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ABSTRACT In recent years, osteoporosis prediction has been paid more attention among healthcare experts
and the public. It is a silent disease that causes many fractures and complications that impact the quality of
human life; therefore, predicting osteoporosis is important to reduce the risk of fractures; however, many
irrelevant descriptors can influence the prediction of osteoporosis, thus, computational methods are needed.
In this article, we present a new method to predict osteoporosis, which starts by pre-processing the data to
avoid an imbalanced dataset. Then, the sine–cosine algorithm, based on the information gain fuzzy-rough set,
is applied to select themost discriminative descriptors. Finally, classifiers are used to predict the deficiency of
osteoporosis samples based on the selected descriptors. To evaluate the efficacy of the proposed approach,
two experiments were performed using benchmark datasets and real osteoporosis data. The results of the
experiments show that the proposed approach achieved competitive results compared to the other methods
in selecting the most appropriate descriptors for predicting osteoporosis. The selected descriptors show a
high correlation with osteoporosis.

INDEX TERMS Feature selection, osteoporosis prediction, sine-cosine algorithm, information gain, fuzzy-
rough.

I. INTRODUCTION
Bones come in a complicated internal and external formation,
have a variety of shapes and sizes, are lightweight, hard,
strong, and serve multiple functions. A shortcoming between
bone resorption and formation can cause various bone dis-
eases, including arthritis, fractures, infections, tumors, and
osteoporosis [1]. Osteoporosis (OP) is a disease found in
adults as a systemic skeletal disorder identified byminor bone
mass and the microarchitectural decline of bones. It features
declined bone strength and a heightened risk of fractures,
particularly of the wrist, hip, spine, humerus, and pelvis [2].
Brouns and Vermeer [3] verified that a serious number of
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patients die from complications during the first year of recov-
ery from the fracture; half of those who survive will never
have the ability to move around without the assistance of
walking aids and wheelchairs. A 10% loss of bone mass in
the vertebrae can double the risk of vertebral fractures, and
a 10% loss of bone mass in the hip can result in a 2.5 times
greater risk of hip fracture [4].

Numerous aspects that cause bone loss are age—a major
reason for osteoporosis—smoking, calcium, alcohol excess,
and vitamin D shortage, muscle mass, low weight, anti-
convulsants, and corticosteroids. Bone loss can also be
a result of comorbid conditions, for instance, rheumatoid
arthritis [5], surgical removal of the ovaries, kidney disease,
hyperthyroidism, and anorexia [2]. All around the world,
the lifetime hazard of osteoporotic fractures in women is
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30%–50% and in men is 15%–30% [6]. In 2000, nine million
recent osteoporotic fractures were predicted, with more than
1.5 million of those being hip fractures, more than 1.6 million
being forearm fractures, and more than 1.3 million clinical
vertebral fractures. The Americas and Europe accounted for
50% of all these fractures, whilst the rest mostly occurred in
Southeast Asia and the Western Pacific region [7]. Earlier
studies by Cheung et al. [8] in 2018 projected that the cost
of hip fractures will grow from 9.50 billion USD in 2018 to
reach 15.00 billion USD in 2050. They indicated that a
2%–3% decrease annually in the incidence rate of hip fracture
is needed to keep the number of hip fractures constant over
time.

Because health is our most basic human right, many com-
puter science researchers utilized numerous computational
methods and expert systems to predict osteoporosis at an
early stage. In this context, the authors of [9] applied the
ensemble artificial neural networks (ANN) and genetic algo-
rithm to predict hip bone fracture risk; they used a general
dataset (i.e., questionnaire surveys) to classify their samples.
Lim et al. [10] utilized a deep neural network model for
predicting osteoporosis using statistical medical records of
patients. Yu et al. [11] proposed a diagnosis system for
osteoporosis based on X-ray images; they applied an ANN
to perform this task. In the same trend, Zhou et al. [12]
developed a classification model using a convolutional neural
network (CNN) to diagnose osteoporosis using photoacoustic
signals. Aouache et al. [13] segmented the cervical vertebra
shape boundary and extracted the features to classify osteo-
porosis.

Despite the attempts of these studies to predict the osteo-
porosis and the risk of hip bone fracture, the most important
aspect for osteoporosis is still a challenge; they used statis-
tics, medical records, and X-ray image datasets instead of
using laboratory samples and did not apply feature selection
methods to identify the most relevant features and minerals
that play a role in osteoporosis. Therefore, in this study,
we applied a new feature selection method to determine the
most important features and extract irrelevant data.

