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ABSTRACT A human-centric emotion estimation method based on correlation maximization with consid-
eration of changes with time in visual attention and brain activity when viewing images is proposed in this
paper. Owing to the recent developments of many kinds of biological sensors, many researchers have focused
on multimodal emotion estimation using both eye gaze data and brain activity data for improving the quality
of emotion estimation. In this paper, a novel method that focuses on the following two points is introduced.
First, in order to reduce the burden on users, we obtain brain activity data from users only in the training phase
by using a projection matrix calculated by canonical correlation analysis (CCA) between gaze-based visual
features and brain activity-based features. Next, for considering the changes with time in both visual attention
and brain activity, we obtain novel features based on CCA-based projection in each time unit. In order to
include these two points, the proposed method analyzes a fourth-order gaze and image tensor for which
modes are pixel location, color channel and the changes with time in visual attention. Moreover, in each
time unit, the proposed method performs CCA between gaze-based visual features and brain activity-based
features to realize human-centric emotion estimation with a high level of accuracy. Experimental results show
that accurate human emotion estimation is achieved by using our new human-centric image representation.

INDEX TERMS Multimodal approach, CCA, changes with time, tensor analysis, eye gaze data, fNIRS.

I. INTRODUCTION

In the field of affective computing, it has been reported
that since the construction of a genuine intelligent system
such as a system for multimedia recommendation or retrieval
corresponding to the user’s semantics is difficult without con-
sidering the emotional mechanism, it is necessary to analyze
human emotions [1]. It should be noted that emotions can
be defined as the semantics describing the type and inten-
sity of “affections”, “sensibility”’, “feelings” or “moods”
evoked by humans [2]. Actually, much research has been con-
ducted for the realization of image retrieval systems based on
these human emotions (Emotional Semantic Image Retrieval;
ESIR) [2]. However, the realization of ESIR based only on
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content features such as visual features and text features is a
difficult task. Owing to the recent development of many kinds
of biological sensors [3]-[7], many researchers have stud-
ied human emotion estimation based on human bio-signals
for making computers recognize human emotions [8]-[10].
In those studies, human emotions were estimated by applying
machine learning techniques to bio-signals obtained from
humans. Therefore, in this study, we focuse on the estimation
of emotions based on bio-signals evoked by viewing images.

Researchers who have majored in psychology or neuro-
science have claimed that human emotions are affected by
human gaze focusing on objects [11], [12], and eye gaze data
can be easily obtained due to recent sensor developments [7].
Thus, emotion estimation based on eye gaze data has attracted
much attention [13], [14]. Specifically, it has been reported
that the stimulus obtained from the first object gazed at is
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most closely analogous to the emotion [15]. However, since
it is difficult to perfectly represent inner information such
as feelings and opinions from only eye gaze data, there is a
limitation to the improvement in estimation accuracy.

On the other hand, many researchers have studied esti-
mation of human emotions or preferences by using brain
activities obtained from electroencephalograms (EEG), func-
tional magnetic resonance imaging (fMRI) and functional
near-infrared spectroscopy (fNIRS) [8], [9], [16]. Since
explicit and inner information, i.e., gaze and brain activ-
ity information, becomes available, many researchers have
focused on multimodal emotion estimation using both of
these data for improving the estimation quality [17]-[20].
Furthermore, the miniaturization of devices has enabled the
two kinds of bio-signals to be easily obtained. Then meth-
ods using these two kinds of bio-signals enable estimation
of human emotions with higher performance than that of
emotion estimation methods using only one bio-signal.

In the use of bio-signals, we should consider the burden
on users in acquiring those signals. Eye gaze data can be
obtained by using small sensors such as sensors in glasses,
but obtaining brain activity data still imposes a heavy burden
on users. Moreover, in the use of eye gaze data, it has been
reported that the changes in visual attention with time and
gazed objects are related to human emotion [15]. Although
some works, which estimate human emotions based on eye
gaze and brain activity data, were conducted [17]-[20], these
works did not focus on the changes in bio-signals with time.
Therefore, in order to realize emotion estimation with higher
performance, we also need to collaboratively use changes in
both eye gaze data and brain activity data with time.

According to the above discussion, we tackle the following
two problems in this paper.

1) In order to reduce the burden on users, we obtain brain

activity data from users only in the training phase.
In other words, a method that realizes the collaborative
use of eye gaze and brain activity data but does not need
the acquisition of brain activity data in the test phase is
desirable.

