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ABSTRACT This paper presents a method to predict the cleaning state of the boiler heating surface.
In this method, firstly, the historical fouling rate data is decomposed into two parts: fitting curve data and
the difference between original data and the fitting curve. Then, combined with the real-time fouling rate
data, the prediction model is established. Finally, the method is verified by the actual operation data of
a 300 MW coal-fired power station boiler. The method does not need additional special instruments or a
complex calculation system but can use the existing monitoring data to realize the dirt monitoring and soot
blowing optimization of the economizer, which has a certain guiding role for the soot blowing operation of
the coal-fired power plant.

INDEX TERMS Boiler heating surface, fouling rate, fitting, difference, prediction.

I. INTRODUCTION
Although renewable energy power plants (wind, solar, hydro,
geothermal, tidal, etc.) have experienced strong development
in the past 10 years, fossil fuel power plants are still the
main power supply source in many countries. According to
the International Energy Agency, 75% of energy will still
be supplied by fossil fuels by 2030 [1]. At present, coal is
the main power generation form of fossil fuel power plants.
The boiler is the key equipment of power plant operation.
In the process of coal-fired boiler operation, there will
inevitably be different degrees of ash (slagging and ash depo-
sition) on each heating surface. According to the survey
conducted by the American Electric Power Research Insti-
tute(EPRI) on the ash pollution of 91 power station boilers
in the United States, the statistical data show that 37% of
the boiler units frequently suffer from serious ash pollution,
and 40% of the boiler units occasionally suffer from ash
pollution [2]. Slagging and ash deposition on the heating
surface have many adverse effects on the economic and safe
operation of coal-fired units [3]–[5], mainly reflected in the
following aspects: first, it affects the heat transfer efficiency
of the heating surface. Second, slagging and ash deposition
will inevitably cause corrosion and wear of the metal on the
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heating surface. Finally, if there is too much ash and it is not
removed in time and effectively, it will block the flue, increase
the ventilation resistance, and reduce the boiler output. Due
to the high-temperature corrosion of the pipe wall, the local
temperature of the pipe wall is too high and the pipe wall is
worn, which may cause the explosion accident and endanger
the safety production.

In the process of boiler operation, the use of soot blowers
can effectively avoid serious ash deposition and slagging on
the heating surface. At present, advanced soot blowing equip-
ment has been installed in large-scale coal-fired power plants,
and the problem of low operation rate of soot blower has been
solved. Conventional soot blowing methods include steam
soot blowing, acoustic soot blowing, gas pulse soot blowing,
and so on, among which steam soot blowing is the most
widely used. At present, the soot blowing operation of each
heating surface of the coal-fired power plant is mainly based
on the fixed daily operation mode and the daily operation
time. The change of coal type and boiler operation condition
will affect the ash deposition speed of the heating surface.
The constant regular soot blowing is not in line with the actual
situation of operation. If the soot blowing operation is not car-
ried out in time, it will cause too much ash deposition on the
heating surface, reduce the heat transfer efficiency, and even
cause accidents, which will affect the safety and economy of
boiler production; if the soot blowing frequency is too high,
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it will not only cause excessive waste of soot blowing steam,
but also cause erosion of heating surface and affect the service
life of equipment. Therefore, under the limited conditions
of soot blowing cost, production efficiency, and production
constraints, it is of great significance to determine the most
efficient soot blowing operation mode for the safety of the
whole unit, energy saving and emission reduction [6]–[9].

