = 4.

Fig. 2 shows how the proposed secure action selection
algorithm works for a toy example with Ns = 4, Na = 4, and
st = s3t . Note that the ciphertexts encrypted with (2) and (6)
are represented byQi,j and ṽit , respectively in Fig. 2. To select
an action that maximizes cumulative reward, the user sends
the encrypted binary vector representing s3t to the CP. In the
CP’s side, homomorphic multiplication operations between
the i-th element of the binary vector and each element in
the i-th row of the Q-table are performed using the binary
vector, i.e., Qi,j = Qi,j ×C ṽit for j = {1, . . . , 4}, and
then homomorphic addition operations are performed for

obtaining sum of each column, i.e., Qjst = Q1,j + . . . + Q4,j
for j = {1, . . . , 4}. As shown in Fig. 2, the CP can obtain
the selected Q-vector corresponding to s3t by using the homo-
morphic arithmetic operations, and returns it to the user. After
performing decryption, the user can obtain the Q-vector that
corresponds to the current state when the current state is s3t .
Finally, it can decide the action for the state by selecting one
with the maximum Q-value.

Algorithm 1 shows the procedure of the proposed secure
action selection algorithm. In the beginning of Algorithm 1,
a binary vector Vt is determined by the current state of the
user. In lines 2-3, the user encrypts the binary vector Vt with
the FHE secret key by using (6) for data privacy between the
CP and users, and then encrypts again Ṽt using RSA public
key of the CP for data privacy among multiple users. The
user sends it to the CP for obtaining a Q-vector that corre-
sponds to the current state. The CP receives the encrypted
binary vector and decrypts it with its own RSA private key to
obtain Ṽt . Since all elements of the vector are binary values,
after the for-loop of lines 6-8 is performed, the decrypted

value of Qi,jst will be 0 except for the Q-value corresponding
to the current state. In line 9, the CP performs homomorphic
addition operations using the calculation results of line 7,
and then the results obtained from the operation of line 9 are
also equal to the Q-values corresponding to the current state.
In lines 11-12, the CP obtains the selected Q-vector Qst
that stores the Q-values corresponding to the current state
after the for-loop of lines 5-10 is performed. Then, the CP
encrypts the vector using public key of user ui requesting
the RL service and sends the encrypted vector to the user.
The user double-decrypts the received Q-vector using the
FHE secret key and its own RSA private key in line 13.
In the proposed algorithm, an ε-greedy policy can be adopted

VOLUME 8, 2020 203569

J. Park et al.: Privacy-Preserving RL Using Homomorphic Encryption in Cloud Computing Infrastructures

Algorithm 1 Secure action selection algorithm

1: Input: Vt = [v1t , v
2
t , · · · , v

Ns
t].

2: (@User) Double-encrypt binary vector for current state
3: and send εpkCP (Ṽt) to the CP.
4: (@CP) Decrypts the vector using the private key.
5: for j ≤ Na do
6: for i ≤ Ns do
7: (@CP) Qi,jst ← Qi,j ×C ṽit .
8: end for
9: (@CP) Qjst ← Q1,j

st + ...+ Q
Ns,j
st .

10: end for
11: (@CP) Encrypt Q-vector Qst = [Q1

st , ...,Q
Na
st] using

12: public key of user ui and send the vector to the user.
13: (@User) Double-decrypt the Q-vector.
14: (@User) Generate a random number nr in [0, 1]
15: if nr < ε then
16: (@User) Select randomly a Q-value Q∗st in Qst .
17: else
18: (@User) Select a Q-value using max function
19: Q∗st ← max [Q1

st ,Q
2
st , ...,Q

Na
st].

20: end if
21: (@User) Find axt by using index x that
22: satisfies Q∗st = Qxst .
23: Output: Q-value Q∗st and action a

x
t .

to improve performance of privacy preserving Q-learning
algorithm. By using the ε-greedy policy, the user selects a
Q-value Q∗st to find an action among all elements of the
decrypted Q-vector in lines 14-20. The user randomly selects
one element among all elements of the decrypted Q-vector
with the probability ε for exploration in line 16. On the other
hand, the user finds the maximum value among all elements
of the decrypted Q-vector and assigns the maximum value to
Q∗st with the probability (1−ε) in lines 18-19. Finally, the user
selects an action from the set of available actions At in the
environment by using the index x that satisfies Q∗st = Qxst in
lines 21-22.

B. SUPPRESSING CUMULATIVE ERROR DUE TO
SUCCESSIVE HOMOMORPHIC OPERATIONS
One point that is worthy of mentioning is that in an
LWE-based cryptosystem, randomly sampled errors are
injected to enhance security. As the number of homomor-
phic arithmetic operations performed in succession with-
out decryption increases, the magnitude of cumulative error
increases. If the magnitude of accumulated error exceeds
a certain threshold, it will not be completely removed and
the remaining error is added to the plaintext value. In the
propose scheme, the number of homomorphic addition oper-
ations increases as the number of states increases in line 9 of
Algorithm 1. Thus, if the number of states is very large,
the accumulated error may increase significantly, resulting
in an increase of the probability of decryption error in the
LWE-based cryptosystem. It implies that the number of states

should be restricted. The remaining error after decryption
should be successfully eliminated. Otherwise, it is not pos-
sible to increase the number of homomorphic operations that
can be performed continuously without decryption error.

