
Received October 7, 2020, accepted November 5, 2020, date of publication November 9, 2020, date of current version November 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3036938

A Deep Reinforcement Learning Approach for the
Patrolling Problem of Water Resources Through
Autonomous Surface Vehicles: The
Ypacarai Lake Case
SAMUEL YANES LUIS , DANIEL GUTIÉRREZ REINA, AND SERGIO L. TORAL MARÍN
Department of Electronic Engineering, Technical School of Engineering, University of Seville, 41004 Sevilla, Spain

Corresponding author: Samuel Yanes Luis (syanes@us.es)

This work was supported in part by the Universidad de Sevilla under the contract ‘‘Contratos de acceso al Sistema Español de Ciencia,
Tecnología e Innovación para el desarrollo del programa propio de I+D+i de la Universidad de Sevilla,’’ by the Spanish ‘‘Ministerio de
Ciencia, innovación y Universidades, Programa Estatal de I+D+i Orientada a los Retos de la Sociedad’’ through the Project ‘‘Despliegue
Adaptativo de Vehículos no Tripulados para Gestión Ambiental en Escenarios Dinámicos’’ under Grant RTI2018-098964-B-I00, and in
part by the regional government Junta de Andalucía through the Projects ‘‘Despliegue Inteligente de una red de Vehículos Acuáticos no
Tripulados para la monitorización de Recursos Hídricos’’ under Grant US-1257508 and ‘‘Despliegue y Control de una Red Inteligente de
Vehículos Autónomos Acuáticos para la Monitorización de Recursos Hídricos Andaluces’’ under Grant PY18-RE0009.

ABSTRACT Autonomous Surfaces Vehicles (ASV) are incredibly useful for the continuous monitoring
and exploring task of water resources due to their autonomy, mobility, and relative low cost. In the path
planning context, the patrolling problem is usually addressed with heuristics approaches, such as Genetic
Algorithms (GA) or Reinforcement Learning (RL) because of the complexity and high dimensionality
of the problem. In this paper, the patrolling problem of Ypacarai Lake (Asunción, Paraguay) has been
formulated as a Markov Decision Process (MDP) for two possible cases: the homogeneous and the non-
homogeneous scenarios. A tailored reward function has been designed for the non-homogeneous case. Two
Deep Reinforcement Learning algorithms such as Deep Q-Learning (DQL) and Double Deep Q-Learning
(DDQL) have been evaluated to solve the patrolling problem. Furthermore, due to the high number of
parameters and hyperparameters involved in the algorithms, a thorough search has been conducted to find
the best values for training the neural networks and the proposed reward function. According to the results,
a suitable configuration of the parameters allows better results for coverage, obtaining more than the 93%
of the lake surface on average. In addition, the proposed approach achieves higher sample redundancy of
important zones than other common-used algorithms for non-homogeneous coverage path planning such as
Policy Gradient, lawnmower algorithm or random exploration, achieving an 64% improvement of the mean
time between visits.

INDEX TERMS Deep reinforcement learning, monitoring, path planning, autonomous surface vehicle,
patrolling, complete coverage.

I. INTRODUCTION
Ypacaraí Lake is the largest body of water in Paraguay with
more than 60 km2 of navigable surface (Fig. 1). It is located
between the cities of San Bernardino (eastwards), Areguá
(westwards) and Ypacaraí (southwards) as the main sou-
rce of water supplying in the area. Within the years, its

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Moinul Hossain .

importance has become bigger with tourism since it has been
used as a recreational lake for people to swim and for water
sports. Its importance is also related to the natural life devel-
oped in the wetlands of the basin surrounding of the lake.
Nonetheless, in the past 40 years, the continuous expansion
of the agriculture in the surroundings of the lake, the lack
of sewerage systems in the near cities and the disposals of
wastes from industries located at the shore, among other
factors, have caused in the lake an abnormal eutrophication
process [1].

204076 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-7796-3599
https://orcid.org/0000-0003-4184-2397

S. Yanes Luis et al.: DRL Approach for the Patrolling Problem of Water Resources Through ASVs

FIGURE 1. Ypacarai Lake.

This artificial eutrophication (non natural enrichment of
the waters) causes the flourish of cyanobacteria and since
2012, it has been in an aggressive form with several blooms
of green-blue algae. These colonies of algae come with fetid
smells and the generation of toxins like microsystis, harmful
for wildlife and humans, even deadly in some occasions [2].
It should be noted that the nature of cyanobacteria outbreaks
is dynamic and quite chaotic, so the prediction of where and
when they will arise is not a trivial process [3]. Furthermore,
the bloom behavior is not static and changes its size with time,
which makes the task of measuring the quality of the water an
arduous process. This contamination problem is an interdisci-
plinary challenge in which diverse engineering and scientific
profiles must work together. The solutions should come from
the help of multidisciplinary techniques that not only focus
on reducing waste disposals and infrastructure investments,
but also on monitoring and studying the current state of the
lake to find an efficient way to reverse the situation.

It is vital to monitor efficiently the state of the lake in
order to have an updated image of the biological status of
algae blooms. This contamination map allows to analyze
the performance of the environmental measures taken by the
authorities and researchers. However, the manual monitoring
task takes a lot of effort and human resources since it requires
constant travels from the shore to the main blooms with
motor boats and manual sampling of waters. In [1] the use
of Autonomous Surface Vehicles (ASV) equipped with water
quality sensors is proposed to substitute the manual sam-
pling. These vehicles, which are similar to ships but smaller
and without a crew to operate them, have been widely used
for environmental monitoring tasks [4]. They present many
advantages compared with ordinary ships, such as being
cheaper in fuel expenses, more environment-friendly due to
the use of electric motors that can be connected to a battery
and a solar panel power system, and of course, the ability to
operate without an on-board crew.

Monitoring applications of water resources based on ASV
have been proposed in the last few years as a promising
approach [4]. Every ASV has the ability to be operated

FIGURE 2. Prototype of ASV designed for the exploration of Ypacaraí Lake
in [1].

via remote control (RC) and/or autonomously by travelling
along a path of selected waypoints. These points are nor-
mally generated following a coverage criterion and allow the
ASV to take samples with its sensors along the established
path. For instance in [1], an ASV has been designed and
constructed to explore and monitor Ypacaraí Lake (Fig. 2).
It is equipped with several water quality sensors such as
PH-meters, dissolved oxygen, andOxide-Potential Reduction
(OPR) sensors, among others. These sensors provide the ASV
the ability to estimate the contamination levels (in terms
of cyanides concentration and oxygen concentration levels)
along the path planned.

The monitoring task ultimately falls on a path planner,
which takes as input the map of the lake and generates a set of
waypoints to visit in a way that maximizes the coverage of the
surface. Depending on the mission objectives, a large amount
of possible paths could be taken into consideration. In this
paper, the path planning for monitoring tasks of Ypacarai
Lake is addressed under two perspectives: i) the patrolling
problem with homogeneous importance, which assumes that
every zone of the lake is equally important; thus, the ASV
should visit all waypoints with the same frequency, and ii) the
patrolling problem with a non-homogeneous importance,
considering different relative importance for every waypoint
of the lake. The former case is a myopic approach, where non
previous information on the lake is considered; consequently,
the ASV should explore the whole lake to build a contamina-
tion map of it. In the latter case, prior information is consid-
ered to create an underlying contamination map of the lake;
therefore, the path planning algorithm leverages this model to
plan the routes of the ASV and provides higher frequency to
these areas that are more probable to be contaminated.

It must be defined the difference between a Complete
Coverage task and the Patrolling Problem. In the former,
an episodic task is achieved, where once every zone is cov-
ered, then the mission ends. In the latter, the aim is to
revisit periodically every zone (attending to its importance
and given a certain amount of timesteps) without neglecting
any location for a long time. Consequently, in the Ypacaraí
monitoring task, the Patrolling Problem is targeted consider-
ing the relative importance between the zones (given by the
contamination map already mentioned). In this way, visiting

VOLUME 8, 2020 204077

S. Yanes Luis et al.: DRL Approach for the Patrolling Problem of Water Resources Through ASVs

every zone will be as necessary as revisiting important zones
after a while.

The proposed strategy addresses the problem of finding
an efficient patrolling of the lake by training the agent
with a Deep Reinforcement Learning (DRL) algorithm
called Deep Q-Learning [5] and its evolution Double Deep
Q-Learning [6], in a discretized representative map of the
Ypacaraí Lake. This is accomplished by modelling the prob-
lem as a Markov Decision Process (MDP) with a tailored
reward function for every movement of the agent. Thus,
the learning process is focused on obtaining a better policy
in each episodic iteration.

