
Received October 12, 2020, accepted October 25, 2020, date of publication November 9, 2020, date of current version November 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3036975

Raising the Abstraction Level of
a Deep Learning Design on FPGAs
DARÍO BAPTISTA 1,2,3, LEONEL SOUSA 1,3, (Senior Member, IEEE),
AND FERNANDO MORGADO-DIAS 2,4, (Member, IEEE)
1Instituto Superior Tecnico, Universidade de Lisboa, 1649-001 Lisbon, Portugal
2ITI/Larsys and Madeira Interactive Technologies Institute (M-ITI), 9020-105 Funchal, Portugal
3INESC-ID Instituto de Engenharia de Sistemas e Computadores—Investigação e Desenvolvimento, DEEC, 1000-029 Lisbon, Portugal
4Ciências Exatas e Engenharia, University of Madeira (UMA), 9020-105 Funchal, Portugal

Corresponding author: Darío Baptista (dario.baptista@tecnico.ulisboa.pt)

This work was supported by the Portuguese Foundation for Science and Technology through LARSyS Projeto UIDB/50009/2020 and
Project UIDB/50021/2020; ARDITI - Agência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação under the scope
of the Project M1420-09-5369-FSE-000001-PhD Studentship; and also supported by the Project MITIExcell co-financed by Regional
Development European Funds, for the Operational Programme ‘‘Madeira 14-20’’ - EIXO PRIORITÁRIO 1, of Região Autónoma da
Madeira, with no. M1420-01-0145-FEDER-000002.

ABSTRACT Autonomous and intelligent systems based on deep learning, continuously attract the attention
of researchers and engineers. With the progress on the application of deep learning for modern applications
arises the challenge of reaching real-time processing. To face this challenge, Field Programmable Gate
Arrays (FPGAs) can be used; however, deep learning generic implementations on an FPGA are still a
topic of research. Advances in FPGA technology allow for designs based on High-Level Synthesis (HLS)
for accelerating and facilitating implementations of complex problems on hardware. A platform based on
HLS for emulating a generic parameterizable deep learning system on an FPGA is proposed in this paper,
allowing for the implementation of any structure based on the following layers: convolution, max-pooling,
batch-normalization, and fully connected networks. Through this platform, it is possible to implement a
deep learning system on FPGAs using an N-Fold or a Flow architecture without the assistance of central
processing units. Whereas the N-Fold architecture requires fewer hardware resources, as it re-uses resources,
the Flow architecture presents a higher throughput. The developed platform improves the deep learning
design productivity by automating the generation of the system, achieving efficiency and raising the level of
abstraction, as was experimentally verified and evaluated.

INDEX TERMS Neural Network, machine learning, deep learning, systems architecture, flow architecture,
N-Fold architecture.

I. INTRODUCTION
A large quantity of computation is required to analyze data
based on deep learning [37]. Thus, the hardware required to
implement a deep learning efficiently has been the subject of
intensive investigation and investment, mostly targeting Field
Programmable Gate Arrays (FPGAs) and Graphics Process-
ing Units (GPUs) [7], [25], [26]. Even though GPU providers
have positioned GPUs as the most performant devices for
this new era, FPGAs are becoming widely adopted since
they provide a better trade-off between performance and
power consumption [25], making them efficient in real-time
embedded systems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Szidónia Lefkovits .

The advance of FPGA technology makes their design a
challenge to fully utilize their capacities to address complex
problems [12]. The design methodology on FPGAs can be
structured hierarchically over several levels of abstraction.
To better understand the levels of abstraction, Gajski-Kuhn
proposed in 1983 a model called the Y-chart, which is rep-
resented in Figure 1 [8], [14]. The three domains of the
Y-chart are represented on its radial axes. Each of them can be
divided into levels of abstraction, using concentric rings. The
Y-chart has five concentric circles representing the following
levels of abstraction [22]: Circuit level, Logical level, Reg-
ister Transfer Level (RTL), Algorithmic level, and System
level. Each level represents the information in different ways,
with the amount of detail increasing from higher to lower
levels [8].

205148 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-9441-9221
https://orcid.org/0000-0002-8066-221X
https://orcid.org/0000-0001-7334-3993
https://orcid.org/0000-0002-7903-1111


D. Baptista et al.: Raising the Abstraction Level of a Deep Learning Design on FPGAs

FIGURE 1. High-level synthesis in the Gasjki-Kuhn Y-Chart.

Previously, designers wouldmanually refine the behavioral
system specifications down to the RTL. From that point on,
RTL synthesis would complete the design. Recently,however,
High-level Synthesis (HLS) has improved design produc-
tivity by automating the refinement from the Algorithmic
Level to the RTL [22]. Even though HLS can produce the
design from the Algorithmic Level, a significant amount of
time and a certain level of hardware design expertise are
required to deploy deep learning on an FPGA. HLS tools
require the algorithm to be specifically expressed in order to
enable the synthesis tools to identify and exploit parallelism.
Dealing with hardware description languages at a level of
abstraction, as pure software, has been explored but often
leads to inefficient use of the hardware. The key factor to
bear in mind is that the FPGA has hardware characteristics
that are not taken into consideration in a software-based
design. Thus, each statement describes hardware that must
be built rather than providing a set of instructions to be
executed.

A novel way of solving this problem, proposed in this
paper, is to increase the abstraction to the system level by pro-
viding a platform to deploy a generic parameterizable-based
deep learning on an FPGA. Such a platform provides design-
ers with a choice in choosing or developing their own deep
learning framework while providing efficient implementa-
tions. To achieve this, designers have the freedom to provide
the network topology description and the parameterization of
each layer.

The proposed platform allows for the designing of Con-
volutional Neural Networks (CNNs), Deep Neural Networks
(DNNs), and Artificial Neural Networks (ANNs). Two dif-
ferent architectures are provided to make the platform more
efficient and useful, allowing the designer to easily adjust
the achieved throughput and the required resources. In this
way, the designer has the freedom to perform design space
exploration, which allows for finer customization. Thus,
the platform offers the advantage of optimization for different
objectives to find the best solution for each application and
according to the desired specifications. The main advantage
of using such a platform is that the designer can easily

implement deep learning on FPGAs without the necessity of
an in-depth understanding of the underlying hardware.

II. BACKGROUND
CNNs are divided into two main components: feature extrac-
tion and classification components. The feature extraction
component makes use of convolution, max-pooling and
batch-normalization functions, while the classification com-
ponent consists of fully-connected layers, common in ANNs.
All layers of these networks can be organized into two sub-
layers. The first one, called the main operation sub-layer,
applies the main function, i.e. the convolution, the max-
pooling, the batch-normalization, or the fully-connected
operation. The second sub-layer, called the non-linear sub-
layer, is supported on the hyperbolic tangent or by ReLU
functions. ReLU has become the most successful and widely
used non-linearity, given its simplicity and effectiveness [29].
Additionally, for classification models, a softmax non-linear
function is commonly used in the last layer.

