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ABSTRACT Emotion recognition is a very important technique for ultimate interactions between human
beings and artificial intelligence systems. For effective emotion recognition in a continuous-time domain,
this article presents a multimodal fusion network which integrates video modality and electroencephalo-
gram (EEG) modality networks. To calculate the attention weights of facial video features and the corre-
sponding EEG features in fusion, a multimodal attention network, that is utilizing bilinear pooling based on
low-rank decomposition, is proposed. Finally, continuous domain valence values are computed by using two
modality network outputs and attention weights. Experimental results show that the proposed fusion network
provides an improved performance of about 6.9% over the video modality network for theMAHNOB human
computer interface (MAHNOB-HCI) dataset. Also, we achieved the performance improvement even for our
proprietary dataset.

INDEX TERMS Emotion recognition, video, EEG, multimodality, multimodal fusion, attention.

I. INTRODUCTION
Recognition of human emotions is a key technology for ulti-
mate human–robot interaction (HRI). In addition, emotion
recognition has received much attention in the field of arti-
ficial intelligence. Conventional emotion recognition algo-
rithms distinguished emotion categories by detecting changes
in facial expressions [1], [2]. Recently, various emotion
recognition mechanisms based on convolutional neural net-
work (CNN) which are trained in an end-to-end manner have
been developed and showed reliable performance [3], [4].

On the other hand, there were many attempts to recognize
human emotions from tone information of voice signals [5].
However, since the voice information is temporally sparse,
those voice tone-based emotion recognition schemes have a
fundamental limitation in extracting consecutive emotions.
Recently, several emotion recognition algorithms using EEG,
which is an electrical bio-signal generated in the human brain
have been reported [6]–[8]. For example, a frequency-domain
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feature such as power spectral density (PSD) is extracted,
and a typical machine learning algorithm is applied to rec-
ognize emotions [6]. A few EEG-based algorithms [7], [8]
employed the inherent asymmetry characteristics between
EEG channels as salient features for deep learning-based
emotion classification. However, the conventional techniques
have a structure that recognizes only a single emotion per tens
of seconds of video clip. So it is hard to say that they can
ultimately perceive emotional changes in the continuous-time
domain.

Busso et al. proposed an emotion recognition mecha-
nism based on multimodal signals where two or more sig-
nals among video, voice, and bio-signals are employed for
emotion recognition [10]. It was reported that multimodal
approach was superior to conventional unimodal approaches.
On the other hand, a world-wide emotion recognition chal-
lenge called Emotion Recognition in the Wild (EmotiW)
[11] ranks competing algorithms [12], [13] through per-
formance evaluation for Acted Facial Expressions in the
Wild (AFEW) dataset that is composed of wild audio-visual
data excerpted from sitcoms and movies. The AFEW dataset
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consists of seven discrete-domain emotion classes. Such a
discrete-domain dataset does not represent complex emotions
due to the limitation of the number of emotional classes,
and it cannot express the intensity of emotions. Therefore,
studies using continuous emotional labels such as valence
and arousal have become active recently. Psychologically,
valence is an index that can differentiate between positive and
negative emotions, and arousal is an index that can discrim-
inate between high and low emotions. Note that valence and
arousal can be mapped to discrete-domain emotion classes if
necessary and have an advantage of expressing the emotion
intensity.

Meanwhile, Soleymani et al. [6] proposed a valence
regression algorithm, which applied long short-term mem-
ory (LSTM) to multimodal data consisting of EEG signals
and facial landmarks. Soleymani et al. adopted relatively
simple modality fusion, such as data concatenation and sim-
ple averages. So, their method has a critical disadvantage
that it cannot effectively utilize mutual information between
different modalities.

In order to maximize complementarity between video and
EEG modalities, this article proposes a multimodal attention
network that adaptively uses two modality signals according
to the input state. The proposedmultimodal attention network
analyzes intermediate features obtained from a video modal-
ity network and an EEG modality network, and determines
the attention weight of each modality. As a result, the mul-
timodal attention network contributes to improve the overall
emotion recognition accuracy by selecting amore reliable one
between video and EEG. Experiments on theMAHNOB-HCI
dataset [14] shows that the emotion recognition scheme based
on the proposed multimodal attention network outperforms a
state-of-the-art multimodal emotion recognition method [6].
In addition, we evaluated the proposed method for the ASIA
dataset which consists of video and EEG signals acquired
from 32 Asian subjects. As a result, the proposed method
works well even for the ASIA dataset which was produced
according to the same protocol as MAHNOB-HCI by our
research team.

The contributions of this article are as follows.
• We propose an algorithm that recognizes emotional
changes in continuous-time domain by using video and
EEG signals simultaneously, and experimentally ver-
ify that the combination of different modality signals
can be synergistic in improving emotion recognition
performance.

• We propose a modality attention network based on
low-rank decomposition of multi-layer structure to
obtain attention weights for video and EEG modalities.

• A proprietary dataset, i.e., ASIA dataset is produced
by concurrently acquiring Asian facial expressions and
their EEG signals, and the performance of the proposed
method is evaluated, on the ASIA dataset.

This article is organized as follows. In Section II, some
related works are explained. Next, we describe in detail the
MAHNOB-HCI dataset and the ASIA dataset, and we then

introduce the proposed algorithm. Finally, we conclude this
article with experimental results and a discussion.