The main contributions of this work are (a) the application
of deep reinforcement learning for monitoring the quality
of water resources like the Ypacarai Lake with an ASV (a
DDQL approachwith convolutional neural network represen-
tation and a tailored and non-homogeneous reward function
are proposed for an efficient patrolling) and (b) a compar-
ison between our approach, other reinforcement learning
approaches (Policy Iteration, DQL) and other common path
planning algorithms (lawn-mower and randomized).

This paper continues as follows: Section II includes the
main related works of the present work. Section III describes
the problem addressed in this paper. The proposed approach
based on Deep Reinforcement Q-learning is detailed in
Section IV. In Section V, results of the hyperparametrization,
performance of the algorithm, and a comparison with other
strategies are presented. Finally, in Section VI, the conclusion
and future works are included.

II. RELATED WORK
Since there is not a unique and systematic approach to
achieve the patrolling task, it is mandatory to consider opti-
mization algorithms such as Evolutionary Algorithms [1],
[2]) or Reinforcement Learning Algorithms [7] to deal with
the complexity of the problem. These approaches, based on
artificial intelligence foundations, return a near-optimal per-
formance and have been demonstrated as useful techniques
for a wide variety of problems [8]. There are many proposed
solutions for the patrolling problem as this is a recurrent task
in robotics [9], [10]. Depending on the problem, there is a
difference between the exploration with only one agent and
the multi-agent paradigm. In the latter, it is mandatory to
ensure the trajectories avoid the collision between the robots.
In [11] and in [12] a multi-agent approach has obtained good
results.

In [13] the problem is modelled as a Travelling Salesman
Problem (TSP), which can be solved with optimization algo-
rithms like GA. In [14] a cyclic lawn mower solution is pro-
posed with an evolutionary approach to optimise the coverage
path planning with a multi-agent perspective. In [1], the par-
ticular case of Ypacaraí Lake path planning is addressed by
formulating the coverage problem as a Hamiltonian circuit,
with remarkable results; nonetheless, it is an off-line algo-
rithm and, consequently, has no reactivity to model uncertain-
ties. In [15], authors compared a Hamiltonian and Eulerian

formulation for the resolution of the Ypacaraí coverage prob-
lem, resulting in efficient paths given by a genetic algorithm
optimization. Moreover, in [16], the patrolling problem of
Ypacarai lake is addressed by a GA approach and a TSP
model with a variable number of waypoints. The main idea
is to select the waypoints according to the areas with higher
interest.

Other heuristic approaches lay on Reinforcement Learning
techniques [7], [11], [17]–[19]. Using Reinforcement Learn-
ing algorithms for path planning in robotics has become a
trendy approach since [5] proposed Deep Q-Learning as a
solution for a human-like intelligence in Atari 2600 games.
Deep Reinforcement Learning algorithms such as Deep
Q-Learning and its subsequent algorithms like Double Deep
Q-Learning [6], Dueling Deep Q-Learning [20], etc, have
been used by many authors to achieve good performance
in the complete coverage, patrolling problem [7], [18], [21]
and classic path planning and trajectory generation [19]. The
main goal of the complete coverage problem is to obtain
the minimal number of waypoints which guides the agent
around the scenario by covering every single zone. This is the
problem addressed in [22] and [18] by using DQL algorithms.
Furthermore, some authors are interested in the solution of
non-homogeneous patrolling. This problem is approached
by [7] and [11] and result in reactive ways to deal with zones
of different importance and an agent with sensors.

Every DRL approach has an environment, a reward func-
tion, a state definition and at least one agent with its action
space [23]. The environment will define the problem and
the contour conditions. Many authors defined the environ-
ment in their coverage problems as a two dimension grid
map with a representative cell resolution for every scenario.
This assumption is adequate for many cases such as in [22]
and [19], where the agent moves within a plane. Each cell
is usually identified with a label with one of the follow-
ing categories: visited, unvisited or obstacle [22]. In addi-
tion, an interest value with a range of possible values can
be given to each cell [11]. Regarding the scenario, it can
be stochastic [21], with random events, or be completely
deterministic [19].

There are also multiple ways to represent the state of
the scenario in a MDP depending on the observability of the
environment. The observability of the state lays on how the
information of the scenario is given to the agent, i.e. how
the scenario internal state affects the observable information;
therefore, there are two possible MPD types: Full Observable
MDP (the complete state of the scenario is accessible) or Par-
tially Observable MDP (the state must be estimated or is
partially unavailable). There are different approaches to a
partially-observable state, like in [7] which assumes uncer-
tainties in the state acquisition (all the information of the sce-
nario is not available at every moment because it comes from
a camera) and faces temporal dependencies. Other authors
define the state as fully-observable and accessible always.
A common representation of the state for RL approaches is a
RGB image of the observed scenario. This is a very compact

204078 VOLUME 8, 2020

S. Yanes Luis et al.: DRL Approach for the Patrolling Problem of Water Resources Through ASVs

TABLE 1. Summary of the state of the art.

and intuitively representation but requires a method to extract
the encoded information in the image like a Convolutional
Neural Network (CNN). Another representation of the state
could be the mere position of the agent. It is the case of [17],
which uses the Cartesian coordinates of every agent as a state
observation, avoiding the need of CNNs but at the cost of a
more intensive learning process.

Regarding the type of Deep Reinforcement Learning algo-
rithm used by authors, there are two main directions: on the
one hand the DQL approach, which is a Value Optimization
algorithm i.e. tends to find the optimal behavioral policy
by finding the optimal value function V (s) for every state s
(like in [7], [18] and [21]). On the other hand, the Policy
Optimization family, which tends to optimize directly the
optimal behavioral policy noted as π∗(s) that returns the best
action taken in every step given s (used in [22] and [24]).
Besides both approaches (Value Iteration and Policy Iter-

ation) have been proved equally efficient with some differ-
ences, while Policy Iteration methods have, in general, a nice
stability for every non-stochastic problem [25], they suffer
of a high variance in terms of learning (a higher deviation
from the total expected reward) and aworse sample efficiency
compared to the Value Iteration methods. For such methods
as DQL and DDQL, a good estimation of the V (s) could be
achieved faster (for a fixed number of epochs) and tends to
avoid the local minima problem [23] (as a consequence of a
high sample efficiency). These characteristics might suggest
Q-Learning (and others Value Iteration related) as a good
algorithm to deploy for a faster (and even online) training.

There are also novel approaches like in [19], where a com-
bination of DQL and a parallel exploration structure improves
the performance of the path planning and the learning con-
vergence speed. Other novel approach, propposed in [26],
implements an interactive Deep Learning algorithm combin-
ing a DQL approach and interactive RL for path following
in underwater unmanned vehicles. In Table 1 a summary of
the state of the art is presented for convenience of the reader.
It contains the main characteristics of the proposed solutions
in the current literature.

In this work, a grid map scenario for a RL approach has
been designed, as usual in robotic path planning algorithms,
with a RGB representation of the state. There is a substantial
difference between this work and others like [22] and [17]
because the state not only reflects the scenario morphol-
ogy (obstacles and visitable zones) but also the importance
of every cell based on the time of the last visit and the
absolute importance of the cell in a graphic way. Also a
tailored and non-homogeneous reward function has been
designed, similar to [7], whereas other works (like [22]
or [19]) use a temporal-non-dependant reward with constant
reward for each action. Another difference found in this
work is the hyperparametrization that has been conducted.
Some papers propose learning parameters based on trial-
error or in an intuitive idea of the problem needs ([7], [17]
and [11]). In this paper, a detailed study of how parameters
(hyperparameters and reward function parameters) affect the
final performance has been presented. As the Reinforcement
Learning approach with a model-free algorithm does not

VOLUME 8, 2020 204079

S. Yanes Luis et al.: DRL Approach for the Patrolling Problem of Water Resources Through ASVs

need a model of the scenario, this algorithm will serve for
arbitrary maps, unlike the previous works based on genetics
algorithms [2], [14], [15].

