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ABSTRACT Optical coherence tomography (OCT) is a noninvasive, high resolution, and real-time imaging
technology that has been used in ophthalmology and other medical fields. Limited by the point spread
function of OCT system, it is difficult to optimize its spatial resolution only based on hardware. Digital
image processing methods, especially deep learning, provide great potential in super-resolving images.
In this paper, the matched axial low resolution (LR) and high resolution OCT image pairs from actual OCT
imaging are collected to generate the dataset by our home-made spectral domain OCT (SD-OCT) system.
Several methods are selected to super-resolve LR OCT images. It is shown from the experimental results that
the residual-in-residual dense block network (RRDBNet) trained with different loss functions performs the
best super-resolution for OCT images, and it is demonstrated from the preliminary results that deep learning
methods have good generalization and robustness between OCT systems. We believe deep learning methods
have broad prospects in improving the quality of OCT images.

INDEX TERMS Optical coherence tomography (OCT), axial super resolution, deep learning.

I. INTRODUCTION
For medical images, the resolution is one of the critical
parameters, which determines what scale of microstruc-
ture can be distinguished. As a noninvasive and real-time
imaging technology, the resolution of optical coherence
tomography (OCT) is 1-2 orders of magnitude higher
than those of X-ray computed tomography (X-CT), mag-
netic resonance imaging (MRI), and ultrasound imaging.
Because of its great potential clinical values, the perfor-
mance of OCT has been developed rapidly in nearly thirty
years, especially in the aspect of axial resolution. Various
sources, ultra-wide spectrum Ti: Sapphire laser [1], [2],
super-luminescent diode (SLD) [3], and supercontinuum
(SC) light source [4]–[7], have been thoroughly studied,
which made its axial resolution close to 2-3 µm.

Improvement of hardware is expensive and time-
consuming. Digital signal or image processing methods
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provide alternative and relatively cheaper solutions, and some
signal processing methods, such as deconvolution [8], [9],
spectrum-shaping [10], [11], and spectral estimation [12],
have been proposed to optimize the OCT images. Although
the qualities of OCT images can be improved to a certain
extent, these processing methods cannot upgrade the axial
resolution beyond the theoretical limit because there is no
prior knowledge.

In 2013, L. Fang et al. studied reconstruction of OCT
images by sparse representation [13] and they further added
a segmentation step in their methods when reconstructing
images [14]. The nonlocal weighted sparse representa-
tion (NWSR) method [15] was presented to exploit infor-
mation from noisy and denoised patches’ representations
to reconstruct images. Unfortunately, their improvement of
resolution was not obvious and processing speed was not fast
enough to be applied in real time.

With the development of deep learning methods, many
kinds of networks have been applied to image recogni-
tion [16], [17], image denoising [18], [19], etc. Convolutional
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neural network (CNN) was firstly used for super-resolution
(SR) image reconstruction in 2014 [20], and then different
networks were proposed in reconstructing image details [21],
especially for natural images and face images [22]–[24]. For
medical imaging, such as X-CT [25], [26], MRI [27], [28],
and ultrasound imaging [29], [30], some SR methods based
on deep learning have also been proposed, which improved
their spatial resolution effectively.

In 2019, Huang et al. [31] proposed a generative adver-
sarial network-based approach to denoise and super-resolve
OCT images simultaneously. In 2020, Das et al. [32] pro-
posed an unsupervised framework by using the generative
adversarial network (GAN) to perform fast and reliable SR
image reconstruction without the requirement of aligned
low-resolution (LR) - high-resolution (HR) pairs. However,
these SR reconstructions for OCT images were all based on
existing datasets and assumed a simple and uniform degra-
dation (i.e., bicubic degradation), which is inconsistent with
the actual degradation in OCT imaging. In addition, bicu-
bic interpolation is the extension of cubic interpolation for
interpolating data points on a two-dimensional regular grid.
The bicubic interpolation is carried out based on two cor-
related dimensional data. For natural images or microscopic
images, their resolutions in two dimensional images are the
same, or we can say they are correlated, so it is appropri-
ate to perform bicubic interpolation. However, the axial and
transversal resolutions of OCT system are independent and
its B-scan image is composed of many A-scan signals. If the
final destination of super-resolution study is to enhance axial
resolution of OCT system, it is inappropriate to do bicubic
down-sampling for OCT images in principle.