A convolutional layer contains a set of kernels whose
parameters need to be learned for extractingmultiple features,
typically from an image [3]. The dimension of the kernel
is relatively smaller than that of the input data. The kernel
is slid across the width and height of the matrix input and
the scalar products between the input and kernel are com-
puted in every spatial position. Assuming the matrix F as an
input (F ∈ RW×W×L , where W × W × L corresponds to
height × width × #input matrices), the matrix K as a kernel
(K ∈ RH×H×L×M , where H × H × L × M corresponds to
height×width× #input matrices× #output matrices), and b
as the bias, the equation for computing the calculation of each
element in the output matrix (C ∈ RR×R×M , where R×R×M
corresponds to height × width × #outputs matrices) is given
by equation (1).

Ci,j,m =
L−1∑
l=0

H−1∑
p=0

H−1∑
q=0

Fi+p,j+q,lKp,q,l,m + bm (1)

The max-pooling layer ‘‘smoothes’’ and progressively
down-samples the spatial size of the representation, to reduce
the number of parameters and to control overfitting. The
max-pooling layer operates independently on every matrix
input and resizes it spatially without performing any learning.
Typically, the maximum value within an H × H pooling
window is selected, reducing the number of parameters to
be learned in the next layer [24]. Thus, the expression to
compute the max-pooling response of each element in the
output matrix is given by equation (2).

Pi,j,l = max
p∈[0;H [∧q∈[0;H [

(
Fi+p,j+q,l

)
(2)

The most common form is a max-pooling layer with a 2× 2
pooling window size and a stride of 2 along the width and
height of each inputmatrix, discarding 75%of the activations.
Each operation would, in this case, take a maximum value of
four numbers. The batch-normalization layer normalizes each
input matrix processed by the convolution layer. Using batch-
normalization, the internal covariate shift is reduced and,

VOLUME 8, 2020 205149



D. Baptista et al.: Raising the Abstraction Level of a Deep Learning Design on FPGAs

in consequence, the training of deep learning systems acceler-
ates. Batch-normalization standardizes values, xi, by calculat-
ing the mean µB and variance σ 2

B over a mini-batch as shown
in equation (3).

x̂i =
xi − µB√
σ 2
B + ε

(3)

where ε is the numerical stability when the mini-batch vari-
ance is too small. To accommodate inputs with a mean equal
to 0 and a variance equal to 1, the value of x̂i should be scaled
and shifted as shown in equation (4). The offset, β, and scale
factor, γ , are parameters that are updated during the training.

yi = γ x̂i + β (4)

In a Fully Connected layer all the input elements from the
previous layer are connected to all the neurons. Typically,
equation (5) is used to compute the response of each of the
neurons present in the layer. The activation function σ is
a non-linear function applied to the weighted input sum to
produce the response y.

y = σ (
n∑
i=1

xiwi + b) (5)

III. HARDWARE ACCELERATORS FOR DEEP LEARNING
Ordinary processors are not efficient for deep learning; they
can hardly meet performance requisites [9]. Since CNN pro-
cessing exhibits parallelism at different levels, there has been
a significant amount of work investigating efficient dedi-
cated parallel systems [17], [28], [36], [46]. While spatial
parallelism can be explored greatly on hardware, there are
application fields for which the use of specific hardware is a
requirement. These requirements could include speeding up
the processing [26]. Many examples of neural vision systems,
which likewise cannot be used while attached to comput-
ers, can be found in [34]. Several designs based on FPGA
[45], GPU [7], [35] and Application-Specific Integrated Cir-
cuits (ASICs) [10] have been prototyped to implement high
performance deep learning systems.

The first FPGAs, launched in the 1980s [39], allowed one
to explore, in an extended way, spatial parallelism. FPGAs
outperform the systems based on general purpose processors
by eliminating the paradigm of sequential execution. Ku pro-
posed high-level synthesis to implement ASICs, which have
the advantage of possessing a very minutely controlled and
optimized power consumption [19]. Nevertheless, ASICs are
not suitable for application fields where the designs might
need to be upgraded frequently or even occasionally. Deep
learning is an example of a field in fast pace evolution,
for which the re-configurability of the hardware is useful.
Contrary to FPGAs, ASICs have very high Non-Recurring
Expenditure (NRE) costs [21].

NVidia’s Compute Unified Device Architecture (CUDA)
platform, first announced in 2007, was the earliest widely
adopted programming model for General Purpose computing
on a GPU (GPGPU) [13]. The GPU architecture adopts a

Single Instruction Multiple Thread (SIMT) approach, which
is more efficient than general-purpose Central Processing
Units (CPUs) when exploring data parallelism. However,
the power consumption of GPUs is relatively high. Contrari-
wise, the FPGAs architecture allows one to explore paral-
lelism without the limitations imposed by an SIMT. On the
one hand, FPGAs allow for more flexibility and are more
energy efficient than GPUs [7], [25]. GPUs, on the other
hand, have become more attractive for system designers
because, unlike FPGAs, an in-depth understanding of the
underlying hardware is not required. To counteract this ten-
dency, Xilinx has been making a considerable effort to mit-
igate these constraints by providing tools such as Vivado
HLS. Vivado HLS is a tool which has greatly facilitated the
implementation of custom logic in the programmable logic
(PL), starting from a high-level description in C language,
which can be automatically translated to HDL.

IV. RELATED WORK
Table 1 presents a comparison of the platforms found in the
literature for supporting neural network models, according to
the front ends, FPGAs supported, operation precision, and
the necessity of off-chip microinstructions to perform the
network. Note that the platforms support the convolution,
pooling and fully-connected layers.

The Automatic Neural GEnerator (ANGE) is one of the
first platforms for developing artificial neural networks [4],
[30], [31]. The first version of this platform allows only
the mapping of ANNs, but a second version extended it to
DNNs as well (Those with only two hidden fully-connected
layers). The ANGE tool uses Matlab and the System Gen-
erator from Xilinx. Currently, several approaches towards
the direction of automated mapping CNNs to FPGAs have
been proposed. Platforms such as Haddoc2 [1], DeepBurn-
ing [42], and DnnWeaver [33] generate fully synthesizable
Verilog or VHDL as output. The evolution of the HLS tools
enables the emergence of platforms such as fpgaConvNet
[41], FINN [40] and FP-DNN [16]. ALAMO, DeepBurn-
ing, DNNWeaver and the proposed platform all support the
normalization layer. Most of the platforms focus on the
automated implementation of CNNs, except FINN, which is
focused on Binarized Neural Networks (BNNs).

Most of the platforms have been integrated in existing deep
learning software libraries and frameworks. Thus far, Caffe
has been the best-supported framework for CNN-to-FPGA
mapping. Conversely, the fact that the designer is limited
to a specific framework is a disadvantage since other or
even newer frameworks may gain prominence. The design
methodology used for each platform can also be analyzed
based on the necessity of microinstructions required to imple-
ment the network. It allows one to have processing engines
controlled by software through microinstructions. This pro-
cess corresponds to the sequential execution of the layers
or set of layers in a time-sharing manner. On the other
hand, it is possible to find some platforms that implement
the network on hardware without off-chip microinstructions.

205150 VOLUME 8, 2020



D. Baptista et al.: Raising the Abstraction Level of a Deep Learning Design on FPGAs

TABLE 1. A comparison of the characteristics of different platforms (C - Convolution; P - Pooling; F - Fully-connected; N - Normalization; NL - Non-Linear
Functions).