In recent years, many scholars have done a lot of
research on soot monitoring and soot blowing optimization
of the heating surface of coal-fired power plant boilers.
Sylwester et al. [10] took the convective heating surface of
a specific power plant boiler as the research object, through
a large number of experiments, collected the ash deposition
data, combined with the variables such as boiler structure,
coal quality, flue gas flow rate, etc., established the ash
deposition model, and applied the model to the boiler soot
blowing optimization. Vassallo et al. [11] used Fourier trans-
form infrared emission spectroscopy to study the deposition
process of coal ash in a mini-type furnace. Peña et al. [12],
Teruel et al. [13], and Lu et al. [14] used neural networks,
fuzzy neural networks, and other intelligent algorithms to
establish real-time monitoring models for heating surface
fouling. The research above can monitor the state of the
boiler on-line, give simple and optimized soot blowing guid-
ance in different ways, and lay a good foundation for the
monitoring of the heating surface of the boiler. The thermal
power operation optimization software developed by many
internationally renowned power generation equipment sup-
pliers contains an ash pollution monitoring module to opti-
mize the operation of the soot blower. The boiler heating
surface pollution monitoring system installed at Unit 5 of
the Kraitwerk Power Plant [15] in Germany relies on the
existing data acquisition system (DAS) to collect various
parameters online. According to the principle of thermal
equilibrium, the actual heat transfer coefficient calculated is
compared with the ideal heat transfer coefficient, the degree
of contamination of the heating surface is analyzed, and
the soot blower cleaning heating surface is guided, so as to
realize the closed loop automatic control of the ash blower’s
start and stop, thus proving the practicability of the module.
Also, the Sootblow Advisor expert system [16], developed by
New York Gas Company and General Physics Corporation,
and the OPTIMAX computing package, independently devel-
oped by ABB of Switzerland [17], etc are operating in some
power plants. Due to commercial confidentiality, the specific
technical details are rarely reported. Due to the complexity
of the operation and combustion system of coal-fired power
station boilers, the soot blowing operation and the current
boiler operating conditions require a certain amount of prepa-
ration time. During the preparation process, the ash is still
deposited, which causes more coal consumption. This is a
common problem in coal-fired power station boilers. At the
present stage, energy conservation and emission reduction put
forward higher requirements for ash blowing optimization.
If the ash fouling condition of the heating surface can be

predicted and the soot blowing preparation is made ahead of
time, the occurrence of untimely soot blowing can be avoided.

Given the general problem of dust injection in coal-fired
utility boilers, a method for predicting the cleanliness of
heating surfaces is proposed by analyzing the monitoring
data of heating surfaces. In this method, the fouling rate (FF)
is used as the monitoring index of the clean state of the
heating surface of the coal-fired power plant boiler. Firstly,
the historical fouling rate data is decomposed into two parts:
fitting curve data and the difference between original data
and the fitting curve. Secondly, the difference between the
original data and the fitting curve (residual error) is ana-
lyzed, and the mathematical expectation is obtained. Thirdly,
the real-time fouling rate data is fitted, combined with the
difference expectation, the prediction model is established.
Finally, the soot blowing operation is guided to optimize
steam consumption and heat transfer efficiency. This method
does not need additional special instruments and a complex
calculation system and can use the existing monitoring data
to realize the dirt monitoring and ash blowing optimization
of the economizer. The method is verified by the actual
operation data of a 300MW coal-fired power station boiler.
By analyzing and comparing the prediction results of the
future fouling state of the heating surface with the prediction
model proposed in this paper and the Elman predictionmodel,
it is found that the resulting error of the prediction model
using the new method is smaller and has a good prediction
accuracy. The newmethod is used to predict the future state of
the heating surface and prepare the ash blowing operation in
advance, which has a certain guiding role for the ash blowing
operation of thermal power plants.

II. REASEARCH OBJECT
The research object of this manuscript is a boiler economizer
for a 300MW unit of a coal-fired thermal power station. The
main design parameters of the boiler are shown in Table 1.

TABLE 1. Main design parameters of the unit.

III. PRINCIPLE OF SOOT ACCUMULATION MONITORING
In the calculation of the heating surface of the boiler unit,
some parameters (thermal resistance of ash and dirt, cleaning
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factor, etc.) that can represent the cleaning state of the heat-
ing surface are usually used to represent the cleaning state
of the heating surface [18]. Generally, these parameters are
the characteristic parameters that can be directly measured
or observed during the normal operation of some boilers,
which are obtained through mathematical modeling, that is,
the ash monitoring process is the parameter modeling process
that represents the ash pollution degree of the heating sur-
face [19]. In this manuscript, the real-time monitoring data
of the DCS system of a coal-fired power plant is combined
with the basic thermodynamic calculation data needed for
modeling. According to the dynamic energy balance theorem,
the real-time monitoring model is established by mathemat-
ical modeling. The fouling degree of each heating surface
is characterized by the fouling rate (FF) of each convection
heating surface, dimensionless. The definition of the fouling
rate is as follows:

FF = 1−
Kr
Kt

(1)

where Kr ,Kt are the actual and theoretical heat transfer
coefficients of the heating surface, dimensionless. When
FF = 0, it means that the initial ash pollution state of the
boiler heating surface is the most ideal clean state. The closer
it is to 0, the less the ash pollution on the heating surface,
the cleaner it is; when FF is greater than 0, it means that
the heating surface is in a polluted state, and the closer it is
to 1, the more serious the pollution on the heating surface of
the boiler. As mentioned above, the fouling level of the heat
transfer surface can be described by the fouling rate.

A. THEORETICAL HEAT TRANSFER COEFFICIENT
The theoretical heat transfer coefficient Kt indicates the
efficiency of the heat transfer of the heating surface when
the heating surface is clean. When neglecting the thermal
resistance of the working substance and the tube wall and
the thermal resistance inside the metal, the sum of the the-
oretical radiation heat transfer coefficient and the theoretical
convection heat transfer coefficient is usually the sum of the
theoretical heat transfer coefficient.

Kt = αf + αd (2)

αf = 5.7× 10−8
agb+1

2
ahT 3κ (3)

where αf is the theoretical radiation heat transfer coefficient
and αd is the theoretical convection heat transfer coefficient.
The heat transfer coefficient of the heating surface is

usually calculated by the following formula [20]:

αd = 0.65CsCz
λ

d
(
ωd
υ

)0.64Pr
1
3 (4)

where

κ =

{(
1−

(
Tgb
T

)4
)/(

1−
Tgb
T

)}
(5)

where agb is the blackness of the pipe wall;
ah is the blackness of flue gas;

T is the temperature of flue gas in the metal pipe of
economizer, ◦C ;
Tgb is the temperature of the outer wall of the metal pipe

of the economizer, ◦C ;
Cs is the transverse structural parameter of the heating

surface;
Cz is the transverse structural parameter of the heating

surface;
λ is the thermal conductivity of flue gas (used to express

the thermal conductivity of flue gas);
d is the diameter of the metal pipe wall of economizer, m;
ω is the flow velocity of flue gas inside the metal pipe of

economizer, m/s;
υ is the dynamic viscosity of flue gas;
Pr is the Prandtl number.
The flue gas velocity can be obtained by the following

formula:

ω =
Vb
A

(6)

where, A is the heat exchange area of the convective heating
surface, m2;
Vb is the flue gas flow through the convective heating

surface under the standard condition, m3/s, which can be
obtained by measuring the actual flue gas flow Vr through
the Clapeyron equation:

Vb =
prVr
pb

/(
1+

Tr
273.15

)
(7)

where, Vr is the actual measured flue gas flow, m3/s;
Tr is the measured temperature of the flue gas, ◦C ;
pr is the pressure of the flue gas, Pa;
pb is the standard atmospheric pressure, Pa.

B. ACTUAL HEAT TRANSFER COEFFICIENT
The actual heat transfer coefficient of this manuscript
is obtained by dynamic energy balance and iterative
method [21]:

Kr =
Qy
A1t

(8)

where Qy is the heat released by the flue gas inside the metal
pipe of the economizer, kJ/s;
A is the heat exchange area of the heating surface pipeline

of the economizer, m2;
1t is the average value of the temperature difference

between the flue gas side and the working medium side of
the heat exchange surface, ◦C , defined as:

1t = (1Tmax −1Tmin)

/
ln
1Tmax

1Tmin
(9)

where 1Tmax and 1Tmin respectively represents the maxi-
mum and minimum temperature difference between the flue
gas side and the working medium side of the heating surface,
◦C Calculate the dynamic heat release Qy [15], including
the following three parts: metal heat storage change 1Qjx ,
working medium heat storage change 1Qgz, and working
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medium heat absorption Qg, the three calculation formulas
are as follows:

1Qjx = mjxcjx
∂tjx
∂τ

(10)

1Qgz = mgzcgz
∂tgz
∂τ

(11)