In this paper, the registered LR-HR OCT image pairs were
obtained based on the actual OCT axial resolution degra-
dation to generate the dataset by our home-made spectral
domain OCT (SD-OCT) system. Then, residual-in-residual
dense block network (RRDBNet) [33] was updated to carry
out axial super-resolution reconstruction. RRDBNet was
trained by two kinds of loss, namely RRDBNet with mixed
loss (GAN-RRDB) and RRDBNet with L1-loss (L1-RRDB),
respectively. It was shown that L1-RRDB and GAN-RRDB
can reconstruct HROCT images effectively. In the meantime,
the super-resolution result for the image from another OCT
system demonstrated the prediction capability of the network,
which proved that deep learning has great potential in improv-
ing axial resolution of OCT images.

II. METHODS
A. COLLECTION OF LR AND HR OCT IMAGES
A two-dimensional OCT image is considered as the convo-
lution of the original signal f (x,z) and the point spread func-
tion (PSF) h(x,z) of OCT system in the spatial domain [34].

g(x, z) = f (x, z) ∗ h(x, z). (1)

where the symbol ‘∗’ indicates the spatial convolution. It is
shown that OCT image is mainly degraded by PSF h(x,z).
It has been proven, for a given center wavelength of light

source, the axial and transversal PSFs are independent and
not affected by each other [8], [34]. Therefore, for degraded
OCT images, they can be improved based on two independent
dimensions.

The axial PSF h(z) of OCT system can be easily obtained
from the inverse Fourier transform of the power spectral
density (PSD) of the light source, and its axial resolution1z is
mainly determined by the coherence length of its light source.
1z is given by the following equation when the spectrum of
light source is Gaussian type,

1z =
2 ln 2
π

λ20

1λ
. (2)

where, λ0 is the center wavelength of the light source, 1λ is
its 3dB bandwidth or the full width half maximum (FWHM).
As shown in Eq. (2), we can randomly adjust the axial res-
olution by truncating the spectrum of the light source with
different Gaussian windows digitally.

The interference signals of the sample arm and the refer-
ence arm were firstly collected by a home-made SD-OCT
system [35] in our study. After removing the background
spectrum in SD-OCT, the interferogram was multiplied by
Gaussian windows of two different bandwidths to generate
LR and HR signals. Then, these signals were mapped to the
wave number domain and Fourier transform was performed
to obtain axial LR and HR intensity images, respectively.

The LR and HR images are generated after interference
signals acquisition, so they have the same field of view,
ensuring the alignment without manual registration.

B. SUPER-RESOLUTION NETWORK
CNN has ultra-strong learning ability and can learn an
end-to-end mapping between LR and HR images directly.
The network with deep layers and complex structure was
selected to reconstruct super-resolved OCT images in our
study. The layout of the network is shown in Fig.1. Two
kinds of networks with the same generator RRDBNet are
trained with different losses, namely RRDBNet with mixed
loss (GAN-RRDB) and RRDBNet with L1-loss (L1-RRDB),
respectively. GAN-RRDB is composed of the generator
and the discriminator. The generator is trained to gener-
ate super-resolved images and the discriminator is trained
to distinguish super-resolved images from real HR images.
In GAN-RRDB, the generator is trained with mixed loss
functions between HR and SR images, including adversarial
loss, perceptual loss, and L1 loss. GAN-RRDB alternately
update the generator and the discriminator until the iterations
reach the set value N. As shown by the red dashed lines
in Fig. 1, GAN-RRDB is simplified to L1-RRDB when only
L1 loss is considered. At this time, only generator needs
to be trained, so L1-RRDB is easier to be trained than
GAN-RRDB.

We used the generator of the Enhanced Super-Resolution
Generative Adversarial Networks (ESRGAN) [33], that is,
RRDBNet, which is composed of multi-layer residual net-
work and dense connection. As shown in Fig. 2, RRDBNet
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FIGURE 1. Layout of the deep learning network.

FIGURE 2. Architecture of the generator.

FIGURE 3. Architecture of the discriminator.

can be decomposed into three parts: a single convolution
layer, the layer of RRDB blocks, and a reconstruction layer.
The layer of RRDB blocks is the residual-in-residual struc-
ture, where residual learning is carried out in different levels.
It consists of 64 RRDB blocks, each of which has 23 dense
blocks with skip connection. Each dense block has five con-
volution layers with 3 × 3 filter kernels and they are used
as the basic residual block in the main path to increase the
network capacity. Each convolution layer in the dense block
is followed by a Leaky ReLU (LReLU) layer except the last
one. The reconstruction layer is composed of two convolution
layers with 3× 3 filter kernels and one LReLU layer. Please
note the upper-sampling part is removed because our LR and
HR images have the same size.