2) We should consider the changes with time in eye gaze
data and brain activity data for improvement in emotion
estimation accuracy. Thus, brain activity data that have
higher temporal resolution are suitable for considering
the changes with time. Moreover, by analyzing the
relationship between eye gaze and brain activity data
at each time, improvement in emotion estimation accu-
racy is expected.

A human-centric emotion estimation method based on
correlation maximization between visual attention and brain
activity with consideration of the changes with time is pro-
posed in this paper. Then since the proposed method can be
trained for each user and focuses on the extraction of each
user’s implicit state, we use ‘“human-centric”. The proposed
method solves the above problems by using canonical corre-
lation analysis (CCA) [21] and considering the changes with
time. Concretely, these problems can be solved as follows.
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FIGURE 1. Construction of the GIT. We construct the fourth-order GIT for
analyzing images with the changes over time in the visual attention,
simultaneously. In this figure, a gray-scale image is used for simplifying
the explanation.

1) A projection matrix is calculated by CCA from two
kinds of features. Once this projection matrix has been
calculated, we do not have to perform its recalculation.
Thus, since we need to prepare brain activity data for
only the training phase, the user burden is expected to
be reduced.

2) We construct a gaze and image tensor (GIT) [22] as
shown in Fig. 1 for considering the changes of visual
attention with time. The axis of changes with time
is added to images and corresponds to frames. This
is a novel image representation approach considering
the changes of visual attention [22]. Then we can per-
form fusion of gaze-based visual features and brain
activity-based features.

The effectiveness of CCA has been reported in sev-
eral fields including computer vision and human-computer
interaction [23]-[26]. We therefore integrate gaze-based
visual features and brain activity-based features by using
the CCA-based approach. First, for analyzing the images
and the changes with time in visual attention, simultane-
ously, we use the fourth-order GIT [22]. The first and sec-
ond modes of this tensor are pixel locations, and the third
mode corresponds to the color channels. These modes cor-
respond to the information of images. In addition to these
modes, we use the fourth mode of this tensor for con-
sidering the changes with time, that is, frames. Further-
more, by inputting the obtained GIT to convolutional neural
network (CNN) [27] models, the proposed method enables
the derivation of new gaze-based visual features. Next,
the proposed method projects these gaze-based visual fea-
tures in order to obtain emotion-correlated features by max-
imizing canonical correlation based on CCA using brain
activity-based features obtained from users viewing images.
By using these feature extraction and projection approaches,
the proposed method can derive human-centric features suit-
able for the emotion estimation. As another advantage, since
the brain activity-based features are used only for deriving
the feature projection, their acquisition is not necessary for
estimating emotion from a newly obtained image, i.e., our
method has high applicability. Finally, in the classification
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FIGURE 2. Overview of our method. First, we calculate the fourth-order GIT and extract gaze-based visual features. Next, we extract brain
activity-based features and apply CCA to these features. By aligning the projected features, we generate the third-order GIT considering brain activity.

Finally, we estimate emotions via tensor analysis (GTDA) and ELM.

step, the proposed method derives human-centric visual fea-
tures from multiple CNN models and obtains a third-order
tensor for which modes correspond to “‘the dimensions of
the projected features”, *“the kinds of adopted CNN models”
and ‘“‘the time axis”. Then, by applying generalized tensor
discriminant analysis (GTDA) [28] to this third-order tensor
and performing classification based on an extreme learning
machine (ELM) [29] that enables training from a small num-
ber of training samples, the proposed method realizes the
human-centric emotion estimation.

Il. OUR ESTIMATION METHOD

In this section, we explain our emotion estimation method
based on CCA between gaze-based visual features and brain
activity-based features with consideration of the changes
with time. The proposed method consists of three steps as
shown in Fig. 2. In the first step (Sec. I1I-A), we calculate
the gaze-based visual features. The fourth-order GIT, which
is image representation for considering objects in images
and the changes with time in visual attention, is used in
our method. Then we calculate the pre-trained CNN-based
visual features from the images corresponding to each
frame of the fourth-order GIT as gaze-based visual fea-
tures. In the second step (Sec. II-B), we calculate brain
activity-based features [10] from each user. Furthermore,
we perform CCA between the gaze-based visual features
and the brain activity-based features at each frame in order
to project the gaze-based visual features to novel features
with consideration of the changes with time. In the final step
(Sec. II-C), we align all projected features and construct the
new third-order tensor. Then we estimate human emotions by
using tensor-based machine learning.