III. STATE OF THE PROBLEM
A. ASSUMPTIONS
For the exploration task an ASV prototype is used (Fig. 2).
This prototype has several sensors as said before, and will
serve the purpose of navigating the Ypacaraí Lake while
sampling the water quality and its contamination level. The
ASV has a hardware-software architecture that will provide
the ability to follow a sequence of waypoints (previously
computed and interpolated by a trajectory generator, such as
an spline interpolator). The closed-loop guarantees a robust
reference tracking of given waypoints and it is implemented
in a PixHawk4 autopilot. Thus, once the low-level architec-
ture is ready, the exploration task is achieved by selecting
the waypoints the ASV must visit for the best efficiency.
It is necessary to remark the assumptions of the application
in order to design a sufficiently accurate environment. The
assumptions for the environment are:
• Ypacaraí Lake has a total area of 60 km2 with an aver-
age depth of 1.31 m. Different representations of the
space can be used to obtain different levels of accu-
racy in the generated path like octrees discretization
(for non-homogeneous resolution) [27] or a simple
grid discretization. For the simplicity and computational
efficiency, the map has been discretized in squared cells
of 580 m × 580 m, which is a representative size of
the sensor effective area and the variables resolution
(temperature, PH, dissolved oxygen, . . .). The smaller
the area, the more accurate will be the scenario but more
difficult to compute each iteration of the algorithm.With
this representation, amap of 25×19 cells is obtained (see
Fig. 3), with a total amount of 179 visitable cells and
296 illegal cells (not-visitable ones). It is not convenient
to expand excessively the resolution because the time of
execution for the training could easily explode.

• The inner control loop guarantees the reference track-
ing due to (i) the robust control designs and (ii) the
sufficiently-big size of very cell (580m× 580m), which
allows positioning errors due to drifts or disturbances.

• Every movement duration is assumed to be the same and
in the simulations each timestep equals a movement.

• The following algorithm focuses on the path plan-
ning i.e. the computation of a sequence of waypoints
to follow. A local trajectory generator and autopilot
(PixHawk4) will ensure the movement [28].

• An illegal action (a waypoint in a non-navigable zone)
is rejected in simulation and also in the real application
by not performing this particular action (the ASV will
remain in the same place).

• Besides in the simulation no obstacle in the interior of
the Lake is considered as the obstacle sensors in the ASV
(Lidar + Camera) provide the ability to avoid them (with
a reactive local path planner) and perform effectively

FIGURE 3. Representation of the scenario. Visitable cells are in blue,
illegal cells are in green and the agent as the red triangle.

FIGURE 4. Diagram of the ASV control in the real case (up) and the
reinforcemet learning loop (down).

the commanded action by the RL path planner
propposed.

• The ASV can move in one of the eight different direc-
tions of the adjoining cells (N, E, S, W and NE, SE, NW,
SW directions) each step. This is representative of the
movement capacities of the ASV.

A control diagram is presented in Fig. 4. Note that once
the off-line training is completed, the real-time system uses
the trained pathplanner (Deep Q Network). The state will be
rendered thanks to the GPS coordinates and a map of the
scenario.

B. THE PATROLLING PROBLEM
The patrolling problem can be described in terms of an
undirected graph G(V ,E) with each discretized cell V as a
node and each edge E will represent the distance between
nodes with a non-metric assumption (diagonal movements
are treated the same as non-diagonal ones for simplicity) [13].
Given such graph, the aim of the agent is to minimize the
average idleness of each node, i.e. visit regularly every zone
in order to reduce it. The idleness is more known as the mean

204080 VOLUME 8, 2020

S. Yanes Luis et al.: DRL Approach for the Patrolling Problem of Water Resources Through ASVs

time between visits T and could be weighted depending on the
importance of each cell. It is clear that the number of possible
solutions for the coverage task is very high and none of them
is trivial (NP-hard problem). This problem is a candidate to a
formulation in terms of a Markov Decision Problem (which
is indeed formulated as a graph) and in the next section this
formulation is used to establish a mathematical framework.
The patrolling problem is said to be solved once the path
planner is able to choose the movements that results in a mini-
mum mean time between visits. Once resolved, the reference
tracking is a task for the low-level loop which controls the
actuators (Fig. 4).

In terms of the real environment, the main challenge is to
develop a path planner capable of providing the waypoints
(the next waypoint, given a position of the ASV in the dis-
crete map) that will result, after a number of movements
(timesteps), in the minimization of the average waiting time
of every cell depending on the importance criteria of every
zone. Once the training is complete, the policy of the ASV
will decide every timestep the next move given its state in the
map. Regarding the real implementation, the path planner will
decide the next waypoint, once there, the sensor sampling is
done and a new waypoint is requested.

At this point two variants of the patrolling problem can be
considered attending to the importance of every zone:
• Homogeneous patrolling: it assumes that every cell
in the map is equally important and the homogeneous
coverage of the lake is pursued.

• Non-homogeneous patrolling: in this case, there are
zones with more importance than others. Therefore,
these relevant areas should be revisited with a higher
frequency (depending on the importance given to each
zone).

In the case of Ypacarai Lake, it is well-known that there
are high-concentrated contamination areas (e.g. the blooms)
with special interest for researchers [1], [2], [15]. These areas
match with recreative port areas or industrial zones near the
shore like Puerto de San Blas, at the southern part of the
lake. Therefore, the non-homogeneous patrolling case ismore
suitable for the Ypacarai scenario.

In general, from the optimization point of view, given a
fixed number of movements, the agent pursues the minimi-
sation of the mean time between visits while trying to cover
the maximum number of cells. In our case, the number of
movements is considered 300 in both patrolling cases. This
number of steps is more than enough to cover the lake given
the previously resolution of the cells and generate meaningful
paths to follow by an ASV. The larger number of steps,
the bigger the paths and the more complexity the solution has.

IV. PROPOSED APPROACH
A. IMPORTANCE MATRICES AND REWARD FUNCTION
The reward function proposed is a function based on inter-
est gradient, similar to [7], which is particularly tailored to
pursue an efficient patrolling. Two matrices of 25× 19 cells
are defined. On the one hand, Rabs will define the absolute

importance of the lake zones in every cell within a range of
[0, 255]. For example, a value of 0 means that the cell is not
important at all and a value of 255 means this specific cell has
the maximum importance and must be visited. On the other
hand, the temporal visited mask W is defined. This mask
values go from 0 to 1 and will weight every cell with position
(i, j) (row and column, respectively) ofRabs depending on for
how long the cell has not been visited. W will be updated as
follows:

W =


W(i, j)t+1

= min[W(i, j)t + δ, 1] if pagent 6= [i, j]
W(i, j)t+1 = 0 if pagent = [i, j]

(1)

The parameter δ is a refresh parameter fixed at 0.055,
which indicates how many steps must pass until a cell of
W recovers its full value (20 steps in this case). This value
defines the threshold between good and unnecessary redun-
dancy. As a value of 20 steps is on average approximately
10 km, it is considered that after this distance the cell is again
a candidate for revisiting. It has been observed that a higher
value for δ will push short-term trajectories as the importance
regenerates quickly and an excessively low value will cause
erratic behavior once most of the map is covered since the
interest is slowly regenerated. The relative importance matrix
R will be the element-wise product ofW andRabs:

R =W �Rabs (2)

In this way, W weights the relative importance of every
zone (Rabs) depending on whether the cell has been visited
recently or not. For example, lets imagine a very important
cell [i, j] with an absolute value of 255 inRabs(i, j). When the
agent visits this cell, the W(i, j) value will drop to 0, which
means that in the next step the absolute importance of the
cell (in R(i, j)) will be 0. Within time, this value will be incre-
mented to the maximum again. In order to avoid revisiting a
certain cell many times, the absolute importance of a cell is
decremented with every visit. By settling a maximum desir-
able of 5 visits for a maximum importance cell (255 in Rabs),
each visit will subtract a fifth of the maximum value 255,
which is subtracting 51 to Rabs(i, j), being (i, j) the position of
the agent. The maximum number of visits as 5 is chosen to be
a good value for useful revisiting in interesting zones; thus,
a higher value will result in excessively redundant paths.