Low level features are obtained after LR images are input
in the single convolution layer, and then they are input to the

layer of RRDB blocks. Extracted high level features from the
layer of RRDB blocks are added with the low level features
and input to the reconstruction layer. Finally, the SR images
are output.

Following the work of Ledig et al. [36], a discrimina-
tor network is further defined, whose architecture is illus-
trated in Fig. 3. It contains eight convolution layers with
3 × 3 filter kernels. Each convolution layer is followed by a
batch-normalization (BN) layer and an LReLU layer except
the first layer. After the convolution layers are two linear
layers and one LReLU layer. Generator outputs are input
to the convolution layers. Feature maps are generated from
convolution layers and input to two linear layers to distinguish
SR images from real HR images. The corresponding kernel
size(k), number of feature maps(n), and stride(s) of each
convolution layer are given in Figs. 2 and 3, respectively.
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The discriminator is used to predict the probability that
a real HR image IHR is more realistic than an SR image
ISR [41] (3), as shown at the bottom of the next page.
where σ is the sigmoid function, C(x) is the output of the
non-transformed discriminator, and EISR [.] and EIHR [.] rep-
resent the operation of taking average for all super-resolved
data and high-resolution data in the mini-batch, respectively.
The adversarial loss for discriminator is further calculated
as:

LDAdv = −EIHR [log(Dreal)]− EISR [log(1− (Dfake))]. (4)

The adversarial loss for generator is in a symmetrical form:

LGAdv = −EISR [log(Dfake)]− EIHR [log(1− (Dreal))]. (5)

Perceptual loss measures the semantic differences between
images by using a pre-trained image classification network.
Here, a pre-trained VGG19 network described by Simonyan
and Zisserman [16] is used to extract features of the percep-
tual domain. VGG19 is a CNN network consisting of 16 con-
volution layers and 3 fully connection layers. The perceptual
loss is defined as:

LVGG/i,j=
1

wi,jhi,j

wi,j∑
x=1

hi,j∑
z=1

(
ϕi,j(ISR)x,z−ϕi,j(IHR)x,z

)2
. (6)

where ISR and IHR are the intensity of SR and HR images,
respectively. ϕi,j indicates the feature map obtained by the
j-th convolution before the i-th maxpooling layer within the
VGG19 network. wi,j and hi,j are width and height of VGG19
feature map, respectively. The feature map ϕ2,2 contains low
level information [33], so LVGG/2,2 defined by ϕ2,2 can be
used as the perceptual loss.

L1 loss, also known as absolute error loss, is a pixel-wise
loss. It is calculated as follows:

Lpixel_l1(ISR, IHR) =
1
hw

∑
x,z

|ISR(x, z)− IHR(x, z)|. (7)

wherew and h are width and height of the image, respectively.
Finally, the total mixed loss is given by:

L = mLpixel_l1 + nLVGG/2,2 + ηLGAdv. (8)

where m, n and η are weighted parameters to control the
trade-off among the three losses.

C. QUANTITATIVE METRICS
Four commonly used quantitative metrics, peak signal-
to-noise ratio (PSNR), structural similarity index mea-
sure (SSIM), multi-scale-structural similarity index measure
(MSSSIM), and the subjective evaluation mean opinion score
(MOS) are used to evaluate the SR performance of the
proposed algorithms quantitatively.

PSNR is the most common and widely used objective
evaluation index, which is based on the error between corre-
sponding pixels of two images, and does not take into account

the human visual characteristics.

MSE =
1
hw

h∑
x=1

w∑
z=1

(ISR(x, z)− IHR(x, z))2

PSNR = 10log10

(
MAX (I )2

MSE

)
. (9)

where MAX(I ) represents the theoretical maximum of the
pixel value in image I .

SSIM attempts to explain the texture change between two
images by calculating the similarity from the aspects of lumi-
nance, contrast, and structure.