We propose a scaling-and-discarding method to reduce the
impact of the remaining error on the data. Usually, cryp-
tosystem operations can deal with only integer numbers.
A floating-point number used in the Q-learning algorithm
should be represented as integers by multiplying a large
number. Each time a user sends numeric data to the CP,
the user multiplies the data by 10d and rounds it. When a
user receives data from the CP, the user divides the data by
10d to get the corresponding floating-point value. Note that
d is fixed and is known to the CP and users in advance.
We propose to protect data in the ciphertext by temporarily
increasing d to reduce the impact of the remaining error on
the data by using a guard digit g. In the proposed scheme,
whenever the user transmits data to the CP, the numeric data
is additionally multiplied by 10g before encryption. That
is, a value v is converted to round(v × 10d) × 10g and
is encrypted. The CP performs a number of homomorphic
operations and sends the result to the user. After the user
receives and decrypts it, the user divides the results by 10g and
then rounds it down. That is, a decrypted value u is converted
to round-down(u× 10−g)× 10−d . At this point, if the error
due to the homomorphic operations is less than 10g, the error
can be successfully eliminated. For example, suppose that the
guard digit g is 1 and d is 2. When the CP returns the result
value of 5220 to the user, the user divides 10 and truncates
it below the decimal point to obtain the value of 522. The
user divides 522 by 102, and finally obtain the desired value
of 5.22. Consider the case that the user receives the value
of 5222 instead of 5220 due to the remaining error. Even in
this case, the users can still obtain 5.22. This is because the
remaining error of 2 is discarded using the guard digit through
round-down operation. Therefore, even if the remaining error
exists after the decryption process, the remaining error below
a certain level can be successfully eliminated in the proposed
scheme.

Fig. 3 shows the results of decryption errors caused by
homomorphic arithmetic operations. Fig. 3(a) shows the aver-
age decryption errors with respect to the number of states in
case of d = 3. The average decryption errors are calculated
by averaging the discrepancy between the values with and
without homomorphic operations. For each case, the sim-
ulation is performed 1000 times for averaging. As shown
in Fig. 3(a), the average decryption error increases monoton-
ically as the number of states increases because of the error
growth problem in the LWE-based cryptosystem. Fig. 3(b)
shows the decryption error rates for the proposed scaling-
and-discarding method. The blue line and the red line show
the decryption error rates for d = 2 and g = 1, and those
for d = 1 and g = 2, respectively. The error rates of the
blue line and the red line are zero for the number of states
below 80 and below 800, respectively. Thus, the proposed
scheme can successfully eliminate the remaining error if the

203570 VOLUME 8, 2020

J. Park et al.: Privacy-Preserving RL Using Homomorphic Encryption in Cloud Computing Infrastructures

FIGURE 3. Results related with decryption errors caused by homomorphic
arithmetic operations of Algorithm 1 with respect to the number of states
in an LWE-based cryptosystem with parameters L = 104, p = 104, r = 10,
N = 4.

number of states is kept below a certain level. However,
if the number of state becomes extremely large, the errors
can still remain even after applying the proposed scaling-
and-discarding method.

To further reduce the decryption errors, we propose to
divide a long series of homomorphic operations into multiple
pieces if the number of homomorphic operations is greater
than the number of homomorphic operations that the system
can accommodate. Namely, if a number of homomorphic
operations have to be executed, we calculate nf intermediate
results of smaller pieces and send them one by one instead of
sending the final result of the homomorphic operations. Let
Nw denote the number of homomorphic operations that can
be performed without decryption error. Then, nf is given by
round-up(Ns/Nw). In Algorithm 1, homomorphic additions
are performed Ns times in line 9. The intermediate results
are obtained for every Nw homomorphic operations. Using
the upper-bounds of accumulated error for homomorphic
addition and multiplication Bmul and Bmul in Section III-B,
the upper-bound of accumulated error for Nw homomorphic
additions is given by Nw · Bmul because the homomorphic
additions are performed Nw times using the results of the
homomorphic multiplication in line 7 of Algorithm 1. To per-
form the homomorphic operations without decryption errors,
the upper-bound of accumulated error have to be less than the
error bound that the system can accommodate. Note that the
error bound that the system can accommodate is given by 10g.

Then, the value of Nw is determined as the maximum value
that satisfies the following inequality:

Nw · Bmul
L

≤ 10g. (10)

Using the largest value of Nw in (10), a long series of
homomorphic operations are divided into nf pieces. The CP
calculates nf intermediate results using the divided pieces of
homomorphic operations and sends them to the user. After
receiving the intermediate results, the user decrypts them
without decryption errors. Then, the user adds the decrypted
intermediate results to obtain the result of the original entire
homomorphic operations. The user can obtain the desired
result without decryption error regardless of the number of
operations.

C. UPDATING Q-TABLE OF CP WITH ENCRYPTED STATE
AND ACTION VALUES
1) PROPOSED Q-TABLE UPDATING ALGORITHM
We propose a Q-table updating algorithm for CP when
the state and action values are encrypted and the CP does
not decrypt for privacy-preserving purpose. Algorithm 1,
users calculate the updated Q-value Qu using the maximum
Q-value and the reward value according to the standard
Q-function in (1). The Q-value calculated by the users needs
to be updated at the Q table that CP manages. However, if the
CP is able to know which element of the Q-table needs to be
updated, it comes that the information about the users’ state
and action is revealed to the CP. The challenge is to develop
a Q-table updating algorithm to replace the former Q-value
with a new Q-value using only ciphertext without letting the
CP know which one is updated among Ns × Na elements of
the Q-table.

In the proposed PPRL, a user sends the following
encrypted values to CP:
• Qu - encrypted Q-value to be updated.
• W̃t - encrypted binary vector representing action.
• Ṽt - encrypted binary vector representing state.

Here, the action a∗t is encoded inWt = [w1
t ,w

2
t , · · · ,w

Na
t] as

done for the states Vt in (V-A). If the i-th action is selected
at time t , the i-th element of Wt is set to 1, and all the other
elements are set to 0. Even though (Na − 1) elements of Wt
are 0, the ciphertext for 0 is not the same, and thus CP cannot
recognize which action is selected among Na actions. Note
that all elements of the binary vectors are encrypted using (6).
Using (V-C1), we propose a Q-table updating algorithm for
CP as follows:

Qi,j← Qi,j + Qu ×C ṽit ×C w̃
j
t − Qi,j ×C ṽ

i
t ×C w̃

j
t . (11)

The multiplication vit × w
j
t becomes 1 only if the position of

Qi,j is equal to the position to be updated because only one
element in each binary vector is represented by 1. In other
cases, the results of the multiplication become zero. There-
fore, with elements of binary vectors, the CP can update the
Q-table without knowing a specific position of Q-table using

VOLUME 8, 2020 203571

J. Park et al.: Privacy-Preserving RL Using Homomorphic Encryption in Cloud Computing Infrastructures

the homomorphic arithmetic operations in (11). Fig. 4 shows
a toy example of update procedure for st = s2t , at = a2t ,
Ns = 2 and Na = 2. After the homomorphic operations
in (11), the Q-value Q2,2 is updated to Qu, and the rest of
the values in the Q-table remain unchanged because only
the homomorphic multiplication of v2t and w

2
t is 1 as shown

in Fig. 4.