Qg = D(Hout − Hin) (12)

where mjx ,mgz are respectively the mass of the metal tube
wall of the heating surface and the working medium flowing
through it, kg;
cjx , cgz are the average specific heat capacity of the metal

tube wall of the heating surface and the working medium
flowing through it respectively, kJ/kg · ◦C ;
tjx is the instantaneous temperature of the metal tube wall

of the heating surface, ◦C ;
tgz is the instantaneous temperature of the workingmedium

flowing through the wall of the heating surface, ◦C ;
D is the working fluid flow through the heating surface,

kJ/s;
Hin is the enthalpy value of working medium flowing

through the heating surface, kJ/kg;
Hout is the enthalpy value of the working medium flowing

through the outlet of the heating surface, kJ/kg;
τ is time, s.

IV. DATA PATA PREPROCESSING AND SELECTION
A. DATA PREPROCESSING
Data preprocessing is to eliminate outliers and smooth
the collected data to ensure the accuracy of subsequent
experiments.

1) The elimination of outliers is based on the method of
laida (non-equal confidence probability). Its basic idea is:
if the difference between a measured value and the average
value is more than three times the standard deviation, it will
be eliminated.

|x1 − x̄| > 3Sx (13)

where x̄ =
1
n

n∑
i=1

xi is the sample mean, Sx =(
1
n

n∑
i=1

(x1 − X̄ )
2
) 1

2

is the standard deviation of the sample.

2) The basic idea of the ‘‘weighted moving average’’
smoothing filtering method is used in data smoothing: the
data weight at the center of the average interval is the largest,
and the farther away from the center, the smaller the data
weight.

ŷm = 0.025ym−3 + 0.05ym−2 + 0.075ym−1 + 0.7ym
+ 0.075ym+1 + 0.05ym+2 + 0.025ym+3 (14)

where ŷm is the result after filtering; ym is the actual measure-
ment value at m time.
Taking a set of experimental data as an example, the effect

of data preprocessing is illustrated. Fig 1 shows the original FIGURE 1. Data preprocessing.
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data in the DCS database and the results after data processing.
By comparing the data before and after processing, it is found
that the larger burr in the original data has been processed.
After data preprocessing, the overall trend of the data has not
changed. It can better analyze the trend of data changes.

B. DATA SELECTION
As shown in Fig. 2, the vertical axis on the left represents
the fouling rate of the heating surface of the economizer,
the vertical axis on the right represents the load, and the
horizontal axis represents the time. ‘‘Soot blowing’’ repre-
sents the ‘‘soot blowing process of heating surface’’. The
part between the two ‘‘soot blowing’’ represents the ‘‘ash
deposition process of the heating surface’’. In the stage of
stable load, the fouling rate has a more obvious change trend.
In the process of soot blowing, the fouling rate of the heating
surface decreases; on the contrary, in the process of soot
deposition, the fouling rate of the heating surface increases.
However, in the stage of rapid load change, the change of
the fouling rate of the economizer is relatively chaotic. In the
process of load stabilization, the changing trend of the fouling
rate of the heating surface is consistent with the change of
ash content of the heating surface, which is suitable for the
change of heat transfer efficiency of reaction heating surface.
However, the fluctuation of the fouling rate in the stage of
load change is too large to reflect the actual heat transfer
efficiency of the heating surface. Therefore, the data used in
this manuscript is from the ash deposition process of the load
stability stage.

FIGURE 2. Curve of fouling rate of heating surface and load with time
in 24 hours.

The bad point processing and data smoothing processing
are carried out for the collected operation parameters of the
boiler. Then the data collected in the boiler DCS system is
calculated and analyzed with a sampling interval of 100s. The
available data collected from the DCS system of the boiler
are selected and 21 sets of available data are obtained. These
21 sets of data almost include all typical working conditions
of the boiler under normal operating conditions. The 21 sets

of data used in this manuscript have 300 points in each set.
Randomly selected 18 sets of data in 21 sets of data as an
experimental data set, as shown in Fig. 3(a), and the other
three sets of data as the test data set, as shown in Fig. 3(b).
In Fig. 3, the abscissa is the time, the unit is h, and the ordinate
is the fouling rate.