II. RELATED WORKS
This section briefly introduces previous studies on emotion
recognition and multimodal deep learning.

A. VIDEO-BASED EMOTION RECOGNITION
For a long time, human emotions have been regarded as
being the same as facial expressions. So, facial video–based
methods have been intensively developed for emotion recog-
nition. Tong et al. [1] detected activated areas in the face,
and defined action units (AU) according to their positions
and shapes, and then classified facial expressions according
to AU types or AU combinations. With rapid development
of algorithms to extract landmarks, i.e., locations of facial
key points, many facial expression recognition (FER) algo-
rithms using landmark information have been proposed [2].
Recently, CNN-based FER algorithms have been developed
because they can be trained in an end-to-end manner without
extracting any features such as AUs and landmarks [3], [4].

On the other hand, CK+ [15] and MMI [16] datasets were
commonly used for training the CNN-based FER techniques.
However, most of the facial expressions in the datasets were
artificially created or acted. In other words, CK+ and MMI
are distant from natural facial expressions in reality. So,
a few datasets collecting natural facial expressions have been
attracting attention recently. The representative dataset is the
AFEW dataset [11] which consists of video clips collected
from movies and sitcoms and are classified under seven
labels: ‘anger’, ‘disgust’, ‘fear’, ‘happiness’, ‘sadness’, ‘sur-
prise’, and ‘neutral’. For example, three-dimensional CNNs
[13] and CNN-LSTM–based networks [46] were proposed
for FER on the AFEW dataset. However, since those algo-
rithms basically follow a way of classifying several discrete
emotions, they cannot represent complex emotions or emo-
tion intensities.

Recently, studies on FER in the continuous domain have
been started. We introduce two well-known datasets for con-
tinuous domain FER. One is the AFEW valence arousal
(AFEW-VA) dataset [47] that reconfigures discrete labels
of the AFEW dataset, and the other is the Affect-in-the-
Wild (Aff-wild) dataset, which annotates human emotional
responses for YouTube contents [46]. Continuous domain
emotions such as valences and arousals are regressed for
AFEW-VA and Aff-wild datasets. To do this, CNN-LSTM–
based networks are widely used [46], [48]. On the other
hand, the AFEW-VA dataset composed of video clips from
movies and sitcoms is called content-centered dataset, and the
Aff-wild dataset is user-centered because it consists of videos
that monitor the actual emotional responses.

B. EEG-BASED EMOTION RECOGNITION
People may have negative or positive emotions without
revealing facial expressions. In order to accurately recognize
authentic emotion, it is preferable to use bio-signals as well
as facial videos. EEG is a representative bio-signal used for
emotion recognition. By analyzing locations and waveforms
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of the activated EEG signals, the emotional state can be
estimated.

The Database for Emotion Analysis using Physiologi-
cal signals (DEAP) dataset [17] and the MAHNOB-HCI
dataset [18], which sensed EEG signals with facial videos
when humans feel emotions, were released in 2012. Since
then, many EEG-based emotion recognition algorithms have
been developed [6]–[8], [52], [53]. Soleymani et al. pro-
posed a real-time method to regress the valence values in
the MAHNOB-HCI dataset [6]. In [6], PSD features were
extracted from EEG signals, and the emotion states were
estimated by applying a continuous-time conditional random
field (CRF) and LSTM to PSD features. However, Soley-
mani et al.’s method had lower accuracy than conventional
video-based methods. Kim and Jo explored that the channels
on which EEG signals are activated differ depending on the
emotional state [7]. They extracted significant connectivity
features between EEG channels, and then applied convo-
lutional LSTM (ConvLSTM) to the connectivity features
so as to regress emotional states. However, since Kim and
Jo’s technique could estimate a single emotion per minute,
it is not suitable for continuous-time emotion recognition.
Song et al. presented an emotion recognition algorithm that
applied a dynamical graph convolutional neural network to
EEG features [8]. Chen et al. combined temporal and fre-
quency features extracted from EEG signals, and applied
CNN to the combined features [52]. Zhong et al. proposed
a regularized graph neural network that analyzes topological
relations between EEG channels [53]. However, the previous
methods do not aim at emotion recognition in the continuous-
time domain.

In addition to the DEAP and MAHNOB-HCI datasets,
several multimodal datasets associated with bio-signals were
produced. For example, Subramanian et al. built amultimodal
dataset to recognize personality as well as emotion [56]. This
dataset consists of video signals as well as bio-signals such
as EEG, ECG, and GSR. Miranda-Correa et al. acquired
multimodal data on individual as well as group [57]. Each
data in this dataset has emotion, personality, mood and social
context information. However, since the emotion labels of
the above-mentioned datasets were annotated by subject self-
assessment, the datasets are not suitable for emotion recogni-
tion in the continuous-time domain, i.e., the purpose of this
study.

Note that Soleymani et al. proposed a multimodal emotion
recognition algorithm using video and EEG signals simulta-
neously [6]. To our knowledge, this is the only method for
recognizing emotions through the fusion of video modality
and EEG modality in the continuous-time domain.

However, according to [6], the performance of the feature-
level fusion and decision-level fusion networks is worse than
that of the video modality network only.