FIGURE 4. Example of Q-function update algorithm for Ns = 2 and Na = 2.

Algorithm 2 Secure Q-Table Updating Algorithm
1: Input: α, γ, rt , Q∗s , Wt .
2: (@User) Calculate rα = α × rt , Q∗α = α × γ × Q

∗
s ,

3: Q∗1−α = (1− α)× Q∗s .
4: if r ′α and Q′1−α are not empty then
5: (@User) Qu← Q′1−α + Q

∗
α + r

′
α .

6: (@User) r ′α ← rα , Q′1−α ← Q∗1−α.
7: (@User) Double-encrypt Qu and Wt .
8: (@User) Send εpkCP (Qu), εpkCP (W̃t) to the CP.
9: (@CP) Decrypts the values using the private key.
10: for i ≤ Ns do
11: for j ≤ Na do
12: (@CP) Qi,j← Qi,j + Qu ×C ṽ′i ×C w̃

′
j

13: −Qi,j ×C ṽ′i ×C w̃
′
j.

14: end for
15: end for
16: (@CP) W̃t

′
← W̃t

17: else
18: (@User) r ′α ← rα , Q′1−α ← Q∗1−α.
19: (@User) Double-encrypt Wt and send εpkCP (W̃t).
20: (@CP) Decrypts the value using the private key.
21: (@CP) W̃t

′
← W̃t

22: end if
23: Output: Updated Q-table.

Algorithm 2 describes the procedure of the proposed
secure Q-table updating algorithm. The inputs to Algorithm 2
are learning rate α, discount factor γ , reward from the envi-
ronment rt , maximum Q-value obtained by Algorithm 1 Q∗s ,
and the binary vector Wt = [w1

t ,w
2
t , · · · ,w

Na
t]. The user

calculates the multiplications in lines 2-3 using floating-point
numbers α and γ to obtain a newly updated Q-value. At first
iteration, rα and Q∗1−α are stored for the next updating iter-
ation in line 18. On the other hand, the user calculates the
updated Q-value Qu with r ′α and Q′1−α stored in the previous
iteration for updating the Q-table, and then current informa-
tion rα and Q∗1−α are stored for the next updating iteration as
shown in lines 5-6. The user encrypts the updated Q-value
Qu with HE function (2) and binary vector Wt with HE

function (6). Then, the user encrypts agian the ciphertexts Qu
and W̃t using the RSA public key of the CP, and sends them to
the CP. For the first iteration, the user encrypts only the binary
vectorWt and sends it to the CP in line 19. After receiving the
encrypted values sent by the user, the CP decryps them using
its own RSA private key in line 9 and 20. In the case of the
first iteration, only the binary vector W̃t is stored in line 21.
Otherwise, the CP performs the homomorphic arithmetic
operations for updating the Q-table, and then W̃t is stored
as shown in lines 10-16. The binary vector representing the
state previously sent for Algorithm 1 V ′ = [v′1, v

′

2, · · · , v
′
Ns]

is used to find the position to be updated with the binary
vector representing the action previously sent by the user
W ′ = [w′1,w

′

2, · · · ,w
′
Na]. Therefore, we can successfully

update the encrypted Q-table using only the ciphertexts by
using (11) in lines 12-13.

2) ERROR ANALYSIS OF THE PROPOSED Q-TABLE
UPDATING ALGORITHM
In the proposed scheme, the LWE-based cryptosystem is
used for FHE. The probability of decryption error in the
LWE-based cryptosystem increases as the number of suc-
cessive homomorphic operations increases because injected
random errors for enhancing the security level of the cryp-
tosystem accumulates after performing successive homomor-
phic operations without decryption. In the existing scheme,
the bootstrapping algorithm is used to suppress the increase
of errors. However, the algorithm has a high computational
complexity and has to be executed periodically whenever
errors accumulate above a certain level. The proposedQ-table
updating algorithm can control the increases of errors without
bootstrapping algorithm. This is because the magnitude of
the error converges even though the number of iterations to
update encrypted Q-values keeps increasing.
Proposition 1: The cumulative error converges as the

number of iterations to update encrypted Q-value using (11)
increases.

Proof: In order to prove the convergence of the accumu-
lated error, we analyze how the error changes as the number
of iterations for updating Q-table on the CP side increases.
Let 1i,j denote the error change for the Q-table updating
algorithm in (11). Then, 1i,j is given by

1i,j = v′i · (w
′
jeu +

Q∑
k=1

ckue
k
w)+

Q∑
k=1

ckwue
k
v

−v′i · (w
′
jef +

Q∑
k=1

ckf e
k
w)−

Q∑
k=1

ckwf e
k
v

= v′i · w
′
j(eu − ef)+ v

′
i

Q∑
k=1

{ckue
k
w − c

k
f e
k
w}

+

Q∑
k=1

{ckwue
k
v − c

k
wf e

k
v}, (12)

where ef and eu are the errors injected in the HE function
using (2) for the former Q-value and the updated Q-value,

203572 VOLUME 8, 2020

J. Park et al.: Privacy-Preserving RL Using Homomorphic Encryption in Cloud Computing Infrastructures

respectively, ekv and ekw are the k-th element of error vector
injected in the HE function using (6) for binary vector rep-
resenting state and action, respectively, cku, c

k
wu, c

k
f , and c

k
wf

are the k-th element of D(Qu), D(Qu ×C w̃′j), D(Qi,j), and

D(Qi,j ×C w̃′j), respectively, and Q is log q · (N + 1).

TABLE 1. Converged error for each binary value.

There are four cases of v′i and w
′
j shown in Table 1. The

summation
∑
{ckue

k
w−c

k
f e
k
w} and

∑
{ckwue

k
v−c

k
wf e

k
v} converge

to zero as the number of iterations increases sufficiently
because the value of the elements of the decomposed vectors
is in the range of integer values from 0 to 9 and follows an uni-
form distribution as shown in (7), and the errors ekv and e

k
w are

sampled from the same uniform distribution. Then, the error
change1i,j can be simply represented as1i,j = v′iw

′
j(eu−ef).