A. CONSTRUCTION OF FOURTH-ORDER GIT AND
EXTRACTION OF GAZE-BASED VISUAL FEATURES
The extraction of gaze-based visual features is shown in this
subsection. For analyzing the image and the changes with
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time in visual attention, simultaneously, we construct the
fourth-order GIT. The first and second modes d; and d> of
the fourth-order GIT are pixel locations, the third mode d3
corresponds to color channels, and the fourth mode d4 means
the number of samples in the time axis, that is, the number
of frames. Given training images X" ° € R4*axd ( =
1,2,---,N; N being the number of training images) and
corresponding eye gaze data, we obtain gaze weight GE}ZS
R4 %42 of each frame f from the eye gaze data by applying a
Gaussian filter to a fixation map obtained from the eye gaze
data. Note that the fixation map, which is a gray-scale map,
represents the human gaze area. In order to represent visual
attention with the changes over time, we obtain a gaze and
image weight (GIW) matrix GS}-W € R4 >4 of each frame f
by the following equation:

Ggaze
+
Zf— ] gaze

where all elements of a matrix E € R91%% are one. We con-
struct the fourth-order GIT X} ¢ R xd2xdsxds a5 follows:

GGIW _

E, ey

4th  _ yimg GIW
Xochy = n,chOGn,f ’ @)

where Xif}gh,f e Ré*d gpd X;I?ﬁl RA*D (ch =
1,2,---,d3) are respectively a part of the fourth-order GIT
X,fth and the image A,"¢. Note that “o” represents the
Hadamard product operator. The fourth-order GIT can recon-

struct the original image as follows:

X" = Z X0, 3)

where Xf}‘ € R4 xd2xd; 5 the part of X,f‘h in frame f. Note
that we need to provide numeric values to the area which
human does not gaze at for enabling the reconstruction based
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on Eq. (3). Thus, we adopt the matrix E for which all elements
are one.

In order to obtain more semantic gaze-based visual fea-
tures, we extract three kinds of visual features from the image
corresponding to each frame of the fourth-order GIT. In order
to improve the representation ability for human emotions,
we use several kinds of visual features. Since the visual
features calculated from the GIT represent objects in images
and the changes with time of visual attention, we regard these
visual features as gaze-based visual features. Then, as visual
features, we use the outputs of an intermediate layer of several
kinds of CNN models since CNNs are well known in the
field of object recognition [30]. Thus, by constructing the
GIT based on CNN features, we can obtain gaze-based visual
features that represent objects humans are viewing.

A large amount of training data is needed in order to
train CNNs. However, the preparation of a large number
of GIT is difficult since eye gaze data obtained from one
user are limited. Thus, we perform transfer learning, which
has been reported to be effective [31]. By using the Ima-
geNet dataset [27], we pre-train the CNNs. In the pro-
posed method, we use three kinds of state-of-the-art CNN
models, Xception (X) [32], InceptionResnet-v2 (I) [33] and
Densenet201 (D) [34]. We extract visual features v’ nf € R%
(p € {X, 1, D}, d), being the dimension of the outputs obtained
from the last poohng layer of p) based on the pre-trained
CNN from the image corresponding to each frame of the
fourth-order GIT X 4;? Therefore, we extract gaze-based
visual features with consideration of the objects in images
and the changes with time of visual attention from the novel
image representation, the fourth-order GIT.

B. EXTRACTION OF BRAIN ACTIVITY-BASED FEATURES
AND CCA-BASED PROJECTION

In this subsection, we explain the extraction of brain
activity-based features and the CCA-based projection with
consideration of the changes with time. There are many kinds
of brain activity data such as data obtained from EEG, fMRI
and fNIRS. Data for brain activity obtained from EEG and
from fNIRS are well known as having high temporal resolu-
tion. Specifically, since fNIRS measures blood oxygenation
changes, fNIRS would be robust enough to avoid the effects
of external activities such as eye blinks that occur while
users view images [35]. Moreover, {NIRS equipment has few
behavioral or physical restrictions on users [36]. Therefore,
several studies focus on the relationship between human emo-
tions and fNIRS signals [37]-[39], and we use fNIRS signals
with eye gaze data in this study. There have been some studies
in which both fNIRS and eye gaze data were used [40]-[42].
Specifically, in order to obtain fNIRS signals, we measure
changes in deoxygenated and oxygenated hemoglobin levels
from the head cortex by using near-infrared light. We calcu-
late fNIRS features from fNIRS signals while each user is
viewing images based on [10]. Concretely, we calculate the
following 11-dimensional features from each channel in each
frame as shown in Fig. 3.
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FIGURE 3. Calculation of brain activity-based features. In the proposed
method, brain activity-based features correspond to gaze-based visual
features in each frame.

o Statistical features (six dimensions)
We calculate general statistics including average,
variance, skewness, kurtosis, zero-crossing-rate and
root-mean square of fNIRS signals in each time domain.
o Wavelet transform [43]-based features (five dimen-
sions)
By applying discrete wavelet transform to fNIRS sig-
nals, we can convert fNIRS signals into a frequency
domain including high-frequency and low-frequency
components. Then we calculate the ratio of energy to the
total energy in each frequency component.