SSIM (ISR, IHR)= l(ISR, IHR) · c(ISR, IHR) · s(ISR, IHR). (10)

where l, c, and s are functions of luminance, contrast, and
structure, respectively. They are given as follows:

l (ISR, IHR) =
2µISRµIHR + C1

µ2
ISR + µ

2
IHR + C1

,

c (ISR, IHR) =
2σISRσIHR + C2

σ 2
ISR + σ

2
IHR + C2

,

s (ISR, IHR) =
σISRIHR + C3

σISRσIHR + C3
. (11)

Here µISR , σISR , and σISRIHR are the mean of ISR, the variance
of ISR, and the covariance of ISR and IHR. C1 = (K1L)2, C1 =

(K2L)2, and C3= C2/2. L is the dynamic range of the image.
K1 and K2 are constants.
SR and HR images are iteratively down sampled with

a down-sampling filter by a factor of 2 when calculat-
ing MSSSIM. The original image is regarded as scale 1,
and the highest scale as scale M, which is obtained after
M-1 iterations. At the j-th scale, the contrast function and the
structure function are calculated and denoted as cj(ISR, IHR)
and sj(ISR, IHR), respectively. The luminance function is com-
puted only at scale M and is denoted as lM (ISR, IHR).The
MSSSIM [37] is calculated by combining the measurement
at different scales.

MSSSIM (ISR, IHR)

= lM (ISR, IHR)
M∏
j=1

cj(ISR, IHR) · sj(ISR, IHR). (12)

MOS is a subjective evaluation method and the observers
subjectively score the image quality, which can directly
reflect the image visual perception.

III. RESULTS
A. DATASET GENERATION
All images were collected by our home-made SD-OCT
system [35]. A super luminescent diode (SLD) (BLM2-D,
Superlum) with the center wavelength of 840 nm and the
bandwidth of 100 nm is used in the SD-OCT system, whose
axial resolution is ∼3.4 µm (in air) and transverse resolution
is ∼13 µm. After truncating the spectrum of the light source
with Gaussian windows, the axial resolutions of LR and HR
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images are ∼5 µm and ∼18 µm, respectively. Noise in HR
images was removed by multi-frame averaging. Different
from the previous studies [31], our LR and HR images have
the same size, both of which are 2048× 1000 pixels× pixels
(height × width).
100 LR-HR zebrafish OCT images were totally collected,

and they were divided into patches with the size of 80 × 80
pixels× pixels to generate the data set. Some patches in deep
tissue were deleted because they lack effective information
due to the attenuation of biological tissue to light. The data
set consisting of 7,000 patches was finally obtained. Finally,
training set, verification set, and test set were distributed
according to a ratio of 3:1:1.

B. SUPER-RESOLUTION RESULTS
Two kinds of RRDBNet with different loss functions were
trained. Both networks were optimized by using Adam algo-
rithm [38], the hyperparameters of which were empirically
set as α = 0, β1 = 0.9, β2 = 0.99. The training iter-
ations N was set as 150000. The learning rate dropped by
step decay. The loss weighted parameters were empirically
set as m = 0.01, n = 1 and η = 0.005 for training
GAN-RRDB. K1 and K2 were set to 0.01 and 0.03 when
calculating SSIM. The training and test were performed
by Pytorch on a server with 64 GB of RAM and an
NVIDIA TITAN RTX graphics processing unit (GPU). The
loss-iterations curves of L1-RRDB and GAN-RRDB are
shown in Fig. 4, in which indicate both models can converge
after 150,000 iterations.

The SR results are shown in Fig. 5. As a compari-
son, the SR results of nonlocal weighted sparse representa-
tion (NWSR) [15], CNN-based method SRCNN [20], and
the ordinary differential equation (ODE) Runge-Kutta (RK)
method- inspired design network OISR-RK3 [39] are also
shown in Fig. 5. Fig. 5(a) is a zebrafish dorsal HROCT image.
Fig. 5(b) is its corresponding LR image. Fig. 5(c) is the SR
image reconstructed by NWSR. Fig. 5(d) is the SR result of
SRCNN. Fig. 5(e) is the SR result of OISR-RK3. Figs. 5(f)
and 5(g) are the reconstructed SR images of L1-RRDB and
GAN-RRDB, respectively. Sub-images at the lower part of
Figs. 5(a) - (g) are themagnified views of the regions selected.