C. MULTIMODAL DEEP LEARNING
With rapid development of deep learning technology,
the so-called multimodal deep learning method (which

FIGURE 1. A general fully connected layer–based multimodal deep
learning structure.

simultaneously processes multimodal data) is actively being
studied. For example, Ngiam et al. proposed a bimodal
deep auto-encoder [55]. The bimodal deep auto-encoder was
trained to recover each modality information from fused fea-
tures. Ren et al. proposed an LSTM network that can learn
multimodal data, i.e., a multimodal LSTM [54]. However,
the above-mentioned networks have a limitation in fusion
performance because they increase the number of modality
networks in proportion to the number of modalities. In other
words, they have a naïve fusion structure. As shown in Fig. 1,
recent multimodal deep learning networks are based on a
fully-connected (FC) layer structure, adopting an approach
of concatenating input modalities or intermediate features for
delivery to the next layer [18].

FC layer–based multimodal deep learning has an advan-
tage of simplicity, but it does not consider the characteristic
where features of different modalities may have different
distributions and intensities. So, the representation capacity
of the fused feature may not be sufficient [40]. In order to
overcome this problem, feature fusion using bilinear pooling
[51] was used, which is popular in the field of visual ques-
tion answering (VQA) [37], [40]–[42]. In general, bilinear
pooling is expressed as seen in Eq. (1):

hi = zTAW izB = W i · (zA ⊗ zB) (1)

where hi indicates the i-th value of a fused feature vector
h ∈ RN , and zA ∈ RL and zB ∈ RM are the feature vectors
from two different modality networks, A and B, as shown
in Fig. 1. W i ∈ RL×M is the projection matrix that is
the trainable parameter. In Eq. (1), since all possible pair-
wise interactions between two feature vectors zA and zB are
obtained through the outer product, a richer representation
than the concatenated feature can be obtained by bilinear
pooling [42]. Recently, bilinear pooling has been used as a
technique to recognize emotions via fusion of video, audio,
and text features [39].

On the other hand, sinceN projection matrices are required
to obtain a fused feature vector h of length N , the weight
parameterW ∈ RN×L×M is a 3D tensor. So, bilinear pooling
requires a greater number of weight parameters than the
FC layer–based approach, which can be a memory burden
in the calculation process. Bilinear pooling may also cause
overfitting in the learning process. To solve these problems,
various studies were presented. For instance, Yu et al. pro-
posed a multimodal factorized bilinear pooling that performs
element-wise multiplication after projecting feature vectors
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FIGURE 2. A block diagram of the proposed method.

of each modality in advance [40]. Fukui et al. achieved
the compacter operation by applying fast Fourier transform
(FFT) to the outer product process of the features of each
modality [41]. Kim et al. [42] and Liu et al. [39] adopted low-
rank decomposition. Ben-Younes et al. proposed a method
to simplify the bilinear pooling model using block-term
decomposition [37].

The bilinear pooling techniques mentioned so far have
focused on the fusion of different modality features. There
were several studies from the perspective of the fusion net-
work architecture. Vielzeuf et al. proposed CentralNet, which
converges different modality features step by step by using
several levels of interim features available in each modality
network [35]. There was also an attempt to use reinforce-
ment learning–based AutoML to find the optimal fusion
network architecture [38]. AutoML is effective in finding
the optimal combination of hyper-parameters from each net-
work layer and the layer from which the features of each
modality are extracted. However, the AutoML approach has
a disadvantage in that the learning time is too huge.

On the other hand, there are various ways to use fused
information in multimodal deep learning. The first example
is to extract the target output directly from the fused fea-
ture [39]. Also, each modality weight can be extracted from
the fused feature and a weighted sum or hard thresholding
is applied to the multimodal output according to modal-
ity weight. The attention-based method [36], [50] and the
gated fusion method [20]–[22] are the representative hard-
thresholding approaches. As an example of an application
to emotion recognition using video and audio modalities,
Chen and Jin concatenated each modality input and interim
features, and then adjusted the output weights of the video and
audio modalities by calculating the attention weight using the
FC layer [36].

III. PROPOSED METHOD
The proposed method works as shown in Fig. 2. Video
modality and EEGmodality have independent networks. The
output features of the two networks are fused through the
attention network, which calculates the attention weight of
each modality. The weighted average of twomodality outputs
becomes the final emotion information.

TABLE 1. The comparison of ideal fusion with each modality for the
MAHNOB-HCI dataset in terms of RMSE. Here, ideal fusion indicates that
RMSE is calculated by manually selecting a better output among video
and EEG modalities.

Table 1 shows the 10-fold validation result of each
modality network on the MAHNOB-HCI dataset. The video
and EEG networks, which were trained independently, pro-
vided RMSEs (root mean of squared errors) of 0.0393 and
0.0485, respectively. Details of the two modality networks
will be described in Section IV.B and IV.C. On the other
hand, the ideal fusion where an RMSE is calculated by
manually selecting a better output among video modality
and EEG modality had an excellent RMSE of 0.0296. Based
on this result, if we can analyze the characteristics of two
modalities and calculate their weights, we can achieve a
synergy of video modality and EEG modality for emotion
recognition.

In order to effectively fuse two modality features like
ideal fusion, we employ bilinear pooling based on low-rank
decomposition. The bilinear pooling is realized via a multi-
modal attention network with a multi-layer structure, which
will be depicted in Section IV.D. Experimental results demon-
strate that the proposed multimodal attention network accom-
plishes high performance with low computational complexity
and less memory.

A. OVERALL FRAMEWORK
The proposed method regresses valences in continuous-time
domain. Considering causality, a short sequence from the cur-
rent time stamp to the previous 2 seconds becomes an input
unit for learning the proposed method. As shown in Fig. 2,
the proposed method briefly consists of a video modality net-
work, an EEG modality network, and a multimodal attention
network. The multimodal attention network, which is the key
module of the proposed method, takes the intermediate fea-
tures of two modality networks, and determines the weights
of two modalities by comparing the features.
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FIGURE 3. A block diagram of the video modality network.