Haddoc2 and the herein proposed platform store the train-
able parameters on-chip but the supported model size is
constrained by the storage resources of the target device.
To circumvent this constraint, the proposed platform allows
one to extend a CNN implementation to multiple FPGAs.
In this case, the input is inserted in one device and the output
is obtained from another device. The front-end is relevant to
provide platform accessibility to the developers. Most of the
platforms present a user graphical interface associated with
the framework to develop and train the networks. As men-
tioned previously, Caffe has been the best-supported frame-
work by CNN-to-FPGA automated tools. However, these
platforms do not integrate different deep learning tools. Con-
versely, ANGE, FFTCodeGen, and the proposed platform
have up to this point adopted custom front ends. With the
proposed platform, the network description is held by the
designer. Thus, this tool can reach a wider community of deep
learning researchers and practitioners. Furthermore, the pro-
posed platform is a unique platform that provides alternative
architectures to design a deep learning network on an FPGA:
N-Fold and Flow architectures. The N-Fold architecture is a
new and original architecture presented by this platform.

V. ARCHITECTURES TO DESIGN DEEP NEURAL
NETWORKS
Two different architectures are proposed to implement deep
learning on an FPGA, namely the Flow architecture and the
N-Fold architecture.

A. N-FOLD ARCHITECTURE
The N-Fold architecture is depicted in Figure 2. It is com-
posed of two sub-layers, which are iterated N times over
time to process the complete network. The first sub-layer
implements the main operation while the second sublayer
applies a non-linear function.

In this architecture, the network can only initialize a
new process after the previous iteration of the process is
completely through. Consequently, it provides high latency
and low throughput. On synthesizing this architecture,
the non-linear operation is shared, reducing the circuit area
required. Figure 2 illustrates this approach. In the first sub-
layer, the design commutes to the respective module where
the main operation is applied. Kernels, Bias and Weighs

FIGURE 2. Design interpreted by HLS when the N-Fold architecture is
used (Conv: convolution module; Max-Pool: max-pooling module; Full:
fully-connected module; K: kernel, B: bias; W: weight; ReLU: ReLU
module; Tanh: hyperbolic tangent; softmax: softmax module).

represent values that are stored in the memory to execute
the convolution and fully connected networks. In the second
sub-layer, the design commutes the signal to the respective
module to compute the non-linearity. Here, the nonlinear
part has access to two different memories: one of them
stores exponential values while the other stores hyperbolic
tangent values. An attractive feature of the N-Fold approach
is the possibility of implementing several layers in hardware
sharing the nonlinear modules.

On the other hand, in Figure 2 one can also observe
that the resulting output of each layer is temporarily stored.
Even though the output of each sublayer is a 3D map
with different sizes, a unique array was used to temporarily
store these outputs during the application of the algorithm.
Since the outputs resulting from the layers are temporarily
buffered in a common memory, resources are saved since
there is re-utilization among all the layers. The number of

VOLUME 8, 2020 205151



D. Baptista et al.: Raising the Abstraction Level of a Deep Learning Design on FPGAs

FIGURE 3. Flow architecture design (Conv: convolution module;
Max-Pool: max-pooling module; Full: fully-connected module; Non-lin:
Non-linear Module; K: kernel, B: bias; W: weight).

blocks RAM (BRAMs) required for data buffering between
sub-layers can be calculated with equation (6),

N =
Nwords ∗ Nbits

SBRAM
(6)

where Nwords is the number of values to store, Nbits is the
number of bits used to represent a word, and SBRAM is the
capacity of a BRAM. To improve the performance, a dual-
port RAM is used to allow read operations on one port and
write operations on the other port. For this purpose, the direc-
tive < #pragma HLS resources > is used, specifying that
array variable is mapped to the BRAMs. Each BRAM has
two completely independent access ports. Each port has its
own address, data in, data out, clock, clock enable, and write
enable signals.

With the previous directive, the HLS tool considers the
memory in Figure 2 as a single array and it is implemented
as one large memory. The array representation becomes a
bottleneck to achieve performance due to the limited memory
ports. However, when an array is partitioned into multiple
blocks, the single array is implemented as multiple RTL
BRAMs. Partitioning helps with the performance, allow-
ing an increase in the amount of read and write ports for
the storage and, subsequently, an increase in the number
of elements that can be accessed in parallel by the mod-
ules. Thus, there is a design trade-off between the perfor-
mance and the number of RAMs required. Vivado HLS
includes optimization directives for defining how arrays are
implemented and accessed; the directive used in this archi-
tecture is < #pragma HLS array_partition variable =
‘‘name′′ block factor = ‘‘int ′′ > where the variable =
‘‘name′′ specifies the array variable to be partitioned and the
factor = ‘‘int ′′ is the number of BRAMs used to implement
the buffer.

B. FLOW ARCHITECTURE
A general view of the Flow architecture is illustrated in
Figure 3. In the Flow architecture, the whole system is seen
as a series of data transformations, where all operations
are performed sequentially but individually independent of
each other. This architecture emphasizes the incremental
transformation of data by successive components. In this
architecture, resources are not shared, which allows for

FIGURE 4. Ping-pong buffer (Double buffering).

pipelining at the cost of requiring more hardware and mem-
ory buffers between the layers. By using the directive <
#pragma HLS dataflow >, the pipeline between the layers
is implemented and, as a result, the flow data are optimized.
In this case, data enter into the system and then flow through
the layers across time in a data flow approach. If no directive
is used, the Vivado HLS performs all the layers sequentially
without pipeline operation.

When a pipeline between the layers is used, there may be
a data conflict if a value is written through one port on a
specific address and, at the same time, a value is read from the
same address from the other port. To avoid conflicts between
the layers in the pipeline, double buffering (also known as
ping-pong buffering) is used as an intermedium memory.
Two equal size memories with two independent access chan-
nels are shown in Figure 4. One memory bank is used to
hold the previous data so that the forward layer can read it,
while the backward layer creates and transfers new data to
another memory bank. When the new data are completely
transferred, the reader and writer layer alternates the two
memory banks. The usage of double buffering increases the
overall throughput of a CNN and helps to prevent bottlenecks.

The procedure to compute the number of BRAMs in each
intermedium memory of the Flow architecture is similar to
the one for the N-Fold architecture, but the result is multiplied
by the number of memory banks, nbank ; for each intermedium
memory, the nbank is equal to 2.

VI. PROCESSING MODULES
Two different types of modules were designed to implement
deep learning on an FPGA: the main operation modules and
the non-linear modules.

A. MAIN OPERATION MODULES
The main operation modules process a feature map based
on equation (1) for the convolution module, equation (2)
for the max-pooling module, and equation (5) for the
fully-connected layer module. The Batch-normalization layer
computes each sample of the feature map by multiplying k1
and adding k2 (equation (7)). Note that equation (7) is derived
from equations (3) and (4).

yi = k1xi + k2, k1 =
γ√
σ 2
B + ε

; k2 =
µBγ√
σ 2
B + ε

+ β (7)

The main operation modules are designed for HLS descrip-
tion by using optimization directives required to reach the

205152 VOLUME 8, 2020



D. Baptista et al.: Raising the Abstraction Level of a Deep Learning Design on FPGAs

TABLE 2. Pseudo-code of the Main operation Modules, considering the directives for HLS Vivado 2016.4.

best architecture. The objective of the design is to enable the
efficient application of loop unrolling and hardware pipeline
techniques, and thereby improve the performance while using
the resources provided by the FPGA. The pseudo code,
using loop unrolling and pipelining directives, is presented
in Table 2.