Finally, the reward function will depend on the gradient of
the relative interest matrix R from a position of the agent (i, j)
in the state s to the next position (i′, j′) given by the action a:

ρ(s, s′) = R(i′, j′)− R(i, j) = ∇R (3)

Because the values of ρ(s, s′) are in the range of
[Rmin,Rmax] = [0, 255] (R image values for the worst
and best case respectively), a linear transformation has been
applied to parametrize the maximum and minimum reward
given in the best andworst∇R case. Thus, it is translated theR
importance domain to the reward domain (the real value used
in (8) for an easier reward function’s parameter tuning. The

VOLUME 8, 2020 204081

S. Yanes Luis et al.: DRL Approach for the Patrolling Problem of Water Resources Through ASVs

FIGURE 5. Heat map representation of R.

parameters rmax and rmin define the maximum and minimum
reward given to the agent and Cillegal is the punishment value
for invading a non-visitable cell. The final reward function is
described as follows:

r =


rmax − rmin
Rmax − Rmin

[∇R− Rmin]+ rmin if legal

−Cillegal if illegal
(4)

The reward function will benefit the movement to higher
importance zones like unexplored ones or cells not visited
for a while. In this way, the cells with a high idle time
will be attractive to the agent, fostering the movement to
interesting and high-uncertainty zones (a desirable behavior
in patrolling). The interest-gradient reward is also useful to
balance the interest between a recently-visited but important
cell and an unvisited but low-important one: the gradient-
based approach pushes the agent to move to an unvisited zone
instead of revisiting a just-visited cell. The matrix R can be
represented as a heat map (see Fig. 5) where the coldest zones
indicate high relative interest and the hottest ones represent
low relative interest. Notice that illegals cells values do not
matter as they are not visitable.

B. STATE REPRESENTATION
The state representation of the scenario affects the perfor-
mance of the learning process because it defines what infor-
mation is available for the agent to learn. In this paper up to
three different state representations have been analyzed. The
three state representation are:
• State as the position of the agent: Only the position of
the agent in the map is considered in a two-component
vector representation. It is a partial observation of the
full state, considering only the position (i, j) of the agent
in the map, without any further information of the
already visited or illegal zones.

• RGB image with only the visited cells (RGB 1):
Besides the obstacle (green) cells and the agent position
(red), the visitable cells appear in two colors: white
for already visited and black for those which remain

FIGURE 6. Two different state representation. RGB 1 in (a) and RGB
2 in (b).

unvisited (as in Fig. 6a). Illegal (unvisitable) cells are
in green.

• RGB image with full information of the cells (RGB
2): A RGB image with the obstacles, agent position
and gray-scale visitable cells. Each visitable cell will
have a gray tone depending on its absolute interest
in the previously explained relative interest matrix R.
A just recently visited cell will be white and an unvisited
cell or a cell with long time without a visit will be black
(as in Fig. 6b).

C. DEEP Q-LEARNING
Deep Q-Learning is a reinforcement learning algorithm that
approximates the Q function with a Deep Neural Network
(DNN) in the context of a MDP. This function, known also
as value-action function, returns the value that a state s has
for every possible action a in terms of the future expected
reward r for the next N steps.

Q(s, a) = E

(
N∑
t=0

rtγ t
)

(5)

where γ ∈ [0, 1] is the discount factor that determines the
trade-off between short-term and long-term gains. The aim of
Q-Learning algorithm is to find the optimal value for Q(s, a)
by learning the relation between an action-state pair (s, a)
and the next state s′ using the reward r of the transition. The
optimal policy, once the Q-Learning algorithm has optimized
the Q values is given by:

π∗(s) = max
a
Q(s, a) (6)

In Deep Q-Learning a neural network is used to avoid the
high number of possible values for the state. Depending on
the state and the number of actions, theQ function dimension
could explode (especially when the state has a high dimension
like an RGB matrix), thereby a neural network is used and
trained to compute the optimal value of Q(s, a) by the Time
Difference (TD) method [23] as

Q(s, a)t+1=Q(s, a)t+α×
(
r+γ max

a′
Q(s′, a′)t−Q(s, a)t

)
.

(7)

204082 VOLUME 8, 2020

S. Yanes Luis et al.: DRL Approach for the Patrolling Problem of Water Resources Through ASVs

In every training step, the Q(s, a) value is compared
within its target value Q(s′, a), its loss function is evaluated
and the Q function is updated by taking a gradient-descent
step.

Within this method an experience replay is used to avoid
the overfit problem in DNN besides to ensure the effec-
tive training of the network by using enough experiences
(s, a, r, s′) from previous episodes [29]. By random batch of
previous store samples, the agent learns from a wider range
of transitions.

In [6], it is analyzed how the Deep Q-Learning algorithm
sometimes overestimates the Q values. This effect could
result in an unstable optimization (as catastrophic forget-
ting) or a bad performance of the agent. As a consequence,
Double Deep Q-Learning is proposed as a feasible option
to avoid the overoptimistic estimation of Q values. The only
difference is that another estimation function is used to obtain
the greedy target value of Q(s, a) in (7). The target function
Q∗ is merely updated everyM steps with the weights of theQ
function (like in (8)). This is proven to enhance the stability
in the learning in many cases. The full learning pseudocode
for both DQL/DDQL is provided in Algorithm 1.

Q(s, a)t+1=Q(s, a)t+α×
(
r+γ max

a′
Q∗(s′, a′)t−Q(s, a)t

)
.

(8)

D. NEURAL NETWORK
Since the the positional state representation is different in
dimension from the RGB representations (the first one is
a simple two-component vector and the other two are a
RGB image), two architectures of deep neural networks are
proposed.
• With the state as the Cartesian position of the agent in the
map, a dense (fully-connected) neural network is used.
It has an input layer (of two neurons), two hidden layers
(of 1024 neurons each) and an output layer (of eight
neurons, one for each possible action). The activation
function is in every layer a ReLU function (see Fig. 7).

• With state as a RGB image of the scenario a convolu-
tional neural network is used. An initial convolutional
layer of eight 5× 5 filters will extract the features of the
image and a dense neural network of two hidden layers
(1024 neurons each) and an output layer (8 neurons)
will determine the Q values based on those features (see
Fig. 8).

In both cases a Huber Loss function has been used for the
gradient descent estimation ofQ(s, a) function. This function
is used in Reinforcement Learning as it faces less conver-
gence issues than the well-known Root Mean-Squared Error
function (RMSE) [30]. Whereas RMSE is quadratic growing
in all its domain, Huber Loss function is only quadratic to
a certain point and then linear, so a big step will not cause
exploding gradients (outliers robustness).

Algorithm 1: DQL/DDQL With Buffer Replay Algo-
rithm
Initialize replay memory M to capacity N;
Initialize action-value function Q with random weights
θ ;
if DDQL is activated then

Initialize target function Q∗ with random weights
θ−;

end
epoch← 0;
while epoch ≤ epochMAX do

step← 0;
Reset the environment and observe the initial state s;
while step ≤ stepMAX do

With probability ε select a random action a
otherwise select a = argmaxaQ(s, a; θ)
Execute action a and observe reward r and next
state s′

Store transition (s, a, r, s′) in M
ifM ≥ Batch Size then

Sample random Batch Size (s, a, r, s′)
experiences fromM ;
for every (s, a, r, s′) sampled do

if DDQL is activated then
q∗ ≈ r + γ maxa′ Q∗(s′, a′; θ−);

else
q∗ ≈ r + γ maxa′ Q(s′, a′; θ);

end
Perform gradient descent step on
Loss(q∗ − Q(s, a))

end
end
step← step+ 1;

end
epoch← epoch+ 1;
if DDQL is activated then

Every T epochs, updates Q∗ weights θ−← θ ;
end

end

E. EPSILON-GREEDY POLICY
In order to achieve good results in the training, a moving
ε-greedy policy is implemented for the behavioral policy of
the agent. The behavioral policy is the way that an agent
chooses the next action in every step of an episode. In an
ε-greedy policy, the agent has an ε (with ε ∈ [0, 1]) probabil-
ity to choose a random action (exploring the value-action pair
domain) and a 1− ε possibility to choose a greedy action i.e.
anext = maxaQ(s, a). At the beginning of the learning, ε is
higher to ensure a sufficient exploration and as the episodes
go by, ε is decremented at a constant rate to a minimum
(to always ensure exploration). At the end of the learning,
the vast majority of the actions are taken greedily.

VOLUME 8, 2020 204083

S. Yanes Luis et al.: DRL Approach for the Patrolling Problem of Water Resources Through ASVs

FIGURE 7. Neural Network architecture for positional state representation.

FIGURE 8. Convolutional Neural Network for RGB state representation.