Let elu and elf denote the error of the updated Q-value and
the former Q-value at the l-th iteration, respectively. For
v′i = 1 and w′j = 1, the error change at the l-th iteration
can be represented as 1i,j(l) = (elu − elf) = (elu − el−1u)
because elf is equal to el−1u . Namely, the summation of the

error change
∑Nl

l=11i,j(l) can be represented as eNlu − e1f .
Therefore, because

∑
1i,j converges for all cases of v′i and

w′j, the error does not accumulate even if the number of
iterations to update the encrypted Q-value without decryption
using (11) increases. �

FIGURE 5. Error caused by homomorphic arithmetic operations in
Algorithm 2 with respect to the number of iterations.

Fig. 5 shows the decryption error caused by homomorphic
arithmetic operations in (11) with respect to the number of
iterations to update the encrypted Q-values. In this simula-
tion, the number of states and actions is 12 and 4, respectively,
and d is set to 3. The other parameters are the same as in

the environment of Fig. 3. The decryption error in Fig. 5
fluctuates between 0 and 0.001 without increasing to more
than 0.001 even if the number of iterations for updating the
Q-table increases. As a result, the accumulated error does not
continue to grow in the proposed Q-table updating algorithm
even if the number of successive homomorphic arithmetic
operations in (11) without decryption increases.

D. REDUCING THE DIMENSION OF THE BINARY VECTORS
FOR THE STATE AND ACTION REPRESENTATION WITH A
RANDOM SELECTION METHOD
In the proposed PPRL algorithm, the number of states and
actions is determined according to a given environment. If the
number of states and actions is very large, the exchange
of states and actions may incur significant communication
overhead between the CP and users. The binary vectors that a
user transmits for the states and actions include a lot of redun-
dant information because every element of the binary vectors
representing the state and action has a value of zero except
one element. When the number of states and actions is large,
the binary vector needs to be represented as a reduced form
with less redundant information to reduce the communication
overhead.

FIGURE 6. Procedure for reducing the dimension of the binary vector for
the state representation.

Instead of sending a full binary vector, a user randomly
chooses N r

s elements including the element of ’1’ among Ns
elements of the binary vector and sends the N r

s elements with
their indexes. Then, the CP knows that the selected state or
action is one of the N r

s elements but cannot specify which
one is the exactly selected state or action. When the user
sends N r

s elements, it has to send one single element of zero,
and the CP uses 0̃ for the other (Ns − N r

s) elements that
are not received. Fig. 6 illustrates the procedure for reducing
communication overhead when a user sends the binary vector
for the state representation to the CP. At first, instead of the
binary vector Vt = [v1t , v

2
t , · · · , v

Ns
t], the user creates a vector

Vr = [v1r , v
2
r , · · · , v

N r
s

r , 0] by choosing N r
s elements among

Ns elements of the binary vector and a vector representing
their indexesVL = [v1L , v

2
L , . . . , v

N r
s

L]. Here, the element of ’1’
should be included in Vr . Second, the user encrypts Vr with
the HE function in (6), and encrypts again Ṽr and VL with the
RSA public key for the CP, and then sends the RSA encrypted
vectors εpkCP (Ṽr) and εpkCP (VL) to the CP. After receiving the
encrypted vectors, the CP decrypts them with its own RSA

VOLUME 8, 2020 203573

J. Park et al.: Privacy-Preserving RL Using Homomorphic Encryption in Cloud Computing Infrastructures

private key. Even though the number of elements sent by the
user is reduced, the CP still unable to recognize which state is
selected among N r

s elements because the ciphertext for each
elements is not the same. Finally, the CP places the element
of Vr at the appropriate location of Vt using the index number
stored in VL , and fills the remaining locations of Vt with 0̃.
The number of elements to transmit is then reduced from Ns
to (2 N r

s +1) when the user sends the encrypted binary vector
for the state representation. Therefore, we can suppress the
communication overhead below a certain level by adjusting
the dimension of the binary vector even if the number of states
is very large.

VI. OVERHEAD ANALYSIS
This section describes the theoretical analysis of the proposed
privacy-preserving Q-learning algorithm in terms of compu-
tational and communication overhead.

A. COMPUTATIONAL OVERHEAD
The propsed SCC-PPRL algorithm is theoretically analyzed
in terms of computational complexity. The computational
complexity of the proposed algorithm is influenced by
the number of states and actions, as well as the parameters
of the LWE-based cryptosystem. Note that p is the cardi-
nality of the plaintext set, L is the parameter representing
the limitation of random errors injected into the ciphertext
for enhancing the security level, and N is the vector size
of ciphertexts. In addition, the proposed algorithm includes
the RSA algorithm for the DE scheme. The computational
complexity of RSA encryption and decryption is affected by
the size of the RSA public key and private key. Let Rn be the
multiplication of two large prime numbers p′·q′. According to
a key generation procedure in the RSA algorithm, the integer
numbersRe andRd can be determined using p′ and q′ for RSA
public key and private key, respectively, and then the RSA
public key and RSA private key are represented by (Rn,Re)
and (Rn,Rd), respectively. The computational complexity
of RSA encryption and decryption can be represented by
O(Re) and O(Rd), respectively, because the exponentiation
operation in RSA encryption and decryption requires Re and
Rd multiplications, respectively.

TABLE 2. Computational complexity of secure algorithms.

We analyze the computational complexity of the secure
action selection algorithm and secure Q-table updating algo-
rithm in the user and CP, respectively. Table 2 summarizes
the computational complexity of the secure action selection
algorithm and secure Q-table updating algorithm for the user
and CP, respectively.