FIGURE 3. Fouling rate data of heating surface.

C. ESTABLISHMENT OF THE PREDICTION MODEL
Step 1: 18 sets of pre-processing fouling rate data were

fitted.
Step 2: Decompose each set of data into two parts: the

fitting curve, residual error(the difference between the orig-
inal data and the fitting curve). Fig 4 shows the data after
data decomposition, the vertical coordinate is the fouling rate;
The horizontal coordinate is the time, and the formula under
each figure is the formula of the fitting curve. Due to the

206136 VOLUME 8, 2020



Q. Li et al.: Prediction of Pollution State of Heating Surface in Coal-Fired Utility Boilers

FIGURE 4. Decomposition of fouling rate data (6 sets of data in 18 groups).
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FIGURE 5. Decomposition of fouling rate data (the upper part of the
figure is 18 sets of data and the corresponding fitting curve, and the
lower part is the residual part).

limitation of the length of the manuscript, the decomposition
diagram of 18 sets of experimental data is not put in the
manuscript. Fig. 4 is only 6 sets of 18 sets of data. Fig. 5 is a
full breakdown of 18 sets of data, including the original data,
fitting curve, and residual error (date difference).
Step 3:After 18 sets of data are decomposed, residual error

(date difference) and the fitting curve is integrated to get
Fig. 6. From Fig. 6, it can be seen that residual error and the
fitting curve of 18 sets of data are very close. The difference
between 18 sets of original data and the fitting curve is used
to solve the mathematical expectation. As shown in Fig. 7,
the corresponding part of ‘‘average’’ is called the residual
expectation.

FIGURE 6. Residual error of 18 sets of fouling rate data.

Step 4: Firstly, the first N points of 300-time points in
the validation data set are fitted to get the fitting curve
y = at+b (where a and b are fitting parameters respectively).
Then, the time point (i.e. the abscissa corresponding to
300-N) of the part without data fitting is brought into the

FIGURE 7. Residual error and expectation of 18 sets of data.

fitting curve y = at + b, and the resulting value is called
‘‘fitting value’’. Finally, the fitting value of 300-N time points
behind the validation data, and the expectation of residual
error is added in turn to get the prediction value, which is
called the ‘‘residual expectation method’’.

V. EVALUATING INDICATOR
To compare the prediction accuracy of the twomethods, MSE
(mean squared error) and MAE (mean absolute error) are
used as evaluation criteria.

A. MEAN SQUARED ERROR
Mean square error refers to the expected value of the square of
the difference between the estimated value of the parameter
and the true value of the parameter. MSE can evaluate the
degree of change of the data. The smaller the value ofMSE is,
the better the accuracy of the prediction model to describe the
experimental data is. The calculation formula is as follows:

MSE =
1
m

m∑
i=1

(
yi − ŷ

)2 (15)

where yi is the true value of the sample; ŷ is the predicted
value.

B. MEAN ABSOLUTE ERROR
The mean absolute error is the mean value of the absolute
error, which can better reflect the actual situation of the
predicted value error. The calculation formula is as follows:

MAE =
1
m

m∑
i=1

∣∣(yi − ŷi)∣∣ (16)

VI. EXPERIMENTAL VERIFICATION
When N = 250, 200, and 150, the predicted values can
be obtained respectively by using the residual expectation
method proposed in this manuscript. Besides, by using Elman
neural network, the fouling rates corresponding to the first
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250, 200, and 150-time points of 300-time points are trained
as training sets, and the fouling rate corresponding to the next
50, 100 and 150-time points are tested as test sets.

A. WHEN N=250
The fitting curve of the first 250 time points in test data set 1 is
y = 0.01742t + 0.2476. The comparison between Elman
neural network and residual expectation method is as follows:

The fitting curve of the first 250 time points in test data
set 2 is y = 0.02029t + 0.2396. The comparison between
Elman neural network and residual expectation method is as
follows:

The fitting curve of the first 250 time points in test data
set 3 is y = 0.01094t + 0.2697. The comparison between
Elman neural network and the new method is as follows:

As shown in Figs.8-10 and Tables 2-4, when N=250, com-
pared with the Elman neural network method, the test data
set 1, 2, and 3 adopt residual expectation method to predict
the pollution of the heating surface more accurately.