V. PERFORMANCE EVALUATION
This section is divided into multiple parts: first, the envi-
ronment simulator is presented with the hyperparameters
and the performance metrics used to evaluate the proposed
approach. Second, the best state representation and reward
parameters are chosen by tuning DQL algorithm in the
homogeneous patrolling case. In this analysis, with the best
model parameters, both DQL and DDQL results for the
homogeneous patrolling task are presented. Then, the non-
homogeneous patrolling case is addressed for both DQL and
DDQL algorithms. In the next part, a hyperparametrization
analysis is addressed for DDQL algorithm since it is proven
that the DDQL outperforms DQL. Lastly, the best selected
results of DDQL are compared with other path planning
approaches with a final discussion.

A. ENVIRONMENT SIMULATOR, MODEL PARAMETERS
AND PERFORMANCE METRICS
A simulator for the environment has been implemented in
Python. The environment is designed to be compatible with
OpenAI Gym1 environments, vastly used in Reinforcement
Learning researches. The DNNs forQ functions were created
using the PyTorch2 library with GPU enhance and NumPy3

for matrix operations. The simulator is able to compute the
eight possible actions, and when it is reseted, it initializes
all the interest matrices and restarts the agent in a random
position of the visitable domain of cells. For every action
executed, the scenario returns the actual state s, the reward
of the action r and the interest matrices for the analysis. The
code can be found in a Github repository.4 All the simulations
were executed in Ubuntu 20.04 with the following hardware

1https://gym.openai.com/
2https://pytorch.org/
3https://numpy.org/
4https://github.com/derpberk/YpacaraiReinforcementLearning

TABLE 2. Model parameters.

TABLE 3. Training hyperparameters.

specifications: AMD Ryzen 9 3900 (3.8 GHz) CPU, Nvidia
RTX 2080S-8GB GPU and 16GB RAM memory.

All the hyperparameters and scenario parameters are sum-
marized in Tables 2 and 3.

For the performance evaluation, three different metrics are
proposed:
• Coverage: The coverage κ of the map will be defined
as the ratio between the total interest of the visited cells
and the total interest of the lake cells. A high value of
coverage is desired.

κ =

∑
∀(i,j)visited [Rabs(i, j)]∑

Rabs,visitable
(9)

• Effective average visiting time: It is defined by the
weighted mean time between visits on average in every
cell of the map and divided by κ to be able to compare
with different coverage rates. A low value means a good

204084 VOLUME 8, 2020

S. Yanes Luis et al.: DRL Approach for the Patrolling Problem of Water Resources Through ASVs

TABLE 4. Parameters for training in the state evaluation.

performance of the algorithm because, on average, every
cell does not have to wait for long time to be recovered
(reducing the uncertainty knowledge of the map).
Let τ (i,j)k be the time between a visit in (i, j) cell in the k
step:

τ
(i,j)
k = t (i,j)k − t (i,j)k−1 (10)

Givenµ(i,j)
τ as themean of τ (i,j)k , the average visiting time

of the map Tmean is defined as:

Tmean =
1
m

∑
∀(i,j)

[
µ(i,j)
τ

Rabs(i, j)
maxRabs

]
(11)

where m is the number of visitable cells. Finally,
the effective average T effmean is:

T effmean =
Tmean
κ

(12)

• Effective homogeneity of coverage: Defines the aver-
age deviation of T effmean in the map. A low value means
the coverage is homogeneous and, on average, the time
between visits of every cell remains close. It is defined
as:

Hmean =

√√√√ 1
m

∑
∀(i,j)

[
µ
(i,j)
τ − Tmean

Rabs(i, j)
maxRabs

]2
(13)

H eff
mean =

Hmean
κ

(14)

B. SIMULATION RESULTS FOR THE
HOMOGENEOUS EXPLORATION
In this subsection, results for the DQL algorithm for the three
different states are obtained. Once the best state represen-
tation is chosen, different reward parameters in Table 2 are
evaluated for best performance. Finally, DQL and DDQL
results are compared.

1) STATE REPRESENTATION EVALUATION
For this evaluation, the parameters used are summarized
in Table 4. For this early tuning only the DQL algorithm has
been used.

The results are shown in Fig. 9-11 for 20 episodes, with
Deep Q Network trained in the best episode. It is clear that
the best state representation is the RGB 2 image with relative

FIGURE 9. Coverage for state comparison.

FIGURE 10. T eff
mean for the state comparison.

FIGURE 11. Heff
mean for the state comparison.

importance matrix R values represented on it. The more
information the Deep Q-Learning algorithm can get through
the state, the better decisions is able to make. The positional
state has the worst performance due to the lack of information
generated (35% coverage rates on average). Thus, without
any ability to remember the previously visited zones, it results
in a path planning with bad coverage. The RGB represen-
tation improves significantly the performance; therefore in

VOLUME 8, 2020 204085

S. Yanes Luis et al.: DRL Approach for the Patrolling Problem of Water Resources Through ASVs

TABLE 5. Reward parameters for calibration.

FIGURE 12. Coverage for reward calibration.

FIGURE 13. T eff
mean for reward calibration.

the following evaluations, the complete RGB 2 representation
will be used as it returns the best performance in every metric
even with a significant lower dispersion.

2) REWARD PARAMETERS EVALUATION
Since the reward parameters affect directly to the agent
behavior, a succinct search of the better reward triad is con-
ducted. The different configurations of reward parameters
(Cillegal, rmin, rmax) tested are included in Table 5.

The results are represented in Fig. 12-14 for 20 episodes,
with Deep Q Network trained in the best episode. The cali-
bration process shows that the configuration 5 and 6 have the
best results and it has been observed that a highCillegal to rmax
rate results in a bad performance.

Since there are infinite ways to tune the reward function,
this brief selection will help to choose its parameters in a

FIGURE 14. Heff
mean for reward calibration.

TABLE 6. Nominal parameters for the homogeneous patrolling learning.

FIGURE 15. Reward through the learning process for DQL and DDQL in
the homogeneous case.

heuristic way. The best reward parameters selected for the
following evaluations are the ones in the configuration 5:
highest coverage (see Fig. 12), best effective homogeneity
(see Fig. 14) and the second lowest effective mean time (see
Fig. 13).

C. HOMOGENEOUS PATROLLING RESULTS
Given the selected state representation and the reward param-
eters, the results of both DQL and DDQL algorithms are
presented for the homogeneous patrolling case. In this case,
the relative importance matrix R has a value of 255, there-
fore R = Rabs, and the objective is to achieve the best
accumulative reward possible (pure coverage problem). The
hyperparameters of training are summarized in Table 6 and
have been selected based on previous results of different
authors ([7] and [18]) with good results.

In Fig. 15 the difference between DQL (blue) and DDQL
(green) learning is represented. With DDQL the learning

204086 VOLUME 8, 2020

S. Yanes Luis et al.: DRL Approach for the Patrolling Problem of Water Resources Through ASVs

FIGURE 16. Visited cells and R matrix as a heat map for the best episode
with DQL algorithm (up) and DDQL (down).

FIGURE 17. Non-homogeneous Rabs proposed based on [31].

process is much more stable than DQL. The catastrophic for-
getting issue disappears in DDQL and much higher rewards
are obtained at the end of the learning. The DDQL algo-
rithm with this hyperparameter configuration achieves an
accumulated reward per episode of 810, whereas DQL only
obtains up to 600. In Fig. 16, the relative interest matrix
R is presented as an interpolated heat map with the visited
cell map. The improvement of homogeneity of the coverage
between the two algorithms can be seen in Fig. 17. In DQL
approach, some zones are excessively visited, while others
remain poorly visited.

D. NON-HOMOGENEOUS PATROLLING RESULTS
For the non-homogeneous patrolling problem, an absolute
importance matrix Rabs is proposed based on the research
of [31] where a map of contamination-sensible zones is
found. A discretization of the map has been made resulting
in 5 different levels of importance. The non-homogeneous
Rabs is shown in Fig. 17.
In Fig. 18, it is shown the learning process and accumu-

lative reward in each epoch of 300 steps simulated using

FIGURE 18. Reward through the learning process for DQL and DDQL in
the non-homogeneous case.

FIGURE 19. Number of visits in cells (left) and R matrix as a heat map
(right) for an arbitrary episode with DDQL for the non-homogeneous case.

the same hyperparameters included in Table 6. It is clear
that the DQL algorithm cannot stabilize the learning whereas
DDQL can. This issue demonstrates the good performance of
DDQL to train the agent through the episodes. The maximum
achieved reward in the DDQL is 621, which is lower than
the maximum reward in the preceding case due to the lower
values of Rabs. The paths generated by the algorithm in
the latest training episodes achieve the task of exploring the
most important cells multiple times, while the least important
remains visited one time or unvisited since they are not impor-
tant at all or have little importance compared to the others.