TABLE 2. EEG features according to domain.

Since two modality networks are trained independently
and fusion is done through the multimodal attention net-
work at the output stage, the proposed method is easier to
learn than the conventional method [14], which conducts
end-to-end learning with pre-fused multimodal input. Also,
because the proposed method determines the weight of each
modality based on the feature of themodality, it can get higher
accuracy than the previous work [6] using a simple average or
fixed-weight sum.

B. VIDEO MODALITY NETWORK
The video modality network operates as in Fig. 3. First, the
facial images are cropped from an input video sequence.
Here, a face detection algorithm called the Single Shot
Scale-invariant Face Detector (S3FD) [24] is used. Next,
CNN extracts the features from each facial image, and the
CNN features pass through LSTM [25] to generate a video
feature fvid whose length is 2048. Finally, a valence value ŷvid
is obtained by FC.

1) DEEP CONVOLUTIONAL ENCODER
Prior to the LSTM, each facial image is converted into a one-
dimensional (1D) feature vector by CNN-based deep convo-
lutional encoder. The deep convolutional encoder is based
on a famous DenseNet [26]. The 1D feature vector passing
through the FC2 layer of DenseNet becomes the output of this
encoder. Here, the size of each input image is 224×224 and
the 1D feature vector is 4096 in length.

On the other hand, the deep convolutional encoder is not
trainedwith theMAHNOBdataset or the ASIA dataset. Since
the datasets were acquired from a small group of subjects
(20 to 30 persons), they are too small to train any deep

FIGURE 4. The EEG feature extraction process and the LSTM model of EEG
modality network.

neural networks. Besides, there is a possibility of overfitting
due to data similarity during the training process. The datasets
were actually made by sampling several similar frames from
a video sequence. Note that the main purpose of the deep
convolutional encoder is to convert an image data into an
efficient 1D feature vector. Therefore, the deep convolu-
tional encoder is pre-trained with a well-known ImageNet
[27], which is a huge–scale image classification dataset with
1000 classes, and the pre-trained network is fine-tuned with
the FER2013 dataset [28], which consists of 32,298 images
with 7 emotional classes. During this fine-tuning process
using the FER2013 dataset, the parameters of all layers of
the deep convolutional encoder are updated.

C. EEG MODALITY NETWORK
1) EEG FEATURE EXTRACTION ENCODER
As shown in Fig. 2, EEG features must be extracted before
the EEG modality network. The upper part of Fig. 4 illus-
trates how EEG features are extracted from EEG signals in
a sliding-window manner. The length of the sliding win-
dow is set to two seconds. Features of three domains (time,
frequency, and time–frequency) are utilized as in Table 3.
Totally 37 EEG features are extracted per channel, and they
are converted into 1D vectors. The dimension of 1D vector
in the MAHNOB-HCI dataset, is 1184 (= 32channels ×
37features). The dimension of the 1D vector in the ASIA
dataset is 444 (= 12 × 37).

Frequency domain features were mainly used because of
the superior spatial resolution of EEG signals. Since the
outputs in different frequency bands are good for identifying
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TABLE 3. EEG features of the asia dataset.

different emotional states, the frequency domain features
such as PSD were dominantly used in previous studies. This
article also adopts PSD which is divided into four bands:
slow alpha (8-10Hz), alpha (8-12.9Hz), beta (13-29.9Hz),
and gamma (30-50Hz). We additionally employ the features
of time and time–frequency domains for better performance
as in Table 3. The time domain features are advantageous
for detecting emotional changes over time [16], [17]. On
the other hand, the time–frequency features based on the
discrete wavelet transform (DWT) has been widely used in
the speech processing field [19] and recently in the field of
emotion recognition [45]. Mean, max, abs are calculated in
each frequency band of DWT, and log, Abs (Log) of DWT
are used in this article.

2) MULTI-LAYER LSTM-BASED REGRESSOR
The extracted 1D vectors are input to the subsequent EEG
modality network. The structure of the EEG modality net-
work is shown in the lower part of Fig. 4. It basically consists
of three LSTM layers and two FC layers. First, the EEG
features corresponding to each time window is divided into
0.25sec intervals and input into the LSTM layers. Since the
length of the sliding window is two seconds, a total of eight
sub-features are input to the LSTM layers. The structure of
the multi-layer LSTM is designed to enable deep inference,
and the number of layers is determined experimentally. The
hidden layer size of the LSTM is set to 425. A dropout layer
to prevent overfitting is inserted between LSTM layers. The
final output of the LSTM layers is concatenated to gener-
ate f EEG. The dimension of f EEG is 3400 and the output
of FC1 becomes a 1D vector with dimension 8. FC2 layer
outputs a valence value, ŷEEG. The range of the valence value
is [−0.5, 0.5].

D. MULTIMODAL ATTENTION NETWORK
Vielzeuf et al. [35] and Pérez-Rúa et al. [38] proposed to
fuse multi-modal features through multiple layers and refine
the fused features. Inspired by [35], [38], we propose a
new multi-modal attention network that extends the exist-
ing bilinear pooling-based fusion process into a multi-layer
structure.

Figure 5 describes the proposed multimodal attention
network. The network calculates the attention weight of
each modality jointly using the heterogeneous features pro-
duced by the video modality network and the EEG modality
network.