As shown by the green arrow in Fig. 5(a), the outline of the
scale in zebrafish skin can be clearly seen in the HR image,
but cannot be distinguished in the LR image [Fig. 5(b)].
As shown in Fig. 5(c), NWSR cannot reconstruct the outline
of the scale of zebrafish. Generally, NWSR need to learn the
self-similarity information of the images. Because there is big
difference between the LR OCT image and its corresponding
HR OCT image with the axial resolutions of 18 µm and
5 µm, respectively, it is difficult to extract self-similarity
information in them, which induce NWSR cannot improve

FIGURE 4. The loss-iterations curves of training L1-RRDB and GAN-RRDB.

the resolution of LR images in our study. SRCNN [Fig. 5(d)]
can reconstruct detailed texture of the scale. However, many
bright noise spots are introduced in the image reconstruction
process. OISR-RK3 [Fig. 5(e)] can recover the texture, but
the reconstructed image is not clear enough. Compared with
NWSR and SRCNN, GAN-RRDB and L1-RRDB can clearly
reconstruct the outline of the scale. A perceptually more
realistic SR image by GAN-RRDB [Fig. 5(g)] is obtained
than that of L1-RRDB [Fig. 5(f)]. However, as shown by the
yellow arrow in Fig. 5(g), it has a few artifacts different from
the HR image. Compared Figs. 5(f) and 5(g), better texture
details are reconstructed by L1-RRDB, but the general con-
trast of the SR image is better by GAN-RRDB. In addition,
as shown by the red rectangular boxes in Figs. 5(f) and 5(g),
noise in the background is somewhat suppressed after image
reconstruction.

A-line profiles pointed out by the blue lines
in Figs. 5(a)-(g) are shown in Fig. 5(h) to further indicate
the quantitative effect of different methods in improving the
axial resolution. The narrower the peak width, the better
the image axial resolution. The HR signal (the red curve)
has the narrowest peak width, and its contrast of intensity
is much better than that of the LR signal (the black curve).
The LR signal has the widest peak width, and its contrast
of intensity is the worst. The peak width and the contrast of
intensity of NWSR (the blue dashed curve) are very close
to those of LR signal, which demonstrates it is incapable
to improve axial resolution. The peak widths of SRCNN
(the blue dotted curve), OISR-RK3(the purple curve),
L1-RRDB (the green curve), and GAN-RRDB (the green
dashed curve) are narrower than that of LR signal, which
means they can realize super resolution. Among the four
methods, GAN-RRDB has the best contrast of intensity.

The quantitative evaluation parameters based on the test
dataset are shown in Table 1, where the best result in each
metric is shown in bold. Specifically, we asked 21 raters to
assign an integral score from 1 (bad quality) to 5 (excellent
quality) to the super-resolved images, and their average score

Dreal = σ (C(IHR)− EISR [C(ISR)]) −→ 1 if IHR is more realistic than ISR
Dfake = σ (C(ISR)− EIHR [C(IHR)]) −→ 0 if ISR is less realistic than IHR. (3)
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FIGURE 5. SR results of zebrafish OCT images. (a) HR image. (b) LR image. (c)-(g) SR reconstructed images by NWSR, SRCNN,
OISR-RK3, L1-RRDB and GAN-RRDB, respectively. (h) A-line profiles of the lateral position pointed out by the blue lines
in Figs. 5 (a)-(g). Scale bar in each image is 250 µm.

TABLE 1. Quantitative evaluation results of different methods.

was MOS value. There is no doubt that LR images have the
worst parameters. LR images are smoothed by NWSR, so SR
images by NWSR have better evaluation results than LR
images. Although SRCNN can perform SR, the bright noise
spots generated by SRCNNmay destroy texture details of the
image, therefore, its quantitative evaluation results are not as
good as NWSR. Compared with NWSR and SRCNN, OISR-
RK3, L1-RRDB and GAN-RRDB have the better quantita-
tive evaluation. Based on the four indicators, we think that
L1-RRDB and GAN-RRDB have better trade-off between
evaluation indicators and visual perception than OISR-RK3,
which is consistent with the results of Figs. 5(f) and 5(g).

TABLE 2. Average running time of different methods.

Table 2 lists the running time of different methods. The
results illustrate that the deep learning method is much faster
than the NWSR method. Among the deep learning algo-
rithms, the running time increases with the increase of the
network capacity. Though L1-RRDB and GAN-RRDB have
the complex network structures, resulting in the longer run-
ning time than SRCNN, their running time is short enough
not to affect OCT imaging, which means that it can be applied
with OCT signal collecting to achieve real-time SR imaging.

C. ABLATION STUDY
In order to further verify the impact of the hyper parameters
(loss weighted parameters) and the basic components in the
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TABLE 3. Quantitative evaluation results of ablation study on loss
weighted parameters.