In the proposed method, we obtain fNIRS signals from ten
channels in the front and back of the head, respectively. Note
that we measure the changes in both oxygenated and deoxy-
genated hemoglobin levels, information that is biologically
important for brain function. From the above, the dimension
of fNIRS features is 440 calculated as 11-dimensional fea-
tures x 20 channels x 2 (oxygenated/deoxygenated). In this
way, we calculate fNIRS features s,y € R*0 corresponding
to a frame f of n-th image. Note that we apply dimension
reduction to fNIRS features s, s since CCA tends to overfit
the training data when the dimension of fNIRS features s, r
is higher than the number of training images. As a dimen-
sion reduction method, we use principal component analysis
(PCA) [44]. Consequently, we can newly obtain fNIRS fea-
tures 5,5 € R (d, being the dimension of fNIRS features
after applying their dimension reduction).

We perform CCA between the above fNIRS features @, ¢
and the gaze-based features vﬁ at each frame f as shown
in Fig. 4. Concretely, we calculate the optimal projection pair
(wff, wpf) € R% x R% by solving the following maximiza-
tion problem:

w” b owh
max sv.f vf) ’ (4)

W W C Wl W T,

where ' is a transposition operator. Spemflcally, the variances
Cy, C":v’ f and the covariance C fv,f at frame f are calculated
as follows:

1o -7
CssJ" = ﬁSij s
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1 T
Ch = NV]’?VJ’Z : S
~ pT
chy= —vaf :
where Sf = (51,82,

Sy pland Vo= W] V5 ... vy 1. Note that Sy and
VJ[Z are centered in each frame. Moreover, we can rewrite this
maximization problem as follows:

(wpf,wpf) = arg

v

max wp Csvprf

W W) )

s.t. waCmfwsf_wprwapf_l (6)

Furthermore, we obtain the following eigenvalue prob-
lem based on the Lagrange multiplier method and
L1-regularization [45]:

o ¢ W,
Csvf o WI‘jxf

Css -+ é's s () wp 4
=M[ ! 4 Ml
f 0 Cop+olv || why

v

where A]’? is the Lagrange multiplier, ¢; and ¢, are regular-
ization parameters, and I, and I are the identity matrices.
Then we obtain the optimal projection pair (W} ., W/, ;) by
solving this eigenvalue problem. By using valid top d; (<
min(dy, dx, dp, dr)) pI'Q] ection pairs in each frame, we obtain
projection matrices WS FE€ R%*4s and W € RE&xdp,
Finally, we project the gaze-based Vlsual features vZ y by

using the obtained projection matrices VAVIVJ # to calculate the
projected features at each frame as follows:

Vs

In this way, we can obtain the newly projected gaze-based

visual features considering fNIRS features. Note that once we

obtain the projection matrices, we can project new gaze-based

visual features without acquiring fNIRS features. Then the

5P
— W ®)
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above approach has the following two contributions. Since we
need brain activity data only in the training phase, the burden
on users is reduced. In addition, since the projection pair is
calculated in each frame, we can consider the visual attention
and the brain activity with the changes over time.

C. EMOTION ESTIMATION BASED ON TENSOR-BASED
ANALYSIS

Emotion estimation on the basis of tensor-based analysis
and simple machine learning is shown in this subsection.
By using the projected features ffﬁ’f, we newly construct
the third-order GIT considering fNIRS (Brain activity-based
Gaze and Image Tensor; BGIT) x> e R™>m2%m3 in order
to analyze features with consideration of the changes over
time. Note that m|(= d;) is the dimension of transformed
features, my(= 3) is the kind of gaze-based visual features,
and m3(= dj) is the number of frames of the fourth-order
GIT. Concretely, we construct the third-order BGIT X,?rd as
follows:

3rd
anlpf - n,if’ (9)
where X:rd s and V[;;z s are (i, p,f)-th element of the

third-order BGIT X}; 31d and i-th element of the projected
gaze-based visual features vi 7 respectively.