TABLE 2. N = 250, comparison of prediction accuracy (Test data set 1).

TABLE 3. N = 250, comparison of prediction accuracy (Test data set 2).

TABLE 4. N = 250, comparison of prediction accuracy (Test data set 3).

B. WHEN N=200
The fitting curve of the first 200 time points in test data set 1
is y = 0.01626t + 0.2498. The comparison between Elman
neural network and the new method is as follows:

The fitting curve of the first 200 time points in test data
set 2 is y = 0.01913t + 0.2418. The comparison between
Elman neural network and residual expectation method is as
follows:

The fitting curve of the first 200 time points in test data
set 3 is y = 0.009777t + 0.2719. The comparison between
Elman neural network and residual expectation method is as
follows:

FIGURE 8. N = 250, comparison of two prediction methods (Test data
set 1).
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FIGURE 9. N = 250, comparison of two prediction methods (Test data
set 2).

As shown in Figs. 11-13 and Tables 4-7, when N=200,
compared with the Elman neural network, residual expec-
tation method is more accurate in predicting the pollution
of heating surface in test data sets 1, 2, and 3. However,

FIGURE 10. N = 250, comparison of two prediction methods (Test data
set 3).

compared with the two prediction methods when N=250, the
prediction accuracy of the Elman neural network and residual
expectation method for heating surface pollution has a certain
decline.
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FIGURE 11. N = 200, comparison of two prediction methods (Test data
set 1).

FIGURE 12. N = 200, comparison of two prediction methods (Test data
set 2).
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FIGURE 13. N = 200, comparison of two prediction methods (Test data
set 3).

TABLE 5. N = 200, comparison of prediction accuracy (Test data set 1).

TABLE 6. N = 200, comparison of prediction accuracy (Test data set 2).

TABLE 7. N = 200, comparison of prediction accuracy (Test data set 3).

C. WHEN N=150
The fitting curve of the first 150 time points in test data set 1
is y = 0.01207t + 0.2569. The comparison between Elman
neural network and residual expectation method is as follows:

The fitting curve of the first 150 time points in test data
set 2 is y = 0.01495t + 0.2489. The comparison between
Elman neural network and residual expectation method is as
follows:

The fitting curve of the first 150 time points in test data
set 3 is y = 0.005592t + 0.2790. The comparison between
Elman neural network and residual expectation method is as
follows:

It can be seen from Figs. 14-16 and Tables 8-10 that when
N=150, the prediction accuracy of Elman neural network and
residual expectation method for heating surface pollution of
test data 1, 2, and 3 are very poor.

TABLE 8. N = 150, comparison of prediction accuracy (Test data set 1).

TABLE 9. N = 150, comparison of prediction accuracy (Test data set 2).
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FIGURE 14. N = 150, comparison of two prediction methods (Test data
set 1).

FIGURE 15. N = 150, comparison of two prediction methods (Test data
set 2).
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FIGURE 16. N = 150, comparison of two prediction methods (Test data
set 3).

TABLE 10. N = 150, comparison of prediction accuracy (Test data set 3).

D. RESULT ANALYSIS
By comparing the residual expectation method with Elman
neural network (Figs. 8-16), it is found that when N=250 and
200, the new method has higher prediction accuracy than
Elman neural network. When N=150, the prediction accu-
racy of both methods is very poor. Compared with the new
method, Elman neural network prediction is more accurate,
and they have no guiding significance for soot blowing on
the heating surface. The time threshold of 300-time points
of the experimental set data is [0, 8.33], that is, when
N=250 and 200, the predictable time range is [6.94, 8.33]
and [5.55, 8.33], respectively, and the time length is 1.39h and
2.78h. According to reference[18], when the soot deposition
time is 7.62h (i.e. the fouling rate of heating surface reaches
0.36), the soot blowing starts. Assuming that the prepara-
tion time of soot blowing operation is Tr h, at (7.62-Tr )h,
on the one hand, the power station staff starts to prepare for
soot blowing operation; On the other hand, through the new
method proposed in this manuscript, the real-time monitoring
data of fouling rate from the end of the lastest soot blowing
to (7.62-Tr )h is used to predict the soot pollution status of
the heating surface in the future. When the fouling rate of
the heating surface reaches 0.36, soot blowing starts. Under
normal circumstances, the preparation time of soot blowing
operation is generally about 0.5h, i.e. Tr = 0.5h. Therefore,
using the real-time monitoring data of the scaling rate in
the time from the end of the latest soot blowing operation
to 7.12h, the dust pollution status of the heating surface is
predicted. When N=250 and 200, the predicted time ranges
are [6.94, 8.33] and [5.55, 8.33], respectively. The prediction
accuracy of the fouling rate of the heating surface is very high.
The prediction time (7.12h) is within these two-time ranges,
so the new method can have a good prediction for the future
state of ash pollution.