First, an initial fused feature f fusion1 is created by fusing
the video feature f vid and the EEG feature f EEG. At the
same time, each modality feature is compressed via the FC
layer (FC1), and then f vid1 and f EEG1 are derived. Second,
three interim features f vid1, f EEG1, f fusion1 are fused to

FIGURE 5. The EEG feature extraction process and the LSTM model of EEG
modality network.

produce f fusion2. Finally, modality attentionweight α̂ is gener-
ated as f fusion2 passes through an FC layer (FCfusion). Both of
the above-mentioned fusions are realized by bilinear pooling
based on low-rank decomposition. The first fusion is based
on the bilinear model, and the second fusion is based on the
trilinear model. The details are in the following subsection.

If attention weight α̂ =
[
α̂vid , α̂EEG

]
is available, valence

information ŷfusion is finally produced in the form of a
weighted sum according to Eq. (2):

ŷfusion = ᾱVid ŷvid + ᾱEEGŷEEG (2)

where ŷvid and ŷEEG are valences output from video and
EEGmodality networks, respectively; and ᾱ normalizes α̂ for
weighted sum operation.

1) LOW-RANK DECOMPOSITION–BASED BILINEAR
POOLING
Conventional bilinear pooling–based multimodal fusion
requires massive weight parameter sizes and memory, and
often causes overfitting. To solve this problem, we propose a
new multimodal attention network using low-rank decompo-
sition [39], [42]. First, based on Eq. (1), the outer product of
f vid and f EEG is computed. This can be expressed by Eq. (3):

F = f vid ⊗ f EEG (3)

On the other hand, if low-rank decomposition is applied
to weight W configured in the tensor form, W can be
approximated as in Eq. (4):

W '
∑r

i=1
w(i)
vid ⊗ w(i)

EEG (4)

where r is the rank of the tensor. Substituting Eq. (3) and
Eq. (4) into Eq. (1), f fusion1 is represented by

f fusion1 =
(∑r

i=1
w(i)vid ⊗ w(i)EEG

)
·
(
f vid ⊗ f EEG

)
=

(∑r

i=1
w(i)vid · f img

)
◦

(∑r

i=1
w(i)EEG · f EEG

)
(5)
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where ◦ is an element-wisemultiplication operator. In Eq. (5),
each decomposed weight is multiplied by the corresponding
modality feature vector, and fusion is done as element-wise
multiplication is applied to both modalities. As a result, bilin-
ear pooling based on low-rank decomposition depends on
multiplication of 1D vectors and 2D matrices. So, compared
to the conventional bilinear model, which is calculated by
multiplication of 2D matrix and 3D tensor, the amount of
computation is greatly reduced by the proposed method, and
the weight parameter size is also significantly decreased.

A trilinear model fusion of f fusion1, f vid1, and f EEG1 is also
approximated by low-rank decomposition as follows:

f fusion2 =
(∑r

i=1
w(i)vid1 · f vid1

)
◦

(∑r

i=1
w(i)EEG1 · f EEG1

)
◦

(∑r

i=1
w(i)fusion1 · f fusion1

)
(6)

Rank r is empirically set to 8 through an ablation study.
f vid and f EEG are projected through w(i)vid and w(i)EEG into
512-length feature vectors in a low-rank fusion module. The
lengths of f fusion1 and f fusion2 are set to 256.

2) TRAINING PROCESS OF THE ATTENTION NETWORK
The training process of themultimodal attention network is as
follows. Assume that the model parameters of each modality
network are fixed after a specific learning process. Since
the outputs of the video and EEG networks are available,
the error of each modality with GT can be computed. If the
error of video modality is smaller than that of EEG modality,
the attention label α is set to [1,0]. Otherwise, α is set to
[0,1]. Then, obtain α̂ by inputting the same f vid and f EEG
to the attention network. Finally, the error between α̂ and α

is computed, which is defined as a term of training loss.
On the other hand, as shown in Fig. 5, auxiliary layer FC2

is applied to each modality to output continuous emotion
values, i.e., ŷ′vid and ŷ′EEG. So we add the errors to the final
training loss. As a result, the training loss for fusion Lfusion is
defined by

Lfusion = LMSE (α, α̂)+ LMSE (y, ŷ′vid )+ LMSE (y, ŷ′EEG) (7)

Here, LMSE indicates the loss function in terms of MSE.
Lfusion also plays a role in refining two inputs of the second
fusion layer, i.e., f vid1 and f EEG1, which induces the addi-
tional effect of improving f fusion2. Note that only the opera-
tion corresponding to the blue path in Fig. 5 is performed in
the inference stage, and the operation on the red path, that is,
FC2, is not performed.

IV. DATASETS
Two datasets were used in this study. One is the MAHNOB-
HCI dataset, which is valence-tagged as a public dataset, and
the other is a proprietary ASIA dataset that our research team
created in house to recognize Asians’ emotions.

A. MAHNOB-HCI DATASET
Twenty famous commercial movies were chosen to derive
emotions from subjects. Each video clip was about 34 to
117 seconds. In the preliminary study, participants helped in

FIGURE 6. Histogram of valence label. (a) MAHNOB-HCI dataset, (b) ASIA
dataset.

selecting videos by reporting their emotions through subject
self-assessment.