1) OVERHEAD OF ACTION SELECTION ALGORITHM AT USER
SIDE
For the secure action selection algorithm, the DE scheme
using the HE and RSA algorithms, and the function to find
the maximum value are required at the user’s side. The
computational complexity of the HE function using (6) is
given by O(N 2 log q) because the computational complexity
of themultiplication betweenmi andR, and the computational
complexity of encrypting the zero vector using the HE func-
tion (2) are both O(N 2 log q) as shown in (6). In addition,
the computational complexity of the homomorphic decryp-
tion function and the function that finds the maximum value
for selecting action are O(N) and O(Na), respectively. The
HE function using (6) is executedNs times, the homomorphic
decryption function is executed Na times, the function to find
themaximum value is executed once, and the RSA encryption
and decryption functions for the DE scheme are executed Ns ·
N log q and Na ·N times in the user’s side, respectively. Thus,
the computational complexity of the secure action selection
algorithm for the user is given byO(Ns ·N log q · (N +Re)+
Na · N · Rd).

2) OVERHEAD OF ACTION SELECTION ALGORITHM AT CP
SIDE
To perform the secure action selection algorithm in the CP’s
side, the homomorphic multiplication, homomorphic addi-
tion, RSA encryption and decryption operations are required.
The computational complexity of homomorphic multipli-
cation can be represented as O(N 2 log q). This is because
the computational complexity of decomposition function (7)
and matrix multiplication between the decomposed vector
and a ciphertext encrypted with (6) are O(N log q) and
O(N 2 log q), respectively, as shown in (8). The computa-
tional complexity of homomorphic addition is given byO(N)
in (4). Therefore, since the homomorphic multiplication and
homomorphic addition are performed Ns · Na times, and
the RSA encryption and decryption are executed Na · N
and Ns · N log q times, respectively, the computational com-
plexity of the secure action selection algorithm in the CP’s
side is given by O(Ns · Na · N 2 log q + N · (Ns log q ·
Rd + Na · Re)).

3) OVERHEAD OF Q-TABLE UPDATING ALGORITHM AT
USER SIDE
For the implementation of the secure Q-table updating algo-
rithm, the computational complexity in the user’s side is
given by O(NaN log q · (N + Re)). This is because the HE
functions using (6) and (2) are performed Na times and once,
respectively, and the RSA encryption function is performed
Na · N log q times.

4) OVERHEAD OF Q-TABLE UPDATING ALGORITHM AT CP
SIDE
The computational complexity of the secure Q-table updat-
ing algorithm in the CP’s side is O(Ns · Na · N 2

203574 VOLUME 8, 2020

J. Park et al.: Privacy-Preserving RL Using Homomorphic Encryption in Cloud Computing Infrastructures

log q + N · Na log q · Rd) because the homomorphic mul-
tiplication and homomorphic addition are performed 4NsNa
and 2NsNa times, respectively, and the decryption function of
RSA algorithm is performed Na · N log q times.

B. COMMUNICATION OVERHEAD
To preserve data privacy of users, the LWE-based FHE
algorithm and RSA algorithm are utilized in the proposed
algorithm. In the LWE-based FHE scheme, the encrypted
values have a matrix form, and each element of that matrix is
round-up(log q/ log 2) bits. For the secure action selection
algorithm, the user sends Ns matrices of size log q · (N +
1) × (N + 1) to represent state information and receives Na
matrices of size nf × (N + 1) to select an action. Note that
the number of partitions nf is obtained by round-up(Ns/Nw)
as described in Section V-A. For the secure Q-table updating
algorithm, the user sends Na matrices of size log q · (N +
1) × (N + 1) and a matrix of size 1 × (N + 1) to the CP.
Thus, communication overhead is affected by the parameters
of the LWE-based cryptosystem, the number of states, and
the number of actions. In addition, if the values encrypted
with the HE function are encrypted again with the RSA
encryption algorithm for the DE scheme, the elements of each
matrix becomeRn bits. Thus, a fully double encryption (FDE)
scheme that double-encrypts all elements of the matrices
can significantly increase communication overhead if Rn is
much greater than round-up(log q/ log 2). However, even if
only some elements of the matrix are encrypted with the
RSA algorithm, the security level of the proposed scheme
is still high enough because all values of the matrix are
required to decrypt the value encrypted with the HE algo-
rithm. Therefore, to reduce the communication overhead of
the DE scheme, it can be implemented by encrypting only
some elements of the matrix instead of applying the FDE
scheme.

The number of states and actions is determined by a
given environment, while the parameters for cryptosystem are
selected in the system configuration process. Thus, in case
that the number of states and actions is very large due to
the complexity of a given environment, communication over-
head can be significantly increased. Reducing the dimen-
sion of the binary vectors with a random selection method
in Section V-D can decrease the communication overhead
because it reduces redundant data exchanged between the
user and CP. In case that the proposed scheme is adopted,
the communication overhead is then reduced fromNs ·logLp·
(N + 1) × (N + 1) to (N r

s + 1) · logLp · (N + 1) × (N +
1) + N r

s · 1 × (N + 1), when the user sends encrypted state
information. Therefore, the communication overhead can be
significantly reduced becauseN r

s can be selected with a much
smaller number than Ns.

VII. PERFORMANCE EVALUATION
This section presents the simulation studies to evaluate the
performance of the proposed algorithms.

A. ACCURACY OF PRIVACY-PRESERVING Q-LEARNING
In this section, we applied the proposed privacy-preserving
Q-learning in a simple frozen lake problem to verify the
feasibility of the SCC-PPRL algorithm in the cloud com-
puting environment. Fig. 7 shows examples of frozen lake
environment. S represents the starting point for the agent
and G represents the goal. White and gray boxes represent a
safe surface and a hole, respectively. When the agent reaches
the hole, the agent fails the mission and has to go back
to the starting point. The agent can find optimal route to reach
the goal by avoiding holes through Q-learning algorithms.
The frozen lake environment is implemented usingMATLAB
for the simulation. The parameters of the LWE cryptosystem
p, L, r , and N are 104, 104, 10, and 4, respectively. Discount
factor γ and learning rate α are 0.9 and 0.1, respectively, and
ε for ε-greedy policy is 0.1 in this simulation environment.
The number of actions is set to 4.

FIGURE 7. An example of frozen lake environment.

FIGURE 8. Success rate of privacy-preserving Q-learning with respect to
the number of episodes in a frozen lake problem.