The actual operation data extracted in this paper has a time
length of 8.33 h and a time range of [0, 8.33]. In this paper,
the residual expectation method and Elman prediction model
are used to predict the heating surface state of [6.94, 8.33]h
respectively with [0, 6.94]h as training part, and [5.55, 8.33]h
with [0, 4.16]h as training part, and [4.16, 8.33]h with
[0, 4.16]h as training part. It is found that the prediction
accuracy of the two methods is too poor for [0, 4.16]h
as the training part and has no practical significance. The
prediction results of the residual expectation method and
Elman prediction model are analyzed and compared. It is
found that the prediction model of the residual expectation
method has a smaller error and has good prediction accuracy
and feasibility.
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VII. CONCLUSION
In this paper, safety, energy-saving, improve the overall
operational efficiency and stability of coal-fired power plant
boiler as the goal, aiming at some problems existing in the
combustion process of the coal-fired power plant, taking the
economizer as the research object, carried out the research
work. In the first part of this paper, based on the on-line
monitoring data and key parameters of the boiler economizer
heating surface in the combustion process, the concept of
fouling rate is used to reflect the ash pollution status of
the heating surface, and a fouling monitoring model of the
heating surface is established to facilitate on-line monitoring
of the heat exchange efficiency of the economizer. In the sec-
ond part of this paper, the real-time monitoring data of the
economizer heating surface fouling rate are selected and
preprocessed. Soot blowing operation is generally carried out
under the condition of stable load, so the fouling rate data
under the condition of too fast load change is not the research
part of this paper. The research data selected in this paper is
under a stable load condition. In the third part of this paper,
by analyzing the existing data of the fouling rate of heating
surface, a prediction method of fouling state of the heating
surface is proposed, which can provide sufficient preparation
time for soot blowing operation. The time range of fouling
rate data selected in this paper is from the end of the last soot
blowing operation as the starting point to the end of the next
soot blowing operation as the endpoint, with a time length
of 8.33 h, a total of 21 groups of data. Firstly, each group of
data is fitted and decomposed into two parts, namely fitting
part and residual (difference part of data and fitting part);
then 18 groups of 21 groups of data are selected as training
data set. By analyzing the residual parts of 18 groups of data
sets, it is found that the residual parts of each group are very
similar. The expectation of eighteen groups of data residuals
was calculated. Finally, any three groups of 21 groups of data
are selected as the experimental data set, and the data of the
first half of each group of data are selected for fitting, and
the fitting part is superimposed with the residual expectation
to obtain the prediction model of fouling state of heating
surface. This method does not need any calculation system
and professional instruments, and can accurately predict the
future state of the heating surface according to the real-time
ash pollution data of the heating surface. The method pro-
posed in this paper only needs to modify themonitoring of the
heating surface and can be applied to other heating surfaces of
boilers.

The next work of this paper is as follows:
1. Establish a soot blowing operation system based on

the heating surface of different parts of the boiler (the area
requiring soot blowing);

2. The existing soot blowing optimization models are all
based on the premise of constant soot blowing steam pressure
and flow, but the deposition rate and characteristics of soot
fouling are different in different periods. On the premise of
variable steam pressure and variable steam flow, it will also

be one of the tasks to establish an optimization model for soot
blowing.
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