The total of 28 healthy subjects comprised 12 men and
16 women. EEG signals were acquired using 32 activated
electrodes located according to the guidelines of the Biosemi
Active II system [33] and the 10-20 International System [34].
While sensing EEG signals, the frontal faces were simultane-
ously filmed at 720 × 580.60Hz. For a detailed description
of database production, refer to [14]. As a result, a total
of 239 video–EEG sequences were produced, and all the
data included corresponding label information. On the other
hand, five educated commentators were employed for con-
secutive annotations of participants’ facial expressions, and
they determined the valences of the facial expressions using
FEELTRACE [23] and joysticks. Figure 6(a) shows the label
distribution of the MAHNOB-HCI dataset. Since ‘neutral’
emotion is dominant, the distribution is like Gaussian. As far
as we know, MAHNOB-HCI is the only dataset that con-
tains bio-signals with emotion labels in the continuous-time
domain.

B. ASIA DATASET
We produced a proprietary dataset for Asians according to
the same protocol as MAHNOB-HCI. To determine the stim-
uli videos for Asians, we collected many video candidates
from YouTube, and then conducted pilot experiments several
times. Finally, eight stimuli videos were selected through
questionnaire surveys. They include four videos to cause
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FIGURE 7. Experimental protocol of a trial with the ASIA dataset.

negative emotions such as ’sad’ and ’angry’, and three videos
to cause positive emotions such as ’happy’, and one video to
cause ’neutral’ emotion. The length of each video clip was
about 30 to 90 seconds. Each video clip taken was relatively
short to reduce the time to adapt to the stimulated emotions.
They were short in length but designed to be stimulating
enough to evoke the subjects’ emotions. Because the video
clips that induce each emotion weremade with strong stimuli,
a black screen was placed between the video clips to prevent
emotions from continuing into the next clip (see Fig. 7).

The 32 healthy subjects comprised 19 males and
13 females. EEG signals were obtained with 12 active elec-
trodes placed in accordance with the 10-20 International
System standard using Biopack’s M150 instrument. Together
with the EEG signals, the full-frontal faces of the subjects
were shot at 1080p@30Hz. On the other hand, since video
running time is somewhat short, EOG was used to remove
eye blinking artifacts. As a result, a total of 236 segments
were prepared, and each segment included the corresponding
valence label information. Table 3 summarizes the EEG fea-
tures from the ASIA dataset. As with the MAHNOB dataset,
we employed five trained annotators for continuous anno-
tation of participants’ facial expressions, and the annotators
determined the valences of facial expressions using a joystick.
The average of five labels obtained from annotators becomes
the ground truth (GT) of valence. In order to verify the
reliability of GT, we measured the RMSE between GT and
the label of each annotator. As a result, the average RMSE of
the five labels was sufficiently small, 0.0268. This indicates
that five labels obtained from annotators were consistent.
Finally, GTs of the ASIA dataset were judged to be reliable
enough. On the other hand, Fig. 6(b) is a valence histogram
of the ASIA dataset. Compared to Fig. 6(a), the valence
labels of the ASIA dataset are more concentrated on ‘neutral’
emotion than those of theMAHNOB-HCI. This phenomenon
indirectly shows that Asians have less emotional responses
through facial expressions thanWesterners. TheASIA dataset
built by our research team will be released later.

V. EXPERIMENTS
We evaluated the performance of the proposed method on
the ASIA dataset as well as the MAHNOB-HCI dataset.
The proposed method was trained as follows. Note that the
video modality network, the EEG modality network, and the
multimodal attention network were trained independently.
The video modality network and the EEG modality net-
work were trained in advance. Next, the multimodal attention

network was trained with parameters of the pre-learned video
and EEG networks fixed. For each network learning, Adam
optimizer was used. The learning rate was set at 0.001 and
was decreased to 1/4 scale every 10 epochs. Also, L2 regu-
larization was performed, and weight decay was set to 5e-
4. The Max epoch was set to 100 cycles. The proposed
method was implemented using Pytorch [31], and the com-
puting environments for learning were a Xeon E5-2560 and
a GTX1080Ti.

A. MAHNOB-HCI DATASET
We compared the proposed method to Soleymani et al.’s
[6] for the MAHNOB-HCI dataset. For a fair comparison
with [6], we adopted the same environment and dataset.
To do this, we received continuous annotation information of
MAHNOB-HCI from the authors of [6]. Each sequence in the
dataset was annotated with a valence value of 4 Hz. A total
of 239 video sequences and EEG segments were used for the
experiment. The accuracy of the proposed method was mea-
sured using 10-fold cross validation as in [6]. First, 10% of the
entire dataset was randomly chosen as a test dataset, and 60%
and 40% of the remaining dataset were allocated to a training
dataset and a validation dataset, respectively. Here, sampling
was performed in video sequence units. Next, such a random
selectionwas iterated ten times. Finally, a total of ten trainings
and tests were conducted, and their average becomes the final
result. On the other hand, each video sequence was composed
of 24 frames by sub-sampling the 60Hz video at 12Hz. For
the EEG signals, two seconds was used as unit data with time
synchronization at 256Hz and 32-channel data.

In order to evaluate the performance of the proposed
multimodal attention network, we additionally implemented
and compared decision-level fusion (DLF), as was done in
[6]. The experiment for feature-level fusion was not per-
formed because the sampling rates of the video data and the
EEG feature were different. In DLF, the output values of
two modalities were weighted-averaged. Here, the video and
EEG modality weights were set to 0.6 and 0.4, respectively.
We experimentally verified that this ratio provides the best
performance among various ratios.