In the proposed method, we apply supervised feature
transformation to the third-order BGIT X,?rd for improving
discriminant ability. As a supervised feature transformation
method, we use GTDA since it can be applied to tensors.
GTDA is a tensor extension of the differential scatter dis-
criminant criterion [46]. Concretely, in order to calculate the
transformation set {T; € R’”"X’;‘k}z:l (my < my), we solve
the following optimization problem:

TP3_, =arg ma i (77 (B! - aB})T4).  (10)
k=1

where ¢ is the maximum eigenvalue of (B,VCV)_1 BY. Note
that B} and Bz are respectively calculated by solving the
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following equations:

B, = Z[njmatk ((/\/l] - M) x T,I)
1
mat] (M) — M) x; T;j)], (1)

c nj

= £ o (5 - ) i)

j=1I=1

mat] ((;cffdm - M,) X TZ)}, (12)

where ¢ is the number of classes, and X;rd(i) is [-th X,?rd
belonging to class j. Furthermore,

1 .

M= — 3 a0, (13)
T =1
1 c

M = Nj_zlnj/w,-, (14)

where M is the mean tensor of j-th class, and M is the mean
tensor of all tensors. Note that Xfrd(l) |}§§Z’ , M, ;:1, and
M are all third-order tensors with sizes of m; X mp X ms.
Then we use tensor respre.sentation based on [28]. Specifi-
cally, a matrix mat;(X; [0y ¢ R xTlisr me represents the
mode-/ matricizing of the third-order BGIT Xl3rd(’) . In addi-
tion, we denote the mode-k product of the third-order BGIT
Xfrd and a matrix T as Xﬁrd xx T'1. Notably, Xfrd x1T1x3
T; = Xl3rd x5 T for example. We obtain a transformed
tensor X4 as follows:

3
i S | BT (15)
k=1

Therefore, we can obtain the transformed third-order BGIT
X3 by using GTDA.

Finally, the proposed method estimates human emotions
by training the ELM-based classifier for which inputs are
the transformed third-order BGIT )2,,3“1. ELM, which is a
single-hidden layer feedforward network, can learn the emo-
tion even if the amount of training samples is small by using
random values as parameters of only one hidden layer. Note
that ELM is almost the same concept as the randomized neu-
ral network [47] and the random vector functional link [48].
ELM calculates weights 8 between the hidden layer and the
output layer as follows:

g=H'Y, (16)
where Y is a class matrix calculated as follows:
V1,1 Y12 © Ve

2,1 Y22 - Y2.¢
) s (I7)

YN,1YN,2 " YN,c
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where y, ; is a binary value. If n-th image belongs to class j,
yn,j = 1, otherwise y,, j = 0. Moreover, H T is Moore-Penrose
generalized inverse [49] of the hidden layer’s outputs calcu-
lated as follows:

H = [h(%)), h(F2), ..., hEN)]T, (18)

where X, is obtained by vectorizing the third-order BGIT

- 3rd - . o .
X nr . We calculate h(x,) by adopting an activation function g
to X, as follows:

h(%,) = [ga1, b1, %), g(@2, b2, %), . .., glag, bo, %n)1{19)

Generally, the following sigmoid function is used as the
activation function.
1

1 +exp(a, X, + b))’

glag, by, x,) = (20)
where ¢ = 1,2,...,0 (Q being the number of hidden
nodes), and a,; and b, are random values following a uniform
distribution.

For a test vector X, the outputs f(X) of the ELM-based
classifier are calculated as follows:

f@& =h@®'B. 1)

Finally, the proposed method estimates emotions by compar-
ing elements of f(¥) and detecting the highest value. In this
way, the proposed method can estimate human emotions by
applying the tensor analysis and the simple machine learning
to the third-order BGIT X",

Ill. EXPERIMENTAL RESULTS
In this section, we show experimental results for verifying the
effectiveness of our method for the emotion estimation.

A. EXPERIMENTAL SETTINGS

In this experiment, we used Tobii Eye tracker 4C' for obtain-
ing eye gaze data and LIGHTNIRS? for recording fNIRS
signals. Then we used 20 channels, including 10 channels
on the front of the head and 10 channels on the back of
the head, as shown in Fig. 5. The participants gazed at the
image on a 15-inch display at a distance of 70 cm. Moreover,
the participants wore a head cap in order to measure fNIRS
signals, and the gaze sensor were placed on the display.

As viewed images, we used the art photo dataset published
in [50]. This dataset includes images that are given to a single
label of eight emotional labels (Amusement, Awe, Content-
ment, Excitement, Sad, Fear, Anger and Disgust), and we
used 10 images belonging to each emotional label, totally
80 images. Moreover, we randomly selected 64 images as
training images and used the remaining images as test images.