In Fig. 19, the results of the best episode with the trained
DDQL can be seen. The more important cells, which are
mostly located in the south, are visited more times than the
least important ones. The agent visits some cells six times,
returning an excessive of redundancy since R(i, j)abs admits
5 visits until becoming zero. This shows some lack of opti-
mality besides the acceptable performance of the algorithm.
Since the algorithm provides good solutions but very per-
fectible ones, it is necessary to tune the hyperparameters for
obtaining a better performance.

E. HYPERPARAMETRIZATION ANALYSIS
It is well-known that the value of training hyperparameters
as well as the structure of the neural network influence in
some degree of the final learning performance. To enhance

VOLUME 8, 2020 204087

S. Yanes Luis et al.: DRL Approach for the Patrolling Problem of Water Resources Through ASVs

FIGURE 20. Average reward obtained in the last 50 episodes for each
batch size (a), ε-decay (b), learning rate (c) and network size (d) value.

the obtained results for the ASV implementation, we study
the effect of the most important hyperparameters in the non-
homogeneous patrolling case.

The hyperparameters to vary are α, the batch size, the
ε-decay rate and the neural network size. Different simula-
tions are executed, changing one parameter value each time
and by selecting the hyperparameters that achieve the best
performance, a final tuned algorithm is obtained.

1) BATCH SIZE
We start from the nominal values from Table 6. Five different
values for the batch size are tested: 32, 64, 128, 250 (nominal)
and 512. The higher the batch size, the more previous expe-
riences will be used to find the relation between a state-
action pair (s, a) and its reward r . According to the current
literature, it is not clear if a high batch size improves the
learning. In [29], it is shown that higher batch sizes led to
bad performance since the algorithm moves away from the
off-policy paradigm. In Fig. 20(a) the result of the average
reward obtained in 50 episodes with the trained Q-network is
shown. The performance for each value of batch size can be
seen in Fig. 21. According to the results, the best batch size
is 32 with a maximum reward of 653.

2) ε-DECAY RATE
The ε-decay rates determines the level of greed of the behav-
ioral policy according to the ε-greedy algorithm. Three dif-
ferent rates have been tested so that each makes ε its own
minimum value (0.01) in a certain episode number. These
three values are: 0.002 (reaches its minimum in episode 500),
0.001 (reaches its minimum in episode 1000) and 0.0007
(reaches its minimum in episode 1400). In Fig. 20(b) the
result of the average reward obtained in 50 episodes with the
trained Q-network is shown. The performance for each value

TABLE 7. Different net sizes tested.

of the learning rate used in simulation can be seen in Fig. 22.
The best ε-decay rate will be 2E-3 with a maximum reward
of 698.

3) LEARNING RATE
The learning rate affects on how quickly gradient of the loss
function updates each parameter (weights and biases) of the
neural network. If this parameter is very large, it will cause
instabilities in training and if it is very small, the convergence
will be excessively slow and a sub-optimal solution may be
reached. We have tested 4 values of this parameter: 1E-1,
1E-2, 1E-3 (nominal) and 1E-4. In Fig. 20(c) the result of
the average reward obtained in 50 episodes with the trained
Q-network is shown. The performance with each value the
learning rate can be seen in Fig. 23. The best learning rate is
1E-4 with a maximum reward of 720.

4) NEURAL NETWORK SIZE
We have changed the size of the Q convolutional network
to study how the number of neurons and filters affects the
performance of the agent. An excessively large network will
have many of their neurons with weights that tend to 0 and
a very small network lacks the plasticity to generalize the
optimal Q function, so it must conform to an intermedi-
ate size. The different network architectures are listed in
Table 7.
In Fig. 20(d) the result of the average reward obtained

in 50 episodes with the trained Q-network is shown. The
performance with each network size can be seen in Fig. 24.
On the one hand, the simulations show that decreasing the
size results in a bad performance as the neural function cannot
estimate adequately the Q values. On the other hand, increas-
ing the network size do not improve the performance and only
contributes to a slower execution of the learning process. The
selected size is the previously used value (Net4) since it is the
smaller with the best performance.

5) SIMULATION RESULTS FOR THE BEST
HYPERPARAMETERS
Selecting the best hyperparameters in the previous study,
the agent achieves better results in both homogeneous and
non-homogeneous patrolling cases. By training with the new
parameters (listed in Table 8), the results show a much better
learning performance in the first case (see Fig. 25) as well in
the second case (see Fig. 26). The improvement is not only
achieved in terms of rewards, with an improvement of the
50% and 13% for each case, but also in the standard deviation

204088 VOLUME 8, 2020

S. Yanes Luis et al.: DRL Approach for the Patrolling Problem of Water Resources Through ASVs

FIGURE 21. Heat map of the best episode for each batch size value.

FIGURE 22. Heat map of the best episode for each ε-decay value.

FIGURE 23. Heat map of the best episode for each learning rate value.

TABLE 8. Best parameters selected.

of the average reward in the final epochs. A low deviation of
the reward implies a more homogeneous solution for every
path generated i.e. a better ability to obtain a good solution
for any initial conditions.

F. COMPARISON WITH OTHER APPROACHES
To illustrate the efficiency and the validity of the DDQL
proposed approach, three algorithms for patrolling are used:
a naive random exploration, a lawn mower complete cov-
erage path and a Policy Gradient Reinforcement Learning
(REINFORCE). The random exploration will avoid illegal
actions and the lawn mower path will cover always the whole
area in a cyclic path from a random position (see Fig. 27).
Policy Gradient (PG) will work similarly to DDQL but tak-
ing descent gradient steps to optimize the behavioral policy
π (s; θ) directly. In this RL approach, the same neural network
is used for the policy and the equivalent hyperparameters (γ ,
Learning Rate, . . .) remains the same in both DDQL and PG.

1) HOMOGENEOUS PATROLLING
For the homogeneous patrolling, 20 different epochs are sim-
ulated. The simulation results obtained are shown in Table 9.
The simulations show the good performance of the proposed
algorithm in the homogeneous case, with a 64% improvement
in T effmean respect to the lawn mower approach and for the ran-
domized path planner also. For the Policy Gradient, it can be
seen the improvement is insufficient due to a slower training.
For 1500 epochs, DDQL shows a much better performance
with a 25% improvement of the mean time between visits
from the PG.

In Fig. 28 the heat map of the path generated in every
algorithm is displayed. In this case, the proposed algorithm
is able to revisit cells (mostly on the center of the lake due to
the lower state values in the boarders) to maintain the average
T effmean lower than the lawn mower approach. In the lawn
mower path, several zones remain forgotten since the agent
completes a full cycle and DDQL approach seems to avoid
this problem by covering from the center of the lake to its
limits. Something similar happens to the PG approach: the
algorithm is not able to compute a better solution in the given
number of epochs and the resulting paths remains far from
optimal with an excessive useless redundancy.

2) NON-HOMOGENEOUS PATROLLING
For the non-homogeneous patrolling, 20 different epochs are
also simulated. The metrics obtained are shown in Table 10.
The simulations show the good performance of the pro-
posed algorithm in the non-homogeneous case, with a 30%

VOLUME 8, 2020 204089

S. Yanes Luis et al.: DRL Approach for the Patrolling Problem of Water Resources Through ASVs

FIGURE 24. Heat map of the best episode for each learning rate value.

TABLE 9. Metrics for the homogeneous case.

FIGURE 25. Episode reward in the learning process for tuned and
nominal hyperparameters in homogeneous exploration.

FIGURE 26. Episode reward in the learning process for tuned and
nominal hyperparameters in non-homogeneous exploration.

improvement in T effmean respect to the lawn mower approach
and a 21% improvement in the random path planner. The
improvement is also noticeable in the effective homogeneity.
For the PG algorithm, the improvement over lawn-mower
and random-exploring is noticeable but, as happened in the
homogeneous case, DDQL outperform in every metric. Once

FIGURE 27. Lawn mower trajectory.

again, DDQL shows, for the Ypacaraí case, a better learning
speed and a lower variance.

In Fig. 29 the heat map of the path generated in every
algorithm is displayed. In this case, the proposed algorithm
is able to choose the most interesting cells and avoid those
cells of low interest. Such low interest could be due to
those cells are already visited or because there are no algae
blooms in it. The lawn mower approach is not able to avoid
those zones and shows a total lack of intelligence. In our
approach, the most important zones in the south are visited
4 to 5 times with an average visiting-time separation of 100
steps.