A fundamental first step of HLS consists of detecting
and resolving loop issues based on program directives for
latency optimization (pipeline and unroll directives). The
HLS tool determines the dependencies between computations
and applies those techniques to achieve the specifications.
Detecting such loop dependencies and applying transfor-
mation is a complex task. Loop dependencies can be clas-
sified as loop-independent and loop-carried dependencies.

Loop-independent dependencies do not inhibit any paral-
lelization of the outer loops, while loop-carried dependencies
inhibit parallelization because the simultaneous execution of
different iterations does not respect the dependencies.

At the algorithm level, the dimension of the feature maps
processed by all the modules is different according to the
architecture used, as can be verified from Table 2. The feature
maps span through a three-dimensional (3D) space if the Flow
architecture is used, whereas the feature maps are seen as a
vector if the N-Fold architecture is used. Although BRAMs
is used in both cases to store the intermedium data, these
differences imply different interpretations of the HLS synthe-
sizer. The Flow architecture allows, for instance, a paralleliza-
tion of loop 3 in the Pseudocode of the convolution module

VOLUME 8, 2020 205153



D. Baptista et al.: Raising the Abstraction Level of a Deep Learning Design on FPGAs

FIGURE 5. a) Example of a loop-carried dependency loop; b)
Accumulation into a single register.

(see Table 2), because it has Loop-independent characteris-
tics. For this purpose, the use of the directive ‘‘array parti-
tion’’ to the n loop-iterator is introduced at the top of the
module. Thus, the buffer creates n smaller arrays from con-
secutive blocks of the original array. Consequently, direct and
broadcast connections between the input and the processing
elements are generated. In the N-Fold architecture, the result-
ing feature map is temporarily stored for each layer by using
the same memory in the format of a vector, being the number
of direct connections between the input and the processing
elements dependent on the number of BRAMs needed to
build the memory.

For both architectures, the loops from 6 to 4 in the
pseudocode 1a) of Table 2 are examples of loop-carried
dependencies, since each read operation cannot proceed until
the write operation from the previous iteration is completed
(Fig. 5a), so parallel calculation cannot be implemented. For
example, in pseudocode 1a), the multiplication of the ele-
ments of Kernel and Input can be pipelined, but the respective
addition requires the result of the addition in the previous
iteration of the loop. This is a loop-carried dependency. The
inner loop c ∈ [1;KC] accumulates into a temporary register,
which is written back to a temporary register at the end of each
iteration r ∈ [1;KR]. In its turn, when these two loops are
completed, it is accumulated and written back to a variable
Out at the end of each iteration of ns ∈ [1;NS]. This is a
common scenario when accumulating into a single register
(Fig. 5b), in cases where the accumulation operation takes
Lacc higher than 1 clock cycle (Lacc is the latency of a 32-bits
floating point operation).

The carried dependencies loops are solved by a cascade
of accumulations, allowing the pipeline to compute the out-
put elements. The cascade of accumulations may generate
interconnections with a complex topology; an iteration of a
pipelined loop depends on a result produced by a previous
iteration, accumulating partial results into registers.

B. NON-LINEAR MODULES
Three different non-linear modules are presented in this
section: the hyperbolic tangent, the ReLU, and the softmax
modules.

1) HYPERBOLIC TANGENT MODULE
The main challenge in designing the hyperbolic tangent mod-
ule is in the range -6 and 6 of its domain, because for domain

FIGURE 6. Implementation of the hyperbolic tangent module.

FIGURE 7. Implementation of the ReLU module .

x > 6 or x < −6 the hyperbolic tangent can be simply
approached by tanh(x) ≈ 1 or tanh(x) ≈ −1, respectively.
This function is an odd function [2], as it is, symmetric around
the origin. Therefore, the function is computed for x > 0, and
then for x < 0, and the hyperbolic tangent values are achieved
by using equation (8).

tanh(−x) = −tanh(x) (8)

The developed solution stores the hyperbolic tangent val-
ues for 0 6 x < 6 in memory, filling a Look Up Table (LUT).
Figure 6 illustrates the circuit for computing the hyperbolic
tangent, from the calculation of the memory address until the
output of the value.
The calculation of the memory address from the x input

value is based on a linear relation (equation (9)).

y = b(
Ntanh
x1 − x0

)xe (9)

The slope, y, is given by the ratio between the number of
memory elements, Ntanh, and the difference between the last,
x1, and the first, x0, values of the domain (x1 = 6 and x0 = 0).
Then, the quotient in equation (9) is calculated as the nearest
integer of y to get the address, selecting the best value of the
hyperbolic tangent.

2) ReLU MODULE
As depicted in Figure 7, a ReLU module provides an output
equal to zero if the input is less than zero, otherwise, the out-
put is equal to the input: if x < 0, then ϕ(x) = 0; otherwise
ϕ(x) = x.

3) SOFTMAX MODULE
The softmax function is used at the last layer of a deep
learning-based classifier [23] and it is given by equation (11).

P(y = j|x(i)) = ϕsoftmax(x(i)) =
ex

(i)∑k
j=0 e

x(i)k
(10)

This function, also named the normalized exponential
function, is used for a categorical distribution representa-
tion, giving a probability distribution over k different prob-
able outcomes. The developed architecture is presented in
Figure 8.

205154 VOLUME 8, 2020



D. Baptista et al.: Raising the Abstraction Level of a Deep Learning Design on FPGAs

FIGURE 8. Implementation of the Softmax module.

FIGURE 9. Implementation of the hybrid solution to compute the
exponential function module.

The first step consists of calculating sequentially the expo-
nential value of each input, x, with the result being stored in
a buffer. Note that before storing these values into a buffer,
the value of S =

∑k
j=0 e

xk is computed and accumulated.
Then each exponential value is divided by S. To compute the
exponential function on the hardware, a hybrid solution was
used [18]. This solution decomposes the exponential function
into an integer, int_x, and a fractional part, frac_x, of x, i.e.:

ex = eint_x × efrac_x (11)

While efrac_x is calculated by a polynomial interpolator,
eint_x is stored and uploaded from memory. Figure 9 shows
a diagram with the adopted hybrid solution.

The int_x is used to compute the memory address. In this
implementation, values between e−30 and e30 are stored in
an LUT. The frac_x is used to compute the value of efrac_x

through a 5th-order interpolating polynomial [2], [20].

VII. BENCHMARKING THE N-FOLD AND FLOW
ARCHITECTURES
In this section, the two proposed architectures, the N-Fold
and the Flow, are benchmarked. Three different networks,
namely ANN, DNN, and CNN, are considered. For each
network, the resources required to implement it, based on
each architecture on a Kintex7 [43], are presented. Addition-
ally, the latency and the throughput are presented. To further
complement the results, the performance of the implemen-
tation of these networks on a GPU through the toolbox of
Matlab is evaluated. The GPU is a GeForce Nvidia MX150
384 Compute Unified Device Architecture (CUDA).