Fig. 8 shows the success rate of the proposed SCC-PPRL
scheme for different numbers of states in the frozen lake
environment with respect to the number of episodes. As the
number of states increases, since the complexity of the

VOLUME 8, 2020 203575

J. Park et al.: Privacy-Preserving RL Using Homomorphic Encryption in Cloud Computing Infrastructures

problem increases, convergence speed decreases as shown
in Fig. 8. All three cases in the simulation have success rates
of more than 0.9 before 40 episodes, and the rates converge
to near 1 as the number of episodes increases. This shows
that the proposed privacy-preserving Q-learning algorithm
works successfully even if the user only provides ciphertexts
to the CP. Therefore, the user can receive RL-based services
from the CP without personal information leakage.

B. OVERHEAD IN PRIVACY-PRESERVING Q-LEARNING
The effectiveness of the proposed SCC-PPRL algorithm is
verified by comparing with the SMC-based algorithm devel-
oped in [6] in terms of computational and communication
overhead. In the distributed public key cryptosystem using
the AHE scheme for the SMC-based PPRL algorithm, the key
size is selected as 1024 bits, and the cloud computing-based
service provider consists of one CP and one health service
provider (HSP) for the distributed cryptosystem in the sim-
ulation environment. The private key is split into two partial
private keys. Then, the CP has a partial private key and the
HSP has the remaining partial private key. On the other hand,
in the cryptosystem using the DE scheme for the proposed
SCC-PPRL algorithm, the key size used for RSA algorithm
is selected as 1024 bits, and the parameters of the LWE-based
FHE scheme p, L, r , and N are selected 104, 104, 10, and 10.
Furthermore, in the proposed SCC-based PPRL algorithm
using DE scheme, since data privacy between users can be
preserved even if the DE scheme is applied to only some
elements of matrices as described in Section VI-B, the DE
scheme is applied to elements corresponding to 10 percent of
the matrices for the simulation studies.

1) COMPUTATIONAL OVERHEAD
To compare the computational overhead of the proposed
SCC-PPRL scheme with the compuational overhead of the
SMC-based PPRL scheme developed in [6], the relative
computational complexity (RCC) is calculated. The RCC is
defined as follows:

RCC =
computational complexity of the proposed PPRL
computational complexity of SMC-based PPRL

.

Fig. 9 shows the RCC of the proposed SCC-PPRL and the
SMC-based PPRL algorithms with respect to the number of
states and actions. The number of actions is set to 10 in
Fig. 9(a), and the number of states is set to 10 in Fig. 9(b).
If the RCC is smaller than 1, the computational overhead of
the proposed SCC-PPRL algorithm is less than that of the
SMC-based algorithm.

Fig. 9(a) and Fig. 9(b) show the RCCs in the secure action
selection and secure Q-table updating algorithms as the num-
ber of states and actions increases, respectively. As shown
in Fig. 9(a) and Fig. 9(b), the RCCs converge to a certain value
as the number of states and actions increases because the
computational complexity of both the SMC and SCC-PPRL
algorithms increases linearly for Ns and Na. Furthermore,
since the value of RCC is always smaller than 1, it can

FIGURE 9. Relative computational complexity of SMC-based and
proposed SCC-PPRL for algorithms with and without double encryption.

be seen that the computational overhead of the SCC-PPRL
algorithm is less than that of the SMC-based algorithm. In
the SMC-based algorithm, the encryption and decryption
operations through the cooperation of distributed computing
servers have a dominant effect on computational complex-
ity because the exponentiation operation in the encryption
and decryption procedures requires much more computation
than the other operations such as addition and multiplica-
tion. For the PPRL-based services, the SMC-based algorithm
using the AHE-based distributed cryptosystem requires many
encryption and decryption operations because each basic
homomorphic operation such as multiplication, comparison,
and equality test requires multiple encryption and decryption
operations. On the other hand, in the proposed SCC-PPRL
algorithm, the encryption and decryption operations are per-
formed only in a data exchange procedure.

In the case where the DE scheme is applied to the pro-
posed SCC-PPRL algorithms, the RCCs of the action selec-
tion and Q-table updating algorithms are greater than those
without DE scheme as shown in Fig. 9(a) and Fig. 9(b).
The reason that the algorithms using the DE scheme have
higher computational complexity than those without the DE
scheme is that additional RSA encryption and decryption
operations are required. In Fig. 9(a), as the number of states

203576 VOLUME 8, 2020

J. Park et al.: Privacy-Preserving RL Using Homomorphic Encryption in Cloud Computing Infrastructures

FIGURE 10. Communication overhead of the SCC-PPRL and SMC-based PPRL algorithms with respect to the number of states and
actions.

increases, the RCCs of the action selection algorithm with
and without DE scheme increase. This is because the number
of elements of the binary vector representing the states to be
encrypted using the DE scheme increases as the number of
states increases in the action selection algorithm. The RCC
of the Q-table updating algorithm with DE scheme becomes
close to that without DE scheme because the amount of
information exchange between the user and CP is almost
the same regardless of the number of states. In Fig. 9(b),
as the number of actions increases, the RCC of the Q-table
updating algorithm with DE scheme increases because the
number of elements to be encrypted using the DE scheme
is increased as the number of elements of the binary vector
representing the actions is increased in the Q-table updating
algorithm. In the action selection algorithm, as the number
of states increases, the number of elements of the selected
Q-vector is increased. However, the effect of the increase in
computational complexity by the DE scheme is less than that
of Q-table updating algorithm because the size of the selected
Q-vector encrypted with (2) is smaller than the size of the
binary vector representing the actions encrypted by (6).

2) COMMUNICATION OVERHEAD
To compare the efficiency of the proposed SCC-PPRL algo-
rithmwith the SMC-based PPRL algorithm [6] in terms of the
communication overhead, the amount of communication data

generated while each PPRL algorithm is running is measured.
In the simulation environment, the technique for reducing the
dimension of the binary vectors in Section V-D is enabled
with N r

s = 50 if the number of states and actions is equal to
or greater than 50.