Feature selection (FS) is an appropriate step to take to
select important features (descriptors) from the data. Accord-
ingly, this step has a significant role in reducing the com-
putation time and cost as well as improving the predictive
accuracy [14]. These methods decrease the number of fea-
tures while preserving the relevant information in the dataset.
Many techniques are used for this purpose and applied in
several applications such as in [15]–[18].

In general, the feature selection methods are classified into
two techniques: wrapper and filter methods. The wrapper
methods depend on the classification algorithm to evaluate
the selected features subset; however, the accuracy of these
methods is influenced by the attributes of the used classifier;
therefore, if the parameters of the classifier are not accurately
chosen, this may lead to a degradation of the accuracy of
the selected features [19], [20]. Unlike the wrapper meth-
ods, the filter methods do not depend on the classification

algorithm to evaluate the selected features and they are also
less expensive than the wrapper methods.

Several filter measures have been applied to feature selec-
tion for example, information, distance, and correlation mea-
sures that are less expensive. Meanwhile rough set and fuzzy
set measures are more reliable than other filter measures.

The rough and fuzzy sets are used to deal with the
uncertainty, which is considered one of the main problems
in computational processing [21]. The hybrid between the
fuzzy-rough set (FR) can directly work with numerical or
continuous data [22] and is utilized to solve feature selection
problems [23], [24]. The hybrid was also applied to reduce
the attributes of the categorical data as in [22], [25].

This motivated us to use the FR set to determine the
relevant features from the original features; however, the tra-
ditional FR methods suffer from some limitations, such
as taking a long time to select suitable features since
they are sequentially applied to all features. This required
more CPU time(s), especially to handle high-dimension and
real-world datasets. To overcome these limitations, the FR
can be combined with meta-heuristic (MH) algorithms,
such as the swarm intelligent techniques including particle
swarm optimization (PSO) [26], genetic algorithm (GA) [27],
social-spider optimization (SSO) [28], and modified cuckoo
search [29].

According to the advantages of the FR as a feature selection
method and MH techniques, in this article, we provide an
alternative FS method to improve the prediction of osteo-
porosis. This method combines the FR and a MH technique,
named the Sine–Cosine Algorithm (SCA) to find the most
relevant features of osteoporosis data, where the gain infor-
mation uses the FR as a fitness function.

We used the SCA algorithm due to its advantages, such
as fast convergence, its ability to balance between explo-
ration and exploitation phases, its effective escape from local
optima, its ease of use, and its good search characteristics,
as well as it having few predefined parameters. It was also
successfully applied in many applications.

According to these properties, SCA was successfully used
in previous studies for feature selection such as the authors
of [30] applied SCA to select the most appropriate features
from UCI datasets, the results showed an advance over PSO
and GA. SCA was also combined with DE in [17] and
applied to select the important features, this method showed
good results against the compared algorithms; however, these
studies used SCA, but they did not try to combine it with
FR—the purpose of our study was to add value in this
context—whereas the FR avoids the limitations of traditional
rough set, which leads to improving the quality of the selected
features. In addition, to the best of our knowledge, this is the
first time someone has attempted to apply FR and SCA to real
osteoporosis data.

The main contribution of our paper can be summarized
as:

1) We propose an alternative feature selection method
based on a binary sine–cosine algorithm that uses the
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fuzzy-rough set as an objective function to check the
quality of each selected features.

2) We propose a prediction osteoporosis approach that
determines the optimal subset of features related to the
serum concentration of calcium.

3) We evaluated the proposed method using UCI bench-
mark datasets and a real dataset related to osteoporosis.

The rest of this article is arranged as follows: Section II
presents preliminaries, where a brief overview of fuzzy-rough
sets and the sine–cosine algorithm is introduced. The pro-
posed approach is described in Section III. Section IV
presents the experiments and analysis, illustrating the prop-
erties of the proposed approach. The conclusion comes with
some recommendations for future work, and is given in
Section V.

II. PRELIMINARIES
A. FUZZY-ROUGH SETS
This section presents some basic concepts about information
measures for the fuzzy-rough set model, which can be found
in [31]. The main feature of the fuzzy-rough set model is its
ability to tackle real-valued features, which the traditional RS
cannot deal with [21]. Suppose that the fuzzy approximation
space is given by < U ,A >, in which the U and A are two
finite sets. U = {x1, . . . , xn} is the universe of primitive
instances and A is the family of features [21]. R denotes a
fuzzy equivalence relation determined on X , signified by a
relation matrix M (R) [32]:

M (R) =


b11 b12 . . . b1n
b21 b22 . . . b2n
. . . . . . . . . . . .