FIGURE 6. SR results of ablation study on loss weighted parameters.
(a) SR reconstructed images by GAN-RRDB when m is 0 in Eq. (8). (b) SR
reconstructed images by GAN-RRDB when n is 0 in Eq. (8).

network during SR training, we conducted ablation experi-
ments on the OCT dataset.

The impact of different loss weighted parameters in the
GAN-RRDB was firstly discussed. Fig. 6 shows the SR
results of ablation study on loss weighted parameters. Quan-
titative evaluation results are shown in Table 3, where the best
result in each metric is shown in bold.m = 0 in Eq. (8) means
that L1-loss was not considered during training and n = 0
means that perceptual loss was not introduced during training.

Eqs (6) and (7) show that L1-loss is set to obtain higher
PSNR and perceptual loss is set to better visual perception,
which is verified by the quantitative evaluation results of
ablation study on the loss weighted parameters. SR images
by GAN-RRDB with perceptual loss is better in visual per-
ception while GAN-RRDB with L1 loss has higher PSNR,
SSIM, and MSSSIM.

We further studied the impact of number of network com-
ponents on image reconstruction by training L1-RRDB and
GAN-RRDB with different network capacities. Fig 7 shows
SR results of ablation study on number of network compo-
nents. Figs. 7(a), (c) and (e) are SR images by L1-RRDB
with different components numbers. Figs. 7(b), (d) and
(f) are SR reconstructed images by GAN-RRDB with dif-
ferent components numbers. We use nr for the number of
RRDB blocks and nd for the number of dense blocks in
each RRDB block. Figs. 7(a) and (b) are the results of
nr = 48 and nd = 13. Figs. 7(c) and (d) are the results
of nr = 56 and nd = 18. Figs. 7(e) and (f) are the results
of nr = 72 and nd = 28.

The quantitative evaluation results of L1-RRDB and
GAN-RRDB are shown in Table 4 and Table 5, respectively.

Empirically speaking, the larger the network capacity, the
stronger the fitting ability of the network. As shown in Fig. 7,

FIGURE 7. SR results of ablation study on different numbers of network
components. (a) and (b) are SR images by L1-RRDB and GAN-RRDB with
nr = 48 and nd = 13, (c) and (d) are SR images by L1-RRDB and
GAN-RRDB with nr = 56 and nd = 18, and (e) and (f) are SR images by
L1-RRDB and GAN-RRDB with nr = 72 and nd = 28, respectively.

TABLE 4. Quantitative evaluation results of ablation study on network
component number of L1-RRDB.

TABLE 5. Quantitative evaluation results of ablation study on network
component number of GAN-RRDB.

Tables 4 and 5, it can be seen that deeper networks perform
better on evaluation indicators and the visual perception.
However, deeper networks will increase the cost of training
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FIGURE 8. SR processing results for a SS-OCT image. (a) is an HR SD-OCT image. (b) is the SS-OCT image. (c)-(d) are the SR results of
(b) by L1-RRDB and GAN-RRDB, respectively. Scale bar in each image is 250 µm.

and test. Therefore, the appropriate network capacity should
be selected according to the actual situation.

D. EXPERIMENTAL STUDY ON SS-OCT IMAGES
By learning the micro-structure map between LR and HR
images, deep learning methods can super-resolve LR images
and obtain the SR images similar to HR images. Further,
we hope the trained networks have the prediction capability,
then it will enhance axial resolution of OCT system without
increasing cost.

To validate its feasibility, we tested OCT images collected
by our home-made SS-OCT system, whose details were
described in our previous papers [40]–[42]. Its axial reso-
lution is ∼14.6 µm in air based on a swept source (Santec,
HSL-20- 100-B) with the broadband spectrum of ∼87 nm at
1300 nm, and its transversal resolution is ∼17 µm.
HR SD-OCT images and SS-OCT images at the same

position on the dorsal of the same zebrafish were collected,
which are shown in Figs. 8(a) and (b), respectively. The
SR results by L1-RRDB and GAN-RRDB of the SS-OCT
image are displayed in Figs. 8(c) and (d). Since SS-OCT and
SD-OCT systems have different field of view, it was neces-
sary to match their images for comparison. The myotome of
the zebrafish indicated by the red arrow in the red enlarged
area in Fig. 8 was used as a feature to register images from
different systems. The positions of the myotome in the two
images [Figs. 8(a) and (b)] were matched, indicating that the
images of SS-OCT and SD-OCT were registered.