Fig. 10(a) and Fig. 10(b) show the communication over-
head for the action selection and Q-table updating in the pro-
posed SCC-PPRL algorithm with respect to number of states
and actions. In the figures, we plot the overhead of PPRL
algorithm, which is the summation of the communication
overhead for the action selection and Q-table updating algo-
rithms. The number of actions is set to 10 in Fig. 10(a), and
the number of states is set to 10 in Fig. 10(b). In Fig. 10(a),
the communication overhead of the action selection algorithm
increases as the number of states increases up to 50, and
it levels off when the number of states exceeds 50. This is
because the number of elements of binary vector representing
the states for the action selection algorithm increases as the
number of states increases up to 50. If the number of states is
greater than 50, the technique for reducing the dimension of
the binary vectors is applied to the action selection algorithm,
and it successfully suppresses the increase in communication
overhead. On the other hand, it is observed that the commu-
nication overhead of the Q-table updating algorithm is almost
constant regardless of the number of states because commu-
nication data between the user and CP in the Q-table updating

VOLUME 8, 2020 203577

J. Park et al.: Privacy-Preserving RL Using Homomorphic Encryption in Cloud Computing Infrastructures

algorithm does not change as the number of states increases.
In addition, the communication overhead of the algorithms
with DE scheme is higher than that of the algorithms with-
out DE scheme because the length of each element of the
matrix to be transmitted becomes longer if RSA encryption
is applied to the elements for DE scheme.

In Fig. 10(b), the communication overhead of the Q-table
updating algorithm increases as the number of actions
increases up to 50, and it levels off when the number of
actions exceeds 50. This is because the number of binary
vectors representing the actions for the Q-table updating
algorithm increases as the number of actions increases up
to 50. If the number of actions is greater than 50, the technique
for reducing the dimension of the binary vectors is applied to
theQ-table updating algorithm, and it successfully suppresses
the increase in communication overhead. The communication
overhead in the action selection algorithm also increases as
the number of actions increases because the number of ele-
ments in the selected Q-vector returned by the CP increases
as the number of actions increases. The communication over-
head in the Q-table updating algorithm increases much faster
than that of the action selection algorithm because the size of
the matrix encrypted by (6) for the binary vector is greater
than that of the matrix encrypted by (2) for the selected
Q-vector. Moreover, for the same reason in Fig. 10(a), it is
observed that the communication overhead increases if DE
scheme is applied in Fig. 10(b) as well.

For comparison purpose, we plot the communication over-
head for the action selection and Q-table updating in the
SMC-based PPRL algorithm [6] with respect to the number of
states and actions in Fig. 10(c) and Fig. 10(d). In the figures,
the overhead of PPRL algorithm is the summation of the
communication overhead for the action selection and Q-table
updating algorithms. As the number of states and actions
increases, the communication overhead of the action selec-
tion and Q-table updating algorithms constantly increases.
Moreover, it is seen that the communication overhead of
the SMC-based algorithm increases linearly and becomes
very large in comparison with the communication overhead
of the proposed SCC-PPRL algorithms. This reason is that
the SMC-based PPRL algorithm using the distributed cryp-
tosystem requires a number of data exchanges between CP
and HSP for performing the HE basic functions such as
multiplication, comparison, and equality test for the imple-
mentation of PPRL algorithm. On the contrary, because the
proposed SCC-PPRL algorithm stores and processes the data
in a single cloud server without any support of third-parties,
the communication overhead for PPRL algorithm is signif-
icantly reduced. Therefore, the communication overhead of
the proposed SCC-PPRL algorithm is significantly less than
that of the SMC-based PPRL algorithm.

VIII. CONCLUSION
This paper has proposed the SCC-PPRL algorithm using FHE
scheme for reinforcement learning with the aim of preserv-
ing user’s data privacy in a cloud computing infrastructure.

We have also proposed a double encryption scheme that
uses both FHE and RSA algorithms to provide further data
confidentiality to users who shares the same FHE key in
a multi-user cloud environment. The proposed SCC-PPRL
algorithm consists of a secure action selection algorithm and
secure Q-table updating algorithm for secure reinforcement
learning. To solve the error growth problem in the LWE-based
FHE scheme, we have proposed a scaling-and-discarding
method that divides a long series of homomorphic opera-
tions intomultiple pieces. Theoretical analysis and simulation
studies showed that the proposed PPRL algorithm has low
computation and communication overhead in comparison
with conventional PPRL algorithms.

For future research efforts, we will expand the pro-
posed PPRL to other RL algorithms such as deep RL and
multi-agent RL algorithms and evaluate the performance of
the PPRL algorithms in more complicated real-world rein-
forcement learning problems.

REFERENCES
[1] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi,

and A. P. Sheth, ‘‘Machine learning for Internet of things data analysis: A
survey,’’ Digit. Commun. Netw., vol. 4, no. 3, pp. 161–175, Aug. 2018.

[2] C. Yu, J. Liu, and S. Nemati, ‘‘Reinforcement learning in
healthcare: A survey,’’ 2019, arXiv:1908.08796. [Online]. Available:
http://arxiv.org/abs/1908.08796

[3] T. G. Fischer, ‘‘Reinforcement learning in financial markets–A survey,’’
Discuss. Papers Econ., Univ. Erlangen-Nürnberg, Erlangen, Germany,
Tech. Rep. 12, 2018.

[4] Z. Xiao and Y. Xiao, ‘‘Security and privacy in cloud computing,’’ IEEE
Commun. Surveys Tuts., vol. 15, no. 2, pp. 843–859, May 2013.

[5] R. L. Rivest, L. Adleman, andM. L.Dertouzos, ‘‘On data banks and privacy
homomorphisms,’’ Found. Secure Comput., vol. 4, no. 11, pp. 169–180,
1978.

[6] X. Liu, R. Deng, K.-K.-R. Choo, and Y. Yang, ‘‘Privacy-preserving
reinforcement learning design for patient-centric dynamic treatment
regimes,’’ IEEE Trans. Emerg. Topics Comput., early access, Jan. 30, 2019,
doi: 10.1109/TETC.2019.2896325.

[7] J. Sakuma, S. Kobayashi, and R. N. Wright, ‘‘Privacy-preserving rein-
forcement learning,’’ in Proc. 25th Int. Conf. Mach. Learn. (ICML), 2008,
pp. 864–871.