FIGURE 10. a) Resources required to implement the ANN-1; b) Resources
required to implement the ANN-2 (LUT: Look-Up Table; FF: Flip-Flops;
BRAM: Block of RAM; DSP: Digital Signal Processor).

TABLE 3. Description of the two ANNs for experimental assessment.

A. ARTIFICIAL NEURAL NETWORK
Two ANNs, with the same topology, but using different
non-linear functions in the hidden layer, are considered in the
proposed architectures. The main characteristics of the two
ANNs are presented in Table 3.

Figure 10 presents the resources required for implement-
ing both ANNs, when adopting the different architectures.
Figure 10 can be analyzed in two different perspectives:
i) the resources required by both networks when the same
architecture is used, and ii) the resources used by the two
architectures when the same network is implemented.

Since an ANN contains just one hidden layer and one
output layer, it is logical that the difference in resource uti-
lization between both architectures is not large. However,
as expected, an ANN implemented with a Flow architecture
uses more resources than the same ANN implemented with
an N-Fold architecture. The ANN-1 uses 13% and 14% of
the FPGA resources for the N-Fold and Flow architectures,
respectively, and the ANN-2 uses 14% and 15% of the FPGA
resources for the N-Fold and Flow architecture, respectively.
On the other hand, it can be observed that an ANN that
applies the hyperbolic tangent as the non-linearity requires
more resources than the same ANN using the ReLU as the
non-linearity (1% increase of the total resources required).
The increase in the total resources needed to implement an
ANN using a hyperbolic tangent is essentially justified by the

VOLUME 8, 2020 205155



D. Baptista et al.: Raising the Abstraction Level of a Deep Learning Design on FPGAs

FIGURE 11. a) Latency of both ANNs using different architectures;
b) Amount of images per second of both ANNs using different
architectures.

FIGURE 12. Power consumption of both ANNs implemented on a GPU
and an FPGA using different architectures.

BRAMs used to store the hyperbolic tangent values and the
DSPs applied to calculate the memory addresses.

Figure 11 presents the latency and the throughput of
the implemented ANNs on a GPU and on an FPGA with the
proposed architectures, respectively. Figure 12 presents the
power consumption.

An ANN implemented with the N-Fold architecture has a
latency slightly higher than the same ANN implemented with
the Flow architecture. On the other hand, an ANN using a
ReLU as non-linearity has a latency slightly lower than the
same ANN using a hyperbolic tangent (not exceeding 0.1µs).
More time is required to calculate the memory address for
accessing the hyperbolic tangent values. The pipeline effect
between layers in the Flow architecture is not very noticeable,
since the ANNs contains just one hidden layer and one output
layer.

The GPU becomes more efficient when various instances
of the networks are batched. For example, if 15000 instances
of the ANN-1 are simultaneously processed in the GPU,
the throughput of the GPU is 11.4× higher than that of

TABLE 4. Description of the two DNNs for experimental assessment.

the FPGA. In the case of ANN-2, the throughput of the GPU
is 9.96× higher than that of the FPGA. Larger batch sizes
are almost always more efficient on GPUs since massive
parallelism is explored to take advantage of all the GPU
stream processors. However, sometimes batching inference
work is not possible due to the characteristics of the appli-
cation. In some common applications, such as a server that
does inference per request, it is not possible to implement
opportunistic batching. For each incoming request, one must
wait for a time, and if other requests come in during that
time, one must batch them together. Otherwise, one may
continue with a single instance inference. From Figure 11,
it is possible to verify that when exactly one instance of the
ANN-1 is processed at a time in the GPU, the throughput is
2.9× higher when both architectures are used. In the case
of ANN-2, the throughput is 3× higher when both archi-
tectures are used. As can be observed, situations where a
single instance is processed do exist in practice but they
are not suitable for using a GPU. Regardless of the number
of instances entered simultaneously, the power consumption
does not change significantly. This fact could be explained
since a system combines CPUs and GPUs, and the GPU does
not disconnect the resources which are not used. A compar-
ison between the power consumption of the implementation
solely on the GPU and the FPGA is presented in Figure 12.
The power consumption when the ANNs are implemented
on the GPU [38] through the toolbox of Matlab is higher
than when the same networks are implemented with the pro-
posed architectures. In the ANN-1 case, the GPU consumes
7.9× and 8.2× more power when the N-Fold and Flow are
used, respectivaly. In the ANN-2 case, the GPU consumes
7.7× and 8.1× more power when the N-Fold and Flow are
used, respectively.

B. DEEP NEURAL NETWORK
The DNNs in Table 4 were considered to apply the two
proposed architectures.

Figure 13 presents the resources required for implement-
ing both DNNs, by using the two proposed architectures,
on FPGAs. Figure 13 shows that a DNN with 3 hidden
layers implemented using the Flow architecture uses more
resources than when the same DNN is implemented using the
N-Fold architecture. The DNN-1 spends 14% and 31% of the
total resources available when implemented with the N-Fold
and Flow architectures, respectively. The total resources
needed to implement the DNN-2 using an N-Fold and a

205156 VOLUME 8, 2020



D. Baptista et al.: Raising the Abstraction Level of a Deep Learning Design on FPGAs

FIGURE 13. a) Resources required to implement the DNN-1; b) Resources
required to implement the DNN-2 (LUT: Look-Up Table; FF: Flip-Flops;
BRAM: Block of RAM; DSP: Digital Signal Processor).

Flow architecture are 16% and 35%, respectively. Moreover,
a DNN using the hyperbolic tangent as the non-linearity
requires more resources than when using the ReLU as the
non-linearity (an additional 2% in case of the N-Fold and
4% in case of the Flow architecture). Figure 14 presents the
latency and the throughput of the DNNs implemented on a
GPU and with the proposed architecture. Figure 15 presents
the power consumption. In a generic overview, a DNN using
a ReLU as the non-linearity (DNN-1) exhibits a latency
slightly higher than the same DNN using the hyperbolic
tangent as the non-linearity instead (DNN-2). On the other
hand, the DNN implemented with the Flow architecture has
a higher throughput than when implemented with the N-Fold
architecture. The throughput increases by 5.1% for DNN-1
and 4.5% for DNN-2 when the Flow architecture is used.
When 15000 instances of the DNN-1 are batched and simul-
taneously processed in the GPU, the throughput is 13.1× and
13.8× higher than the Flow and the N-Fold FPGA archi-
tectures, respectively. In the case of DNN-2, the throughput
of the GPU is 12× and 12.6× higher than the Flow and
the N-Fold architectures, respectively. Futhermore, can be
verified that when exactly one instance of the DNN-1 is
processed at a time in the GPU, the throughput is 3.4× higher
and 3.6× higher when the N-Fold and the Flow architectures
are used on an FPGA, respectively. In the case of DNN-2,
the throughput is 3.7× higher and 3.9× higher when the
N-Fold and the Flow architectures are used, respectively. The
power consumption of the DNNs implemented on the GPU
through the toolbox of Matlab is higher than that on the
FPGA. In the DNN-1 case, the GPU consumes 7.6× and
7.4× more power if the N-Fold and the Flow architectures
are used, respectively. In the DNN-2 case, the GPU consumes
7.5× and 7.2× more power if the N-Fold and the Flow
architecture are used, respectively.