There were 10 participants (Pars. 1-10), including seven
healthy men and three healthy women, in this experiment.’

1 https://tobiigaming.com/eye-tracker-4c/
2http://www.shimadzu.com/

3This human research was conducted with the approval by the ethical
committee in Hokkaido University.
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TABLE 1. Numbers of emotions for participants.

Parl

Par2 Par3 Par4d Par5 Par6 Par7 Par8 Par9 Parl0

Training Image (Positive) 29 28 30
Training Image (Negative) 35 37 34

28 36 23 31 35 28 39
36 28 41 33 29 36 25

Test Image (Positive) 8 7 8 8 9 7 8 7 7 7
Test Image (Negative) 8 9 8 8 7 9 8 9 9 9
The frontal region CMa3. This method uses fNIRS features calculated as shown

. Emitter
. Decoder
O Channel

The occipital region

FIGURE 5. Positions of channels. We obtained fNIRS signals from
20 channels by using emitters and decoders.

> (time)

T T T T
| 10sec. | 10sec. | 10sec. |

FIGURE 6. Our experimental design. Participants gazed at each image for
ten seconds with an inter-stimulus interval of ten seconds. Then we
obtained eye gaze data and fNIRS signals from each participant.

The participants were instructed to gaze at each image for
ten seconds with an inter-stimulus interval of ten seconds
for preventing fNIRS signals from being influenced by the
previous image as shown in Fig. 6. In the interval, we showed
an image that had a cross mark in the center in order to
avoid the influence of the previous image and to lead the
gaze to the center of the monitor. After the task, subjects
provide feedbacks (positive/negative) as ground truths about
their emotion induced by viewing the images. We adopted
two emotional states for increasing the number of images
belonging to each category when we obtained the feedbacks
of participants. Table 1 shows the number of emotions for
each participant. It was confirmed that there was not a large
difference between the numbers of emotions. For verifying
the effectiveness of the proposed method, we used eight
comparative methods (CMsl1-8). Their details are shown
below.

CMI1. This method is similar to our method but uses only one
CNN feature instead of multiple CNN features.
This method estimates emotions by using only gaze

information of our method.

CM2.
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in Sec. II-B. Moreover, NIRS features are input into
the ELM-based classifier to estimate emotions.

This method treats two modalities, gaze and fNIRS
features. Then a novel gaze feature [51] is adopted.
Moreover, the fNIRS features [10] are extracted in the
same manner as our method. Finally, two ELM-based
classifiers corresponding to each modality are con-
structed, and emotions are estimated based on late
fusion. Note that late fusion is one of the major
fusion methods, and several researchers have used this
method with multimodal analysis [52]-[54].

CM4.

In addition to the above comparative methods which con-
sist of the parts of our method, we compared our method with
the following state-of-the-art methods.

CMS. This is an emotion estimation method [17] that uses
Deep Canonical Correlation Analysis (Deep CCA)
[55] between gaze and brain information. Then three
kinds of CNN features obtained by the GIT are
adopted as gaze features, and Deep CCA is applied
to each CNN features and fNIRS features. Finally,
Support Vector Machine (SVM) [56] is trained by
using the projected features via Deep CCA.

This is an emotion estimation method [18] that uses
bimodal deep autoencoder (BDAE). The BDAE is
trained for reconstracting the inputs which are fNIRS
and gaze features, and we can extract the combined
high-level features. Finally, SVM estimates the human
emotions by inputting the combined high-level fea-
tures obtained from the hidden layer of BDAE. Note
that fNIRS and gaze features are calculated in the same
manner as our method without consideration of the
changes with time, that is, d4 = 1, and these features
are vectorized.

This is an emotion estimation method [19] which is
an extended version of CM6. This method performs
the multilayer perceptron-based regression from gaze
features to the combined high-level features calculated
from CM6. Finally, SVM estimates the human emo-
tions. Note that gaze features are calculated in the
same manner as CM6.

This is an emotion estimation method [20] that
uses long short-term memory (LSTM) [57]. The
inputs of LSTM are gaze and fNIRS features, and
LSTM extracts the combined high-level features with
consideration of the changes with time. Finally,

CMe6.

CM7.

CMS.
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TABLE 2. Average values for participants. The average of all participants and its standard deviation are also shown.