As can be seen in the yellow magnified views, the multi-
layer structure of the skin [43] can be clearly shown in the HR
SD-OCT image [Fig. 8(a)] while it is indistinguishable in the
SS-OCT image [Fig. 8(b)]. Figs. 8(c) and (d) are its SR results
of L1-RRDB and GAN-RRDB, respectively. It can be seen
that both networks can reconstruct the multilayer structure of
the skin. The result of GAN-RRDB [Fig. 8(d)] is clearer than
that of L1-RRDB [Fig. 8(c)]. Also, as shown by the yellow
arrows, the penetration depth of 1300 nm SS-OCT is deeper
than that of 840 nm SD-OCT, and details in the deep area can
also be super-resolved by the methods.

Thus, the preliminary experiments on SS-OCT images
demonstrated that deep learning methods have good general-
ization and robustness and can greatly improve the axial res-
olution of the SS-OCT image. More importantly, as shown in
the enlarged yellow rectangles, themultilayer micro-structure
of skin in Fig. 8(d) is even clearer than that of Fig. 8(a).
The network was trained based on the images from 18 µm
to 5 µm. When the axial resolution of the LR image is better
than 18 µm, the better SR image is obtained.

IV. DISCUSSIONS
Based on the actual OCT imaging, we collected HR and LR
OCT images in our study. It was proven from visual and quan-
titative analysis that CNN-based deep learning algorithms can
obtain SR images similar to HR images with high signal-
to-noise ratio. We primarily confirmed that deep learning can
effectively improve OCT axial resolution.

In order to further compare the difference among actual
LR OCT images and the bicubic downsampled images,
a zebrafish dorsal OCT HR image with ∼5 µm axial reso-
lution, its axial downsampled LR images with 4× and 12×
bicubic interpolation, and the actual LR image with∼18 µm
axial resolution are given in Figs. 9(a) - (d), respectively. For
easy to compare, the axial bicubic downsampled LR images
are upsampled to the size of the actual LR images. Images
in the lower left corner of Figs. 9(a) - (d) are the magnified
views of the regions selected.

As shown in Fig. 9(a), rich texture details can be seen in
the HR image for the dorsal of zebrafish. The bicubic down-
sampled image [Fig. 9(b)] with downscale factor 4 still retains
high-frequency information similar to its HR image. In terms
of texture details, we find the bicubic downsampled LR image
of 12 times [Fig. 9(c)] is closer to the actual LR OCT image
[Fig. 9(d)].

The compared result shows that the bicubic downsam-
pled LR image of less than 8× is much better than the
degradation from 5 to 18 µm in actual OCT imaging in
preserving the sample micro-structure and high-frequency
information, which indicates that the actual OCT degradation
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FIGURE 9. Zebrafish OCT images of different axial resolutions. (a) is the
HR image. (b) and (c) are axial-downsampled LR images with downscale
4 and 12, respectively. (d) is the actual axial low-resolution image. Scale
bar in each image is 250 µm.

is much more complicated than the assumed bicubic degrada-
tion model.

Our research proved deep learning can accomplish the
axial super-resolution for the actual OCT imaging, and pri-
marily validated its feasibility in improving the resolution of
another OCT system.Wewill further pursue to achieve higher
resolution on our available SD-OCT system based on deep
learning.

In addition, the axial and transversal PSFs of OCT system
are not affected by each other, so the axial resolution and
transversal resolution are independent. We only focus on
improving the axial resolution of OCT without considering
the transversal resolution in this study. In fact, high transver-
sal resolution often leads to the reduction of the depth of
focus (DOF). Therefore, our follow-up study will further
explore how to achieve high transversal resolution and large
DOF simultaneously in OCT system based on deep learning
methods.

In our experiments, only four neural networks were trained
to perform super-resolution OCT images. We will also test
more deep learning networks and algorithms to obtain better
SR results.

V. CONCLUSION
Based on actual OCT imaging, we collected axial LR and HR
OCT images in this paper. Compared with NWSR, we found
deep learning methods have better SR effect. Among net-
works of SRCNN, OISR-RK3, L1-RRDB, and GAN-RRDB,
the last two ones have the best SR results. It was proven that
deep learning methods have great potential in improving the
resolution of OCT images, and have good generalization and
robustness.
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