FIGURE 14. a) Latency of both DNNs using different architectures;
b) Throughput of both DNNs using different architectures.

FIGURE 15. Power consumption of both DNNs implemented on a GPU
and an FPGA using different architectures.

C. CONVOLUTION NEURAL NETWORKS
Two CNNs were chosen to experimentally evaluate each
of the proposed architectures. The main features of the
CNNs applied for the experimental assessment are presented
in Table 5.

Figure 16 presents the FPGA resources required for
implementing the CNN-1 and the NCNN-1 using the two
proposed architectures. The CNN-1 implemented with the
N-Fold architecture uses 39% of the total resources available,
while the CNN-1 implemented with the Flow architecture
uses 49% of the total resources. As expected, the CNN-1
designed with the N-Fold architecture uses fewer resources
than those designed with the Flow architecture. In Figure 16b,
we can see an extreme situation: the impossibility of ‘‘fit-
ting’’ an network implemented with the Flow architecture
due to the lack of resources. The NCNN-1 implementation
using the N-Fold architecture requires around 47% of the
total resources available. However, an impossibility of imple-
menting the NCNN-1 is verified if the Flow architecture is
used, due to the lack of LUTs and DSPs. In these situations,
the N-Fold architecture is the only one that can be used for
implementing the NCNN-1 in a single FPGA.

VOLUME 8, 2020 205157



D. Baptista et al.: Raising the Abstraction Level of a Deep Learning Design on FPGAs

TABLE 5. Description of the two CNNs for experimental assessment.

FIGURE 16. a) Resources required to implement the CNN-1; b) Resources
required to implement the NCNN-1 (LUT: Look-Up Table; FF: Flip-Flops;
BRAM: Block of RAM; DSP: Digital Signal Processor).

Figure 17 presents the latency and the throughput of the
CNN-1 and the NCNN-1 implemented on a GPU, and the
CNN-1 and the NCNN-1 implemented with the proposed
architecture, respectively, with Figure 18 presenting the cor-
responding power consumption.

With this experience, one may come to realize the
advantage of using the Flow architecture, in terms of per-
formance improvement. The Flow architecture achieves sig-
nificantly higher throughput than the N-Fold architecture.
The increase of throughput is 2.12× and 4.44× for the
CNN-1 and the NCNN-1, respectively. The GPU becomes
more efficient when various instances are batched. For exam-
ple, if 15000 instances of the CNN-1 are simultaneously

FIGURE 17. a) Latency of the CNN-1 and the NCNN-1 using different
architectures; b) Throughput of the CNN-1 and the NCNN-1 using
different architectures.

FIGURE 18. Power consumption of both DNNs implemented on a GPU
and an FPGA using different architectures.

processed in the GPU, the throughput of the GPU is 12.5×
and 26.4× higher than the Flow and the N-Fold architectures,
respectively. In the case of the NCNN-1, the throughput of
the GPU is 5.6× and 25× higher than the Flow and the
N-Fold architectures, respectively. It can be verified that
when only one instance of the CNN-1 is processed at a
time in the GPU, the throughput is 5.1× higher and 10.7×
higher when the N-Fold and the Flow FPGA architectures are
used, respectively. In the case of the NCNN-1, the through-
put is 5.3× and 23.52× higher than when the N-Fold and
the Flow architectures are used, respectively. As can be is
observed, situations where a single instance is processed exist
in practice but are not suitable for using a GPU. The power
consumption of the CNN-1 and the NCNN-1 implemented on
a GPU through the toolbox of Matlab is higher than the same
networks implemented with the proposed architectures. In the
CNN-1 case, the GPU consumes 6.1× and 6.2×more power
if the N-Fold and the Flow architecture are used, respectively.
In the NCNN-1 case, the GPU consumes 5.9× and 4.9×
more power if the N-Fold and the Flow architectures are used,
respectively.

205158 VOLUME 8, 2020



D. Baptista et al.: Raising the Abstraction Level of a Deep Learning Design on FPGAs

TABLE 6. A comparison with the published results.

VIII. COMPARATIVE EVALUATION WITH
STATE-OF-THE-ART
The CNN applied for the performance comparison between
the proposed architectures and the state-of-the-art FPGA
implementations has in the first layer 11 convolutions, with
3 × 3 kernels and 3 feature maps as input, producing maps
of size 24 × 24. The next layer computes 12 high-level
features by performing 3 × 3 convolutions. The third layer
performs 2 × 2 spatial pooling. The fourth layer performs
3×3 convolutions resulting in 10 feature maps followed by a
2× 2 pooling layer. Finally, the last layer is a linear classifier
having 10 neurons and applying the softmax function as
the activation function. Two different implementations were
tested, one of them supported on the N-Fold architecture and
the other one on the Flow architecture. On one hand, 49%
of the total resources are used to implement the CNN with
the Flow architecture. On the other hand, 43% of the total
resources are used to implement the CNN with the N-Fold
architecture.

Table 6 compares the performance of some CNNs from
state-of-the-art implemented on the FPGAs with the one
implemented with the platform investigated in this paper.

Most of the implementations use fixed-point arithmetic,
while the implementation proposed in this Thesis uses
floating-point arithmetic. Nevertheless, [44] presents an
implementation that uses floating-point but, in contrast with
the solution proposed in this Thesis, requires external mem-
ory to store/retrieve kernels and on-/off-chip interconnect.
As a result, this makes both proposed architectures in this
Thesis more cost-effective.

In general, the two architectures developed in this work
presents a competitive throughput in comparison to the exist-
ing solutions in Table 6. However, the solution presented in
[44] is the most noteworthy as this implementation presented
a throughput of 61.62 GOP/s, which is better than the imple-
mentation using the Flow architecture. One reason which
could explain why the proposed architecture does not achieve
a higher throughput is directly related to the number of access
ports available in the memory between the layers. In [44] the
CNN design is composed of PEs, an on-chip buffer, external
memory, and on-/off-chip interconnect. All the intermedium
data are stored in the external memory and the PE is the basic
computation unit for convolution which is tiled to fit in the
PL part. The tile data are first transferred from the exter-
nal memory to the on-chip buffer before being fed to PEs.

This buffer contains several independent buffer banks and the
number of these buffer banks is equal to the number of inputs
in the tile data. In this way, it is possible to access all the inputs
simultaneously to process the tile, increasing its calculation
speed. In the case of this paper’s research, the intermedium
data between the layers are stored in a buffer. The size of that
buffer is sufficient to allocate all the intermediate values, but
each input does not have an exclusive port. The fact that there
are not enough ports to simultaneously access all intermediate
values may cause a delay in the processing values. On the
other hand, the implementation using the N-Fold architecture
ranks in a favorable position, considering that the N-Fold
architecture saves resources at the cost of throughput.

IX. CONCLUSION
A platform to deploy a generic parameterizable-based deep
learning on an FPGA was proposed in this paper. In this
platform, the parameterization of the networks is applied to
easily design a deep learning system that adopts convolu-
tion, max-pooling, batch-normalization, and fully connected
layers. The parameterization provides tools to the designer
for configuring a deep learning in a ‘‘lego’’ approach and
deploying it automatically on an FPGA.