3) DISCUSSION OF THE RESULTS
Finally, we discuss the previous results with the most relevant
aspects of the simulations.
• The selection of the state and the results have demon-
strated that the more information the DQL/DDQL algo-
rithm has, the better performance is achieved. As an
off-policy algorithm, DQL approach needs to extract

204090 VOLUME 8, 2020

S. Yanes Luis et al.: DRL Approach for the Patrolling Problem of Water Resources Through ASVs

TABLE 10. Metrics for the non-homogeneous case.

FIGURE 28. Best results for lawn mower path (a), random exploration (b), the proposed DDQL algorithm (c) and
Policy Gradient (d) for the homogeneous coverage.

FIGURE 29. Best results for lawn mower path (a), random exploration (b), the proposed DDQL algorithm (c) and
Policy Gradient (d) for the non-homogeneous coverage.

the correlation between the state-action pair (s, a) and
its next state and reward (s′, r). Without a proper state
representation, the neural network will be inefficient,
resulting in a very bad performance.

• The reward function, as a model of what we want the
agent to achieve, plays an important role in the final
performance. With a simple search of the reward param-
eters, the efficiency could be enhanced.

VOLUME 8, 2020 204091

S. Yanes Luis et al.: DRL Approach for the Patrolling Problem of Water Resources Through ASVs

• In the DQL/DDQL comparison, the DQL algorithm
shows worse results than DDQL as expected. The catas-
trophic forgetting phenomenon compromises the learn-
ing stability causing the agent to learn poorly and slower.
The DDQL approach is proven to be a good RL algo-
rithm to train in the two Ypacaraí patrolling cases.

• Besides the acceptable results of the DDQL approach
in both exploration cases, a hyperparameter tuning is
necessary to obtain a competitive performance respect
to other approaches. The proposed tuning returns amuch
higher rewards and a better coverage of the lake.

• With the tuning, the DDQL is much better than the
lawn mower path planner and, of course, the random
exploration algorithm. The proposed algorithm is able
to improve lawn mower path by 64% in terms of T effmean
for the homogeneous case and by 30% for the non-
homogeneous problem, proving the good performance
of the algorithm.

• Comparing PG and DDQL, it has been observed that
Policy Iteration algorithms tends to be slower in learning
with a worse sample efficiency. Another remarkable
difference lies in the fact that DDQL has a much smaller
variance in the expected return once trained. This char-
acteristic of performance homogeneity is very desirable
because it guarantees a better performance epoch after
epoch regardless the initial point. Thus, the standard
deviation of the reward results in an order of magnitud
higher in PG.

VI. CONCLUSION
Reinforcement Learning approaches have been demon-
strated to be flexible and efficient in the resolution of
high-complexity problems with dynamic scenarios as the
patrolling problem of the Ypacaraí Lake. Double Deep
Q-Learning is a good approach to design a path planner for
the homogeneous and non-homogeneous patrolling problem
since: i) it does not need a model of the environment and ii)
due to its off-policy behavior, it is not necessary any specific
behavioral policy to achieve the optimality. Furthermore,
when non-modeled obstacles are encountered or a change in
the map is defined, it is possible with retraining to incorporate
such new information. In addition, the trajectory generator
and the collision-avoidance system could decide an action is
impossible and some other action must be chosen, the Deep
Q-Network could recalculate the better action for the new
state or even select the the second-best action given by
Q(s, a; θ) (this remarks the reactivity of themethod) causing a
non-optimal action but allowing the ASV to perform robustly
in the real environment.

In the homogeneous patrolling case, the DDQL paths
achieve virtually the complete area coverage task with an
average 93% of the covered area with a remarkable diminu-
tion of the mean team between visits of every zone. In the
non-homogeneous exploration case, it is also proven to be
effective in the patrolling task with a good ability to travel
to zones with higher importance. It is also confirmed the

hypothesis explained in [6] for the DQL worse learning pro-
cess. The duplication of themodel function by using a Double
Deep Q-Learning variation enhances the average rewards
in every simulated case and the learning instabilities are
avoided. Besides PG algorithm could be trained during more
epochs in order to obtain higher rewards, DDQL has been
proven sufficiently efficient for this application. Furthermore,
the high variance of the rewards in PG results in a undesirable
situation for the real application and since DDQL achieves a
remarkable small deviation of its metric, it results in a more
practical algorithm.

In order to achieve these acceptable results, it is required
to tune the hyperparameters and the reward function as it
was explained in the previous sections. It has been proven
the Deep Q-Learning algorithms have high hyperparameter
sensibility, and poorly-chosen parameters end up in a bad
learning process even in learning instabilities.

For the next steps, the multi-agent exploration paradigm
is planned to be achieved as the model-free behavior of
the algorithm allows an almost immediate adaptation of the
DDQL algorithm. To improve the performance of the path
planner, somemodifications are proposed like the use of Long
Short-Term Memory (LSTM) neurons. LSTM networks are
recurrent neural networks which have the capability to use the
subsequent states to consider both short and long-term tem-
poral dependencies into the learning. This recurrent networks
are expected to return better results for a Partial Observable
Markov Decision Process (POMDP), where the complete
state is not fully observable. This will be very useful when
adding sensor uncertainties to the scenario and the possibility
of have moving obstacles into the lake.

REFERENCES
[1] M. E. L. Arzamendia, S. L. T.Marín, andD. G. Reina, ‘‘Reactive evolution-

ary Path planning for autonomous surface vehicles in lake environments,’’
Ph.D. dissertation, Dept. Electron., Escuela Técnica Superior de Ingeniería
de Sevilla, Seville, Spain, 2018.

[2] M. E. López Arzamendia, D. Gregor, D. G. Reina, and S. L. Toral,
‘‘An evolutionary approach to constrained Path planning of an autonomous
surface vehicle for maximizing the covered area of Ypacarai lake,’’ Soft
Comput. J., vol. 25, no. 5, pp. 1723–1734, 2019.

[3] J. C. Ho and A. M. Michalak, ‘‘Challenges in tracking harmful algal
Blooms: A synthesis of evidence from lake erie,’’ J. Great Lakes Res.,
vol. 41, no. 2, pp. 317–325, Jun. 2015.

[4] J. SÃİnchez-García, J. M. García-Campos, M. Arzamendia, D. G. Reina,
S. L. Toral, and D. Gregor, ‘‘An evolutionary approach to constrained Path
planning of an autonomous surface vehicle for maximizing the covered
area of ypacarai lake,’’ Comput. Commun., vol. 119, pp. 43–65, 2018.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[6] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning with
double Q-learning,’’ in Proc. 30th AAAI Conf. Artif. Intell., AAAI, 2016,
pp. 2094–2100.

[7] C. Piciarelli and G. L. Foresti, ‘‘Drone patrolling with reinforcement
learning,’’ in Proc. 13th Int. Conf. Distrib. Smart Cameras, Sep. 2019,
pp. 1–6.

[8] M. M. Drugan, ‘‘Reinforcement learning versus evolutionary computa-
tion: A survey on hybrid algorithms,’’ Swarm Evol. Comput., vol. 44,
pp. 228–246, Feb. 2019.

204092 VOLUME 8, 2020

S. Yanes Luis et al.: DRL Approach for the Patrolling Problem of Water Resources Through ASVs

[9] L. Huang, M. Zhou, K. Hao, and E. Hou, ‘‘A survey of multi-robot regular
and adversarial patrolling,’’ IEEE/CAA J. Automatica Sinica, vol. 6, no. 4,
pp. 894–903, Jul. 2019.

[10] K. S. Kappel, T. Cabreira, J. L. Marins, L. B. de Brisolara, and
P. R. Ferreira, ‘‘Strategies for patrolling missions with multiple UAVs,’’
J. Intell. Robotic Syst., vol. 99, pp. 499–515, Sep. 2019.

[11] J. Xiao, G. Wang, Y. Zhang, and L. Cheng, ‘‘A distributed multi-agent
dynamic area coverage algorithm based on reinforcement learning,’’ IEEE
Access, vol. 8, pp. 33511–33521, 2020.

[12] A. A. Adepegba, S. Miah, and D. Spinello, ‘‘Multi-agent area coverage
control using reinforcement learning,’’ in Proc. 29th Int. Florida Artif.
Intell. Res. Soc. Conf., FLAIRS, 2016, pp. 368–373.