Table 4 shows the accuracy comparison in terms of
RMSE and Pearson correlation coefficient (PCC). DLF of
the proposed method has an RMSE as small as about 0.007,
compared to DLF in [6]. The proposed multimodal atten-
tion network further reduces RMSE by 0.0007. Also, from
the PCC perspective, we can observe a similar trend. The
main reason that the proposed method is superior to [6] is
in improving the performance of each modality network.
Table 4 demonstrates that video modality as well as EEG
modality in the proposed method provide higher perfor-
mance than those of [6]. Another reason is that the pro-
posed bilinear-pooling attention network based on low-rank
decomposition greatly improved the fusion effect. In the
case of [6], the performance of the video modality network
only is rather superior to the fusion performance, i.e., DLF
performance. This indicates that Soleymani et al.’s method
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TABLE 4. Performance comparison according to modality and fusion style with the MAHNOB dataset. Here, the numerical result of 10-fold validation is
represented in terms of mean and standard deviation. The results of [6] are from the paper. Here ideal fusion indicates that RMSE and PCC are calculated
by manually selecting a better output among video and EEG modalities.

failed to derive performance-wise synergy through fusion of
video and EEG signals. Finally, the proposedmethod reduced
0.0027 RMSE compared to video modality by using the
EEG modality together, which can be seen as a performance
improvement of 6.9%.

Next, we evaluated performance by plotting the valence
estimation results for single modality and those for mul-
timodal fusion through the proposed multimodal attention
network. Seeing interval [21], [26] and interval [36], [51]
in Fig. 8(a), fusion is similar to the EEG modality and GT,
because the attention weight is strongly given to the EEG
modality. Also, in interval [15], [35] of Fig. 8(b), the regres-
sion result for the negative valence improves as the attention
weight of the EEG modality increases. On the other hand,
in interval [30], [43] and interval [53], [80] of Fig. 8(c), as the
attention weight is evenly distributed between the video and
EEGmodalities, the fusion result becomes similar to GT. As a
result, Fig. 8(c) is an example that the non-binary attention
weights provide better performance.

For further analysis, Fig. 9 shows the RMSE performance
of video and EEG modality networks according to valence
values. In the section where the EEG modality has a large
valence, e.g.,−0.25 or less, or 0.3 or more, the EEGmodality
has lower RMSE than the video modality. So, in the large
valence sections of Figs. 8(a) and (b), we can observe that
the fusion result was closer to GT than the video modality
and showed similar performance to the EEG modality. This
proves experimentally that the proposedmultimodal attention
network determines more important modality in favor of
overall performance.

Figure 10 is plotting estimated valences and attention
weights over time. In interval [27], [44], as the attention
of video modality increases, video modality approaches GT.
On the contrary, in interval [46], [67], EEGmodality is closer
to GT than video modality, because a larger attention weight
is given to EEG modality. On the other hand, we can see
that the weights of video modality are extremely strong in
the vicinity of 54, 55, and 59 seconds. In terms of valence,
EEG modality is estimated to be closer to GT than video
modality. Nevertheless, attention weight of video modality
is much larger. Looking at the subject’s facial expressions
at these moments, they are almost neutral. As a result, this

FIGURE 8. Valance result plotting of the MAHNOB-HCI dataset:
(a) sequence index: 01_08, (b) sequence index: 07_34, and (c) sequence
index: 24_22.

phenomenon is expected to give greater attention weight to
video modality in the case of ‘neutral’, because the portion
of neutral emotions in MAHNOB-HCI is very large. In other

203822 VOLUME 8, 2020



D. Y. Choi et al.: Multimodal Attention Network for Continuous-Time Emotion Recognition Using Video and EEG Signals

FIGURE 9. RMSE vs. valence of video and EEG modality. For this
experiment, MAHNOB-HCI dataset was used.

words, this phenomenon is caused due to an imbalance of
training data of a specific emotion.

B. ASIA DATASET
This section evaluated the performance of the proposed
method for the ASIA dataset. A total of 236 sequences in the
dataset were randomly sampled in a sequence basis, and then
training data and test data were separated at a ratio of 7:3.
Since a video data of 30Hz was sub-sampled to 15Hz, a two-
second video sequence consisting of 30 frames was used in
this experiment. Also, EEG signals of two seconds were used
as unit data. Figure 11(a) is the result of positive valences.
Even though two modalities show large errors, the multi-
modal attention network makes the fusion valence similar
to GT.

Similarly, Fig. 11(b) shows the result for negative valences.
Video modality shows almost no emotional change. In case
of EEG modality, negative output increases with time. So the
fusion result shows a similar trend to EEG modality. RMSE
and PCC for the entire dataset are shown in Table 5. Although
the improvement was smaller than MAHNOB-HCI, the pro-
posed multimodal attention network provided an average
improvement of about 2.5% over the video modality network
for the ASIA dataset. Also, PCC increased by up to 0.0418,
compared to video modality.

Figure 12 shows the weight distribution according to
valance values. In case of MAHNOB-HCI in Fig. 12(a),
we can see that weights of video modality are large in most

FIGURE 11. Valance results for the ASIA dataset: (a) an example of a
positive reaction, and (b) an example of a negative reaction.

valence bands. However, weights of EEG modality tend to
increase in the section where the valence is less than−0.25 or
more than 0.3, that is, the section with a large valence.
This phenomenon is similar to the performance trend of
single modality according to valences as in Fig. 9. Thus,
it was proved that the proposed multimodal attention network
induces synergy between heterogeneous video and EEG sig-
nals by assigning a larger attention weight to the modality
favorable to performance. We can observe a similar trend for
the ASIA dataset of Fig. 12(b).