Two different architectures were proposed in this paper
to design and implement those networks on FPGAs, namely
the N-Fold architecture and the Flow architecture. While
the N-Fold architecture is composed of a single hardware
layer, which iterates N times for the multiple layers, the Flow
architecture processes ‘‘flows’’ between hardware layers that
operate in a pipeline way. In both architectures, each layer
is composed of two different modules: the main operation
and the non-linearity modules. Loop unrolling and pipelining
were applied to improve the performance and the efficiency
of the networks synthesized with HLS.

The performance of the networks implemented with the
proposed architectures has been evaluated and compared
with the performance achieved with GPUs. The proposed
architectures present a better performance when compared
with the implementation on a GPU. Comparing both archi-
tectures, the N-Fold architecture requires fewer FPGA
resources than the Flow architecture, since the N-Fold re-
uses resources. On the other hand, the performance of net-
works using the Flow architecture is higher than those using
the N-Fold architecture. The deeper the network, the more
significant the increase in latency and the decrease of the
throughput of the networks implemented with the N-Fold
architecture. This characteristic is presented as an advantage
of Flow over the N-Fold architecture. However, the herein
architecture requires all the weights and kernels to be stored
on-chip and, as consequence, the supported model size is
constrained by the storage resources of the target device.

REFERENCES
[1] K. Abdelouahab, C. Bourrasset, M. Pelcat, F. Berry, J.-C. Quinton, and

J. Serot, ‘‘A holistic approach for optimizing DSP block utilization of a
CNN implementation on FPGA,’’ in Proc. 10th Int. Conf. Distrib. Smart
Camera (ICDSC), 2016, pp. 69–75.

VOLUME 8, 2020 205159



D. Baptista et al.: Raising the Abstraction Level of a Deep Learning Design on FPGAs

[2] D. Baptista and F. Morgado-Dias, ‘‘Low-resource hardware implemen-
tation of the hyperbolic tangent for artificial neural networks,’’ Neural
Comput. Appl., vol. 23, nos. 3–4, pp. 601–607, Sep. 2013.

[3] D. Baptista, F. Morgado-Dias, and L. Sousa, ‘‘Configurable N-fold hard-
ware architecture for convolutional neural networks,’’ in Proc. Int. Conf.
Biomed. Eng. Appl. (ICBEA), Jul. 2018, pp. 1–8.

[4] F. D. Baptista and F. Morgado-Dias, ‘‘Automatic general-purpose neural
hardware generator,’’ Neural Comput. Appl., vol. 28, no. 1, pp. 25–36,
Jan. 2017.

[5] S. Cadambi, A. Majumdar, M. Becchi, S. Chakradhar, and H. P. Graf,
‘‘A programmable parallel accelerator for learning and classification,’’ in
Proc. 19th Int. Conf. Parallel Archit. Compilation Techn. (PACT), 2010,
p. 273.

[6] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, ‘‘A dynami-
cally configurable coprocessor for convolutional neural networks,’’ ACM
SIGARCH Comput. Archit. News, vol. 38, no. 3, p. 247, 2010.

[7] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu, and S. Zhang, ‘‘Understanding
performance differences of FPGAs and GPUs,’’ in Proc. ACM/SIGDA Int.
Symp. Field-Program. Gate Arrays, Feb. 2018, pp. 93–96.

[8] J. C. de Sousa, ‘‘Projecto e síntese em alto nível de circuitos digitais,’’
Ph.D. dissertation, Univ. de Brasília-UnB, Brasília, Brazil, 2017.

[9] Hitting the Accelerator: The Next Generation of Machine-Leaning Chips,
Deloitte, London, U.K., 2017.

[10] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culurciello,
‘‘Hardware accelerated convolutional neural networks for synthetic vision
systems,’’ in Proc. IEEE Int. Symp. Circuits Syst., May 2010, pp. 257–260.

[11] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, ‘‘CNP: An FPGA-based
processor for convolutional networks,’’ in Proc. Int. Conf. Field Program.
Log. Appl., Aug. 2009, pp. 32–37.

[12] D. D. Gajski, A. Gerstlauer, S. Abdi, and G. Schirner, Embedded Sys-
tem Design: Modeling, Synthesis and Verification. Boston, MA, USA:
Springer, 2009.

[13] J. Ghorpade, ‘‘GPGPU processing in CUDA architecture,’’ Adv. Comput.,
Int. J., vol. 3, no. 1, pp. 105–120, Jan. 2012.

[14] G. Gielen and W. Sansen, Symbolic Analysis for Automated Design of
Analog Integrated Circuits. Boston, MA, USA: Springer, 1991.

[15] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello,
‘‘A 240 G-ops/s mobile coprocessor for deep neural networks,’’ in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Workshops,
Jun. 2014, pp. 696–701.

[16] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang,
and J. Cong, ‘‘FP-DNN:An automated framework formapping deep neural
networks onto FPGAs with RTL-HLS hybrid templates,’’ in Proc. IEEE
25th Annu. Int. Symp. Field-Program. Custom Comput. Mach. (FCCM),
Apr. 2017, pp. 152–159.

[17] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, andW. J. Dally,
‘‘EIE: Efficient inference engine on compressed deep neural network,’’ in
Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016,
pp. 243–254.

[18] I. Nascimento, R. Jardim, and F. Morgado-Dias, ‘‘A new solution to the
hyperbolic tangent implementation in hardware: Polynomial modeling of
the fractional exponential part,’’ Neural Comput. Appl., vol. 23, no. 2,
pp. 363–369, Aug. 2013.

[19] C. Ku, ‘‘Size, speed, and power analysis for application specific integrated
circuits using synthesis,’’ M.S. thesis, Univ. Tennessee, Knoxville, TN,
USA, 2003.

[20] J. C.Mason andD. C. Handscomb,Chebyshev Polynomials. London, U.K.:
Chapman & Hall, 2003.

[21] M.Mason, ‘‘Considering the total cost of FPGAs,’’ Elektron, vol. 22, no. 6,
pp. 24–26, 2005.

[22] W. Meeus, K. Beeck, T. Goedemé, J. Meel, and D. Stroobandt,
‘‘An overview of today’s high-level synthesis tools,’’ Design Automat.
Embedded Syst., vol. 16, pp. 31–51, Aug. 2012.

[23] R. Memisevic and C. Zach, ‘‘Gated softmax classification,’’ in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), 2011, pp. 1–9.

[24] J. Nagi, F. Ducatelle, G. A. Di Caro, D. Ciresan, U. Meier, A. Giusti,
F. Nagi, J. Schmidhuber, and L. M. Gambardella, ‘‘Max-pooling convo-
lutional neural networks for vision-based hand gesture recognition,’’ in
Proc. IEEE Int. Conf. Signal Image Process. Appl. (ICSIPA), Nov. 2011,
pp. 342–347.

[25] E. Nurvitadhi, S. Subhaschandra, G. Boudoukh, G. Venkatesh, J. Sim,
D. Marr, R. Huang, J. G. Hock, Y. T. Liew, K. Srivatsan, andD.Moss, ‘‘Can
FPGAs beat GPUs in accelerating next-generation deep neural networks?’’
in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays (FPGA),
2017, pp. 5–14.

[26] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and
E. S. Chung, ‘‘Accelerating deep convolutional neural networks
using specialized hardware,’’ Microsoft Res., vol. 2, no. 11, pp. 3–6,
2015.