[13] Y. Cheva, ‘‘Theoretical analysis of the multi-agent patrolling problem,’’ in
Proc. IEEE/WIC/ACM Int. Conf. Intell. Agent Technol. (IAT), Sep. 2004,
pp. 302–308.

[14] I. A. Hameed, ‘‘Coverage path planning software for autonomous robotic
lawn mower using Dubins’ curve,’’ in Proc. IEEE Int. Conf. Real-Time
Comput. Robot. (RCAR), Jul. 2017, pp. 517–522.

[15] M. Arzamendia, I. Espartza, D. G. Reina, S. L. Toral, and D. Gregor,
‘‘Comparison of eulerian and Hamiltonian circuits for evolutionary-
based path planning of an autonomous surface vehicle for monitoring
ypacarai lake,’’ J. Ambient Intell. Humanized Comput., vol. 10, no. 4,
pp. 1495–1507, Apr. 2019.

[16] M. Arzamendia, D. Gutierrez, S. Toral, D. Gregor, E. Asimakopoulou,
and N. Bessis, ‘‘Intelligent online learning strategy for an autonomous
surface vehicle in lake environments using evolutionary computation,’’
IEEE Intell. Transp. Syst. Mag., vol. 11, no. 4, pp. 110–125, Sep. 2019.

[17] B. Liu, Y. Zhang, S. Fu, and X. Liu, ‘‘Reduce UAV coverage energy con-
sumption through actor-critic algorithm,’’ in Proc. 15th Int. Conf. Mobile
Ad-Hoc Sensor Netw. (MSN), Dec. 2019, pp. 332–337.

[18] M. Theile, H. Bayerlein, R. Nai, D. Gesbert, and M. Caccamo, ‘‘Uav
coverage path planning under varying power constraints using deep
reinforcement learning,’’ 2020, arXiv:2003.02609. [Online]. Available:
http://arxiv.org/abs/2003.02609

[19] L. Lv, S. Zhang, D. Ding, and Y. Wang, ‘‘Path planning via an improved
DQN-based learning policy,’’ IEEEAccess, vol. 7, pp. 67319–67330, 2019.
[Online]. Available: https://ieeexplore.ieee.org/document/8721655

[20] Z.Wang, N. D. Freitas, andM. Lanctot, ‘‘Dueling network architectures for
deep reinforcement learning,’’ in Proc. ICML, New York City, NY, USA,
vol. 4, 2016, pp. 2939–2947.

[21] R. Shah, Y. Jiang, J. Hart, and P. Stone, ‘‘Deep R-learning for continual
area sweeping,’’ Tech. Rep., 2020.

[22] A. K. Lakshmanan, R. E. Mohan, B. Ramalingam, A. Vu Le,
P. Veerajagadeshwar, K. Tiwari, and M. Ilyas, ‘‘Complete coverage
path planning using reinforcement learning for tetromino based clean-
ing and maintenance robot,’’ Autom. Construct., vol. 112, Apr. 2020,
Art. no. 103078.

[23] R. S Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[24] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, ‘‘Deep reinforcement learn-
ing robot for search and rescue applications: Exploration in unknown clut-
tered environments,’’ IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 610–617,
Apr. 2019.

[25] P. Ruvolo, I. Fasel, and J. Movellan, ‘‘Optimization on a budget: A rein-
forcement learning approach,’’ in Proc. Adv. Neural Inf. Process. Syst.
Conf., May2009, pp. 1385–1392.

[26] Q. Zhang, J. Lin, Q. Sha, B. He, and G. Li, ‘‘Deep interactive reinforcement
learning for path following of autonomous underwater vehicle,’’ IEEE
Access, vol. 8, pp. 24258–24268, 2020.

[27] H. Eberhardt, V. Klumpp, and U. D. Hanebeck, ‘‘Density trees for efficient
nonlinear state estimation,’’ in Proc. 13th Int. Conf. Inf. Fusion, Jul. 2010,
pp. 1–8.

[28] F. Peralta, M. Arzamendia, D. Gregor, D. G. Reina, and S. Toral, ‘‘A com-
parison of local path planning techniques of autonomous surface vehi-
cles for monitoring applications: The ypacarai lake case-study,’’ Sensors,
vol. 20, no. 5, p. 1488, Mar. 2020.

[29] W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle,
M. Rowland, and W. Dabney, ‘‘Revisiting fundamentals of experience
replay,’’ in Proc. 36th Int. Conf. Mach. Learn., 2019, pp. 1–17.

[30] I. Khan, P. M. Roth, A. Bais, and H. Bischof, ‘‘Semi-supervised image
classification with huberized Laplacian support vector machines,’’ in Proc.
IEEE 9th Int. Conf. Emerg. Technol. (ICET), Dec. 2013, pp. 1–6.

[31] L. C. Oporto, A. Derlis Ramírez, J. D. Varela, and C. E. Schaerer, ‘‘Analysis
of contaminant transport under wind conditions on the surface of a shallow
lake,’’Mecánica Computacional, vol. 34, no. 31, pp. 2155–2163, 2016.

[32] A. Rodríguez, ‘‘Estudio de la contaminación del lago ypacaraí e intro-
ducción de un dron acuático para el monitoreo de la calidad del agua,’’
M.S. thesis, Dept. Electron., Universidad de Sevilla, Seville, Spain, 2019.

[33] A. Cahill, ‘‘Catastrophic forgetting reinforcement-learning environ-
ments,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ. Otago, Dunedin,
New Zealand, 2010.

[34] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. Lillicrap,
D. Silver, and K. Kavukcuoglu, ‘‘Asynchronous methods for deep rein-
forcement learning,’’ in Proc. ICML, New York City, NY, USA, vol. 4,
2016, pp. 2850–2869.

[35] Z. Wang, V. Mnih, V. Bapst, R. Munos, N. Heess, K. Kavukcuoglu, and
N. Freitas, ‘‘Sample efficient actor-critic with experience replay,’’ in Proc.
5th Int. Conf. Learn. Represent., ICLR Track, 2019, pp. 2–21.

[36] S. Ravichandiran, Hands-on Reinforcement. Birmingham, U.K.: Packt,
2018.

[37] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, ‘‘Natural
actor—Critic algorithms,’’ Automatica, vol. 45, no. 11, pp. 2471–2482,
2009.

SAMUEL YANES LUIS was born in Tenerife,
Spain, in 1997. He received the M.S. degree in
electronics and robotics engineering from the Uni-
versity of Seville, Spain, in 2019, where he is
currently pursuing the Ph.D. degree. His main
research interests include reinforcement learning
and machine learning for robotics applications,
autonomous vehicles control, and artificial vision.

DANIEL GUTIÉRREZ REINA received the B.E.
degree (Hons.) in electronic engineering, the M.S.
degree in electronics and telecommunications, and
the Ph.D. degree (Hons.) in electronic engineer-
ing from the University of Seville, Seville, Spain,
in 2009, 2011, and 2015, respectively. He worked
as an Assistant Professor with Loyola University,
from October 2018 to April 2019. He is cur-
rently working as an Assistant Professor with the
Electronic Engineering Department, University of

Seville. He has been a Visitor Researcher with Liverpool John Moores Uni-
versity (U.K.), the Free University of Berlin (Germany), the Colorado School
of Mines (USA), and Leeds Beckett University (U.K.). His current research
interests include the application of meta-heuristic algorithms to solve wire-
less multi-hop network optimization problems, such as MANETs, VANETs,
DTNs, and FANETs. He has published over 40 articles in JCR journals with
impact factor. He is a part of the editorial board of several journals, such as
International Journal of Distributed Sensor Networks (SAGE), Electronics
(MDPI), Future Internet (MDPI), Wireless Communications and Mobile
Computing (Hindawi), and organizing numerous SI for these journals.

SERGIO L. TORAL MARÍN was born in Rabat,
Morocco, in 1972. He received the M.S. and Ph.D.
degrees in electrical and electronic engineering
from the University of Seville, Spain, in 1995 and
1999, respectively. He is currently a Full Professor
with the Department of Electronic Engineering,
University of Seville. He is an author or coauthor
of 95 papers in major international peer-reviewed
journals (with JCR impact factor) and of over
100 papers in well-established international con-

ferences and workshops. His main research interests include ad hoc networks
and their routing protocols, flying ad hoc networks, deployment of unmanned
vehicles, and intelligent transportation systems.

VOLUME 8, 2020 204093