FIGURE 10. (a) Valence output for sample 23_20 of the MAHNOB dataset, and (b) fusion weights of the two modalities.
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TABLE 5. Performance comparison according to modality and fusion
style for the ASIA dataset.

FIGURE 12. Attention weight distribution by modality according to
valence value: (a) the MAHNOB-HCI dataset, and (b) the ASIA dataset.
In the figure, the valence section without weight occurs because there is
no such data and valence label in the dataset.

C. ABLATION STUDY
This section verifies the accuracy of valence regression
according to the structure and output type of the multi-
modal attention network. Performance was evaluated by
a well-known 10-fold validation on the MAHNOB-HCI
dataset. Note that with the model parameters of the video
and EEG networks fixed, the only fusion performance of
the multimodal attention network was verified. On the other
hand, in order to investigate the performance change accord-
ing to the output type in the multimodal attention network,
we implemented a technique that directly extracts the emotion
output from the fused feature, which is named valence output.
We also compared it with the proposed method.

Firstly, three different fusion methods were evaluated: fea-
ture concatenation & FC layer, bilinear pooling [51], and
low-rank decomposition. Among them, the low-rank decom-
position approach is the proposed one. Table 6 shows the
RMSE result. The low-rank fusion with the two-layer struc-
ture shows the best performance (0.0366).

Bilinear pooling has the lowest efficiency, with an RMSE
of 0.0374, despite having the largestmodel size. The low-rank
fusion of three layers shows no actual performance difference
with the low-rank fusion of the two layers. However, the
model size of the former is 33% larger than the latter. This
indicates that increasing the number of layers in the proposed
low-rank fusion is not necessarily advantageous. As a result,
the low-rank fusion of the two layers is optimal in terms of
performance and model size.

On the other hand, Table 6 shows that RMSE of valence
output is lower than that of attention weight, irrespective of

TABLE 6. Emotion recognition accuracy according to attention network
structure and output type.

TABLE 7. Emotion recognition accuracy according to rank value in 2-layer
low-rank fusion method.

the fusion method. In concat. & FC, bilinear pooling, and
single-layer low-rank fusion, the difference between attention
weight and valence output is not so significant. However,
in the case of low-rank fusion of two and three layers, the per-
formance difference between the two output types becomes
noticeable. This indicates that for the proposed low-rank
fusion, the more layers, the more the performance is affected
by the output type of the attention network.

Next, we performed another ablation study to determine
the optimal rank value of low-rank decomposition.
Table 7 shows the model sizes and RMSEs for several
rank values. For this experiment, MAHNOB-HCI was
employed and the multimodal attention network is fixed to
‘low-rank fusion (2 layer)’ in Table 6. As the rank value
increases, the model size increases but the RMSE perfor-
mance improves. However, when the rank value reaches 16,
the RMSE performance starts to decrease again. As a result,
the best tradeoff between model size and RMSE performance
was when the rank value is 8, so we decided the rank value to
be 8.

VI. DISCUSSION
In the MAHNOB-HCI and ASIA datasets used in this article,
the continuous-time valence labels were determined by the
annotators observing facial expressions of subjects. Since the
same valence label was used simultaneously as GTs of video
modality and EEG modality, the reliability of EEG modality
could be inevitably reduced. To overcome this, we need a
way to annotate emotion labels in continuous-time domain
without relying on facial expressions, which can be our future
work. On the other hand, the proposed multimodal fusion
network predicted the best modality favorable to the overall
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performance and then assigned a larger attentionweight to the
predicted modality, which led to synergy between video and
EEG modalities in emotion recognition. Therefore, the per-
formance of the proposed fusion method is superior to the
single modality even when the annotation reliability of EEG
modality is not guaranteed.

In the two datasets, recognition of negative emotions with
little change in facial expressions tended to be inferior to
recognition of positive emotions. In order to compensate for
this, emotion recognition technology using additional bio-
signals, such as the electromyogram (EMG) and galvanic skin
response (GSR), has recently been studied [8], [32]. Thus, it is
necessary to study the fusion technology between the video
signal and multiple bio-signals.

Despite selecting stimuli videos that cause strong emotions
for the ASIA dataset, labels are concentrated on ‘neutral’
section. So, it was difficult to generalize the characteristics
of modality according to valence size. In order to more effec-
tively recognize Asian emotions, the improved annotation
skill is required and a new dataset including various emotions
must be built.

VII. CONCLUSION
We proposed a multimodal attention network that effectively
integrates video modality and EEG modality networks for
multimodal emotion recognition. We experimentally demon-
strated that the proposed method improves emotional recog-
nition performance over single-modality networks for the
MAHNOB-HCI dataset and the ASIA dataset. This means
that the proposed multimodal attention network generates
synergy in terms of emotion recognition by effectively merg-
ing the video and EEG signals at the feature level. If addi-
tional modalities (such as voice data and more informative
bio-signals) are adopted in the future, emotion recognition
performance will be further improved.

On the other hand, absolute labeling is limited due to
subjective annotation, and annotation depending on visual
information causes uncertainty in evaluations. If quantitative
measurement and annotation methods of accurate emotions
proceed, research on emotion recognition in the future can be
advanced.
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