[27] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, ‘‘Memory-
centric accelerator design for convolutional neural networks,’’ in
Proc. IEEE 31st Int. Conf. Comput. Design (ICCD), Oct. 2013,
pp. 13–19.

[28] J. Qiu, S. Song, Y. Wang, H. Yang, J. Wang, S. Yao, K. Guo,
B. Li, E. Zhou, J. Yu, T. Tang, and N. Xu, ‘‘Going deeper with
embedded FPGA platform for convolutional neural network,’’ in Proc.
ACM/SIGDA Int. Symp. Field-Program. Gate Arrays (FPGA), 2016,
pp. 26–35.

[29] P. Ramachandran, B. Zoph, and Q. V. Le, ‘‘Swish: A self-gated
activation function,’’ 2017, arXiv:1710.05941v1. [Online]. Available:
https://arxiv.org/abs/1710.05941v1

[30] L. Reis, L. Aguiar, D. Baptista, and F. Morgado-Dias, ‘‘A software tool
for automatic generation of neural hardware,’’ Int. Arab J. Inf. Technol.,
vol. 11, no. 3, pp. 229–235, 2014.

[31] L. Reis, L. Aguiar, D. Baptista, and F. M. Dias, ‘‘ANGE: Automatic neural
generator,’’ in Proc. 21st Int. Conf. Artif. Neural Netw. (ICANN). Berlin,
Germany: Springer-Verlag, 2011, pp. 446–453.

[32] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic,
E. Cosatto, and H. P. Graf, ‘‘A massively parallel coprocessor for convolu-
tional neural networks,’’ in Proc. 20th IEEE Int. Conf. Appl.-Specific Syst.,
Archit. Processors, Jul. 2009, pp. 53–60.

[33] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra,
and H. Esmaeilzadeh, ‘‘From high-level deep neural models to FPGAs,’’ in
Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO), Oct. 2016,
pp. 1–12.

[34] T. Stieglits and J.-U. Meyer, ‘‘Biomedical microdevices for neural
implants,’’ in Proc. BioMEMS, vol. 16, 2007, pp. 71–137.

[35] D. Strigl, K. Kofler, and S. Podlipnig, ‘‘Performance and scala-
bility of GPU-based convolutional neural networks,’’ in Proc. 18th
Euromicro Conf. Parallel, Distrib. Netw.-Based Process., Feb. 2010,
pp. 317–324.

[36] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrud-
hula, J.-S. Seo, and Y. Cao, ‘‘Throughput-optimized OpenCL-based
FPGA accelerator for large-scale convolutional neural networks,’’ in
Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2016,
pp. 16–25.

[37] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang,
‘‘Hardware for machine learning: Challenges and opportunities,’’
in Proc. IEEE Custom Integr. Circuits Conf. (CICC), Apr. 2018,
pp. 1–8.

[38] GPU-Z v2.33.0, TechPowerUp, New York, NY, USA, Jul. 2020.
[39] S.M. Trimberger, ‘‘Three ages of FPGAs: A retrospective on the first thirty

years of FPGA technology,’’ Proc. IEEE, vol. 103, no. 3, pp. 318–331,
Mar. 2015.

[40] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, ‘‘FINN: A framework for fast, scalable binarized neural
network inference,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, 2017, pp. 65–74.

[41] S. I. Venieris and C.-S. Bouganis, ‘‘FpgaConvNet: A framework for map-
ping convolutional neural networks on FPGAs,’’ in Proc. IEEE 24th Annu.
Int. Symp. Field-Program. Custom Comput. Mach. (FCCM), May 2016,
pp. 40–47.

[42] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, ‘‘DeepBurning: Automatic
generation of FPGA-based learning accelerators for the neural network
family,’’ in Proc. 53rd Annu. Design Automat. Conf. (DAC), 2016, pp. 1–6.

[43] Xilinx UG810—KC705 Evaluation Board for the Kintex-7 FPGA User
Guide, Xilinx, San Jose, CA, USA, 2019.

[44] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, ‘‘Optimizing
FPGA-based accelerator design for deep convolutional neural networks,’’
in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays (FPGA),
2015, pp. 161–170.

[45] X. Zhang, S. Das, O. Neopane, and K. Kreutz-Delgado, ‘‘A design
methodology for efficient implementation of deconvolutional neural net-
works on an FPGA,’’ 2017, arXiv:1705.02583. [Online]. Available:
http://arxiv.org/abs/1705.02583

[46] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R. Gupta,
and Z. Zhang, ‘‘Accelerating binarized convolutional neural networks with
software-programmable FPGAs,’’ in Proc. ACM/SIGDA Int. Symp. Field-
Program. Gate Arrays, 2017, pp. 15–24.

205160 VOLUME 8, 2020



D. Baptista et al.: Raising the Abstraction Level of a Deep Learning Design on FPGAs

DARÍO BAPTISTA received the master’s degree in
telecommunications and networks from the Uni-
versity of Madeira, Portugal, in 2009. He is cur-
rently pursuing the Ph.D. degree called NETSyS
with the Instituto Superior Técnico, Lisbon. He has
been involved in research projects, since 2010,
with the Madeira Interactive Technologies Insti-
tute and the Centre of Exact Sciences and Engi-
neering of the University of Madeira. His research
interests include automation, artificial neural

networks, deep learning, and field programmable gate array implementations.

LEONEL SOUSA (Senior Member, IEEE)
received the Ph.D. degree in electrical and
computer engineering from the Instituto Supe-
rior Técnico (IST), Universidade de Lisboa (UL),
Lisbon, Portugal, in 1996. He is currently a Full
Professor with Universidade de Lisboa (UL).
He is also a Senior Researcher with the Research
and Development Instituto de Engenharia de Sis-
temas e Computadores (INESC-ID). His research
interests include VLSI architectures, computer

architectures, parallel computing, computer arithmetic, and signal pro-
cessing systems. He has contributed to more than 200 papers in journals
and international conferences, for which he got several awards, such as
DASIP’13 Best Paper Award, SAMOS’11 ’Stamatis Vassiliadis’ Best Paper
Award, DASIP’10 Best Poster Award, and the Honorable Mention Award
UTL/Santander Totta for the quality of the publications, in 2009. He has
contributed to the organization of several international conferences, namely
as program chair and as general and topic chair, and has given keynotes in
some of them. He has edited four special issues of international journals, and
he is currently Senior Editor of the IEEE JETCAS, Associate Editor of the
IEEE TRANSACTIONS ON COMPUTERS, IEEE ACCESS, and Springer JRTIP. He is
Fellow of the IET and Distinguished Scientist of ACM.

FERNANDO MORGADO-DIAS (Member, IEEE)
received the master’s degree in microelectronics
from the University Joseph Fourier, Grenoble,
France, in 1995, and the Ph.D. degree from the
University of Aveiro, Portugal, in 2005. He is cur-
rently an Assistant professor with the University
of Madeira and a Researcher with the Madeira
Interactive Technologies Institute and Larsys/ITI.
His research interests include renewable energy,
artificial neural networks, and FPGA implemen-

tations. His affiliation is now at the University of Madeira, ITI/Larsys, and
Madeira Interactive Technologies Institute.

VOLUME 8, 2020 205161