Parl Par2 Par3 Par4 Par5 Par6 Par7 Par8 Par9 Parl0 Average £std p-value
Ours (I-D-X) 0.80 0.71 0.82 0.71 0.77 0.63 0.80 0.84 0.75 0.71 0.76 + 0.06
Ours (I-X-D) 0.88 0.80 0.71 0.80 0.77 0.63 0.75 0.86 0.88 0.67 0.77 + 0.08
Ours (X-I-D) 0.82 0.62 088 062 088 056 077 089 088 0.71 0.76 £ 0.12
CM1 (X) 078 062 074 050 063 059 050 074 059 035 0.60£0.12 p<0.01
CM1 (I) 0.67 059 070 046 067 053 057 074 063 0.63 0.62+0.08 p<0.01
CM1 (D) 053 050 053 056 067 053 056 067 046 0.67 0.57+0.07 p<0.01
CM2 (I-D-X) 0.67 0.63 043 031 033 059 046 0.71 0.63 0.71 054+0.14 p<0.01
CM2 (I-X-D) 0.67 053 053 036 0.63 043 047 0.63 0.63 0.67 055+0.10 p<0.01
CM2 X-I-D) 0.67 0.71 057 036 031 040 0.62 056 070 044 053+0.14 p<0.01
CM3 053 047 053 022 050 059 053 074 063 057 0.53+0.12 p<0.01
CM4 [51] 053 043 047 022 036 044 0.14 063 050 0.59 043+0.15 p<0.01
CMS5 [17] 040 044 040 022 046 027 020 063 040 0.61 040+0.14 p<0.01
CMG6 [18] 063 062 062 067 062 067 050 075 062 0.63 0.63+0.06 p<0.01
CM7 [19] 071 077 071 057 033 057 067 071 075 0.78 0.66 +£0.13 p<0.02
CM8 [20] 0.50 050 050 050 040 050 050 0.72 061 0.61 0.53 £0.08 p<0.01

SVM estimates the human emotion by inputting the
combined high-level features obtained from the last
sequence of LSTM. Note that gaze and {NIRS features
are calculated in the same manner as our method.
We adopted SVM instead of ELM by following [17]-[20] in
CMs5-8. In CMs5-7, we calculate features without consid-
eration of the changes with time since these methods do not
have the mechanism which can consider the time changes.
In this experiment, as an evaluation index, we adopted
F1-measure calculated as follows:
2 x Recall x Precision

Fl-measure = (22)

Recall + Precision

where Recall and Precision are calculated by using the
obtained classification results as follows:

TP
Recall = ——, (23)
TP + FN
L TP
Precision = ——. (24)
TP + FP

TP, FN and FP mean the numbers of images estimated to be
true positive, false negative and false positive, respectively.

B. PERFORMANCE EVALUATION
The experimental results are shown in Table 2. This table
shows the results of F1-measures, and it is confirmed that
our method outperforms all of the CMs in average. In this
experiment, we attempted several combinations of CNN fea-
tures and the order of CNN features is expressed as ‘“‘ours
(a-b-c)”. Note that a, b and c represent one of X (Xcep-
tion), I (InceptionResnet-v2) and D (Densenet201), and ours
(a-b-c) represents our method and the order of CNN features.
As shown in Table 2, our method is superior to CMs in
any combination. However, a difference depending on the
combination order of CNN features was not confirmed.

A comparison of our method and CM 1 showed that consid-
eration of the changes with time in visual attention and brain
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activity is effective for the emotion estimation. Moreover,
a comparison of our method with CM2 and CM3 showed that
the collaborative use of gaze and brain information is effec-
tive for the emotion estimation. A comparison of our method
with CM4, which uses the novel gaze features [51] and a tra-
ditional feature fusion method [21] showed that our method
is more effective as a multimodal method. CM4 uses novel
gaze and fNIRS features without considering the changes
with time. Thus, we can confirm that the GIT-based extraction
method for gaze features and the CCA-based fusion method
are effective for the emotion estimation. Finally, comparisons
of our method with CMs5-8 showed that our method is more
effective to the human emotion estimation than the state-of-
the-art methods. Although CMs5, 8 were some of the state-
of-the-art emotion estimation methods based on the collabo-
rative use of gaze and brain information, the results of CMs5,
8 were not good. We guess that the amount of training data
belonging to each category was too small to train Deep CCA
or LSTM, which had a large number of training parameters
to be optimized. Thus, Deep CCA or LSTM seemed not to
be trained sufficiently, and its estimation accuracy was not
high. On the other hand, the BDAE used by CMs6, 7 was
one of unsupervised learning methods and the amount of
training data was larger than Deep CCA and LSTM. Thus,
BDAE was considered to be relatively optimized. Moreover,
we performed Welch’s t-test [58] between ours(I-D-X) and
CMs, and confirmed the statistical superiority.