[8] C. Gentry, ‘‘Fully homomorphic encryption using ideal lattices,’’ in Proc.
41st Annu. ACM Symp. Theory Comput., vol. 9, 2009, pp. 169–178.

[9] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, ‘‘A survey on homo-
morphic encryption schemes: Theory and implementation,’’ ACMComput.
Surv., vol. 51, no. 4, pp. 1–35, 2018.

[10] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, ‘‘Fully homo-
morphic encryption over the integers,’’ in Proc. Annu. Int. Conf. Theory
Appl. Cryptograph. Techn., 2010, pp. 24–43.

[11] Z. Brakerski and V. Vaikuntanathan, ‘‘Fully homomorphic encryption from
ring-LWE and security for key dependent messages,’’ in Proc. Annu.
Cryptol. Conf., 2011, pp. 505–524.

[12] Z. Brakerski andV. Vaikuntanathan, ‘‘Efficient fully homomorphic encryp-
tion from (standard) LWE,’’ SIAM J. Comput., vol. 43, no. 2, pp. 831–871,
2014.

[13] C. Peikert and S. Shiehian, ‘‘Multi-key FHE fromLWE, revisited,’’ inProc.
Theory Cryptogr. Conf., 2016, pp. 217–238.

[14] Y. Doröz, J. Hoffstein, J. Pipher, J. H. Silverman, B. Sunar, W. Whyte, and
Z. Zhang, ‘‘Fully homomorphic encryption from the finite field isomor-
phism problem,’’ in Proc. IACR Int. Workshop Public Key Cryptogr., 2018,
pp. 125–155.

[15] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, ‘‘A survey of research on
cloud robotics and automation,’’ IEEE Trans. Autom. Sci. Eng., vol. 12,
no. 2, pp. 398–409, Apr. 2015.

[16] X. Fei, N. Shah, N. Verba, K.-M. Chao, V. Sanchez-Anguix,
J. Lewandowski, A. James, and Z. Usman, ‘‘CPS data streams analytics
based on machine learning for cloud and fog computing: A survey,’’
Future Gener. Comput. Syst., vol. 90, pp. 435–450, Jan. 2019.

203578 VOLUME 8, 2020

http://dx.doi.org/10.1109/TETC.2019.2896325

J. Park et al.: Privacy-Preserving RL Using Homomorphic Encryption in Cloud Computing Infrastructures

[17] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, ‘‘A survey of machine learning
for big data processing,’’ EURASIP J. Adv. Signal Process., vol. 2016,
no. 1, p. 67, 2016.

[18] M. Ibtihal and N. Hassan, ‘‘Homomorphic encryption as a service for
outsourced images in mobile cloud computing environment,’’ in Cryptog-
raphy: Breakthroughs in Research and Practice. Hershey, PA, USA: IGI
Global, 2020, pp. 316–330.

[19] X. Sun, P. Zhang, J. K. Liu, J. Yu, and W. Xie, ‘‘Private machine learn-
ing classification based on fully homomorphic encryption,’’ IEEE Trans.
Emerg. Topics Comput., vol. 8, no. 2, pp. 352–364, Jun. 2020.

[20] P. Paillier, ‘‘Public-key cryptosystems based on composite degree residuos-
ity classes,’’ in Proc. Int. Conf. Theory Appl. Cryptograph. Techn. (EURO-
CRYPT), 1999, pp. 223–238.

[21] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[22] M. Kearns and S. Singh, ‘‘Near-optimal reinforcement learning in polyno-
mial time,’’ Mach. Learn., vol. 49, nos. 2–3, pp. 209–232, 2002.

[23] O. Regev, ‘‘On lattices, learning with errors, random linear codes, and
cryptography,’’ J. ACM, vol. 56, no. 6, p. 34, 2009.

[24] C. Gentry, A. Sahai, and B.Waters, ‘‘Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-
based,’’ in Proc. 33rd Annu. Cryptol. Conf. Adv. Cryptol. (CRYPTO), 2013,
pp. 75–92.

JAEHYOUNG PARK (Graduate Student Member,
IEEE) received the B.S. degree from the Informa-
tion and Computer Engineering, Ajou University,
Suwon, South Korea, in 2015, and the M.S. degree
from the School of Electrical Engineering and
Computer Science (EECS), Gwangju Institute of
Science and Technology (GIST), Gwangju, South
Korea, in 2017, where he is currently pursuing the
Ph.D. degree. His research interest includes data
security technology using homomorphic encryp-

tion for privacy-preserving artificial intelligence.

DONG SEONG KIM (Senior Member, IEEE)
received the Ph.D. degree from Korea Aerospace
University, in February 2008. He has been
an Associate Professor of cybersecurity with
the University of Queensland, Australia, since
January 2019. He was a Senior Lecturer/Lecturer
of cybersecurity with the University of Can-
terbury, from August 2011 to December 2018.
He was a Visiting Scholar with the Univer-
sity of Maryland, College Park, in 2007. From

June 2008 to July 2011, he was a Postdoctoral Researcher with Duke
University. His research interests are in automated cybersecurity modeling
and analysis for the Internet of Things, cloud computing, and moving target
defense. He was the General Co-Chair of ACISP2019 and the General
Chair of IEEE PRDC 2017. He served as a Program Co-Chair of IEEE
TrustCom2019, IEEE ICIOT2019, ATIS2017, GraMsec2015, and IEEE
DASC2015, and a Program Committee Member of international confer-
ences, including IFIP/IEEE DSN, ISSRE, SRDS, and ICC CISS.

HYUK LIM (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees from the School of Elec-
trical Engineering and Computer Science, Seoul
National University, Seoul, South Korea, in 1996,
1998, and 2003, respectively. From 2003 to 2006,
he was a Postdoctoral Research Associate with
the Department of Computer Science, University
of Illinois at Urbana-Champaign, Champaign, IL,
USA. He is currently a Full Professor with the AI
Graduate School and the School of Electrical Engi-

neering and Computer Science (EECS), Gwangju Institute of Science and
Technology (GIST), Gwangju, South Korea. His research interests include
network protocol design, optimization, and the performance evaluation of
computer and communication networking systems.

VOLUME 8, 2020 203579