Figure 7 shows examples of estimation results for one
of the participants. Figures 7 (a) and (b) show images for
which ours (I-X-D) estimated true emotions and Fig. 7 (c) and
(d) show images for which ours (I-X-D) estimated false
emotions. Clearly, the images in which ours (I-X-D) esti-
mated true emotions have differences in brightness and the
objects. The image in Fig. 7 (a) is bright overall and the
object in the image would evoke a positive emotion in most
humans, whereas the image in Fig. 7 (b) is dark overall and
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(a) Example of true positive  (b) Example of true negative  (c) Example of false positive  (d) Example of false negative

FIGURE 7. Examples of estimation results for Par1. (a) and (b) show that ours (I-X-D) estimated true emotion. (c) and (d) show that ours (I-X-D)
estimated false emotion.

the object in the image would evoke a negative emotion in [3] J. Fu, D. Miao, W. Yu, S. Wang, Y. Lu, and S. Li, “Kinect-like depth data
most humans. Thus, these images are easily classified as g":lpzrg?;ion’” [EEE Trans. Multimedia, vol. 13, no. 6, pp. 1340-1352,
true emotions. On the other hand, the image in Fig. 7 (c) is [4] S. S. Mukherjee and N. M. Robertson, “Deep head pose: Gaze-direction
dark overall and the object in the image resembles a flower. estimation in multimodal video,” IEEE Trans. Multimedia, vol. 17,no. 11,
Generally, flowers are related to positive emotions. Thus, ours pp- 2094-2107, Nov. 2015. . _
(I-X-D) may es timate pOSi tive emotion from the characteris- [5] H. Ye, M. Ma.lu, U. Oh, and L. Flr}dlaln?r, Currer}t and futu're mobile and
wearable device use by people with visual impairments,” in Proc. 32nd
tics of a flower. The image in Fig. 7 (d) mainly consists of Annu. ACM Conf. Hum. factors Comput. Syst. CHI, 2014, pp. 3123-3132.
white and black colors and includes a fox. Since the monotone (6] J. Hernandez, Y. Li, J. Rehg, and R. Picard, “BioGlass: Physiological
... . . . parameter estimation using a head-mounted wearable device,” in Proc. 4th
composition may evoke negative emotion in humans, ours Int. Conf. Wireless Mobile Commun. Healthcare -Transforming Healthcare
(I-X-D) estimates negative emotion when the participant Through Innov. Mobile Wireless Technol., 2014, pp. 55-58.
gazes at the image in Flg 7 (d) [7]1 S. Ishimaru, K. Kunze, K. Kise, J. Weppner, A. Dengel, P. Lukowicz,

X o T and A. Bulling, “In the blink of an eye: Combining head motion and eye
From the above-described qualitative and quantitative eval- blink frequency for activity recognition with Google glass,” in Proc. 5th

uations, we can verify that our method is effective for the Augmented Hum. Int. Conf. AH, 2014, p. 15.

human emotion estimation and can also find its limitations. [8] K. Sugata, T. Ogawa, and M. Haseyama, ““Selection of significant brain
regions based on MVGTDA and TS-DLF for emotion estimation,” /[EEE

Access, vol. 6, pp. 32481-32492, 2018.

—

IV. CONCLUSION [9]1 H. J. Yoon and S. Y. Chung, “EEG-based emotion estimation using
. . . Bayesian weighted-log-posterior function and perceptron convergence

In this paper, we have proposed a human-centric emotion algorithm,” Comput. Biol. Med., vol. 43, no. 12, pp.2230-2237,

estimation method based on correlation maximization that Dec. 2013.

considers the changes with time in both visual attention and [10] K. Tai and T. Chau, “Single-trial classification of NIRS signals during
. - emotional induction tasks: Towards a corporeal machine interface,” J. Neu-

brain activity. In the proposed method, we focus on two roEng. Rehabil., vol. 6. no. 1, p. 39, Dec. 2009.

signals that represent the changes with time of visual attention [11] P. Vuilleumier, “How brains beware: Neural mechanisms of emotional
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[12] R.J. Compton, “The interface between emotion and attention: A review
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the use of the data obtained from other users by clarifying the (171 J. Qiu, W. Liu, and B. Lu, “Multi-view emotion recognition using deep
canonical correlation analysis,” in Proc. Int. Conf. Neural Inf. Process.
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