bn1 bn2 . . . bnn

 (1)

where bij is the fuzzy similarity measure. It is determined as:

bij =

1− 4
|xj − xi|
|amax − amin|

if
|xj − xi|
|amax − amin|

≤ ε

0 otherwise
(2)

where, ε value equals to 0.25.
The partition of fuzzy of U constructed by R, represented

by U/R, can be determined as in Equation 3:

U/R = {[xi]R}ni=1, [xi]R =
bi1
x1
+
bi2
x2
+ . . .+

bin
xn

(3)

where [xi]R represents the fuzzy equivalence class built by
R and xi. The entropy for the fuzzy equivalence relation is
computed as in [23]:

H (R) = −
n∑
i=1

λR log λR, λR =
|[xi]R|
n

(4)

where |[xi]R| is the cardinality; also, the entropy of two
subsets P and Q of fuzzy feature set A (i.e., P,Q ∈ A) is
defined as:

H (P) = −
np∑
p=1

λp log λp, λP =
|[xp]P|
np

(5)

H (Q) = −
nq∑
q=1

λq log λq, λq =
|[xq]Q|
nq

(6)

where nq and np are the number of classes created by Q and
P, respectively, and [xp]P and [xq]Q are the fuzzy equivalence
partitions containing xp/xq created by P and Q. The joint
entropy (H (PQ)) of P and Q is computed as in [23]:

H (PQ) = −
np∑
i=1

nq∑
j=1

|Pi
⋂
Qj|

n
log
|Pi
⋂
Qj|

n
(7)

In addition, the conditional entropy (H (P|Q)) of P condi-
tioned to Q can be calculated as:

H (P|Q) = −
np∑
i=1

nq∑
j=1

|Pi
⋂
Qj|

n
log
|Pi
⋂
Qj|

|Qj|
(8)

H (P|Q) = H (PQ)− H (Q) (9)

Therefore, the mutual information I (PQ) for P and Q is
represented by

I (PQ) = H (P)−H (P|Q)=H (P)+H (Q)−H (PQ) (10)

Both Q and P do not participate any information if the
I (PQ) equals zero, whereas, in the case that Q and P are
highly non-linearly correlated, then a high I (PQ) will be
obtained.

In this study,P is the condition feature andQ is the decision
feature (group label for osteoporosis disease dataset). The
gain measure can be calculated as in [32]:

Gain(a,B,Q) = I (B ∪ a;Q)− I (B;Q),

If B = φ,Gain(a,B,Q) = I (a;Q) (11)

where B ⊆ P and a is the feature (∀a ∈ P− B).

B. SINE-COSINE ALGORITHM
In this section, the basic concepts of the sine-cosine algo-
rithm (SCA) are illustrated [33].

The solution is updated using either sine or cosine function
as in the following equations [33]:

Si = Si + λ1 × sin(λ2)× |λ3Sb − Si| (12)

Si = Si + λ1 × cos(λ2)× |λ3Sb − Si| (13)

These two equations are blended to update each solution by
sine or cosine function:

Si =

{
Si + λ1 × sin(λ2)× |λ3Sb − Si| if λ4 < 0.5
Si + λ1 × cos(λ2)× |λ3Sb − Si| if λ4 ≥ 0.5

(14)

where Si is the current solution, λ1, λ2, λ3 and λ4 represent
random variables, Sb denotes the destination position, and |.|
denotes the absolute value [33].

As in [33], the parameter λ1 indicates the next position
regions. λ2 determines how far the movement should be
towards or outwards the target. The parameter λ3 sets a
weight for the target to deemphasize (λ3 < 1) or emphasize
(λ3 > 1) the effect of desalination in the distance definition.
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Finally, the parameter λ4 denotes a random number in [0,1]
and equally alternates between the sine and cosine in Equa-
tion (14). The range of sine and cosine in Equation (14) is
calculated by Equation 15 to switch between exploration and
exploitation:

λ1 = a-t
a
T

(15)

where t represents the current iteration, T represents the max
iterations number, and a denotes a constant. Following [33],
the values of λ2, λ3 and λ4 is updated at each iteration as λ2 =
2πrand ,λ3 = 2 rand , and λ4 = rand ; where rand ∈ [0, 1] is
a random number.

III. THE PROPOSED PREDICTING OSTEOPOROSIS
APPROACH
The general architecture of the predicting osteoporosis dis-
ease approach is given in Figure 1. Where the proposed
approach, called SCAFRG, depends on combining the prop-
erties of SCA with the information gain in fuzzy-rough
approximation that is used as the fitness function. The
SCAFRG consists of three phases: 1) pre-processing; 2) fea-
ture selection; 3) prediction phase.

In the first phase, the proposed SCAFRGapproach receives
the osteoporosis dataset, then, a suitable pre-possessing
method is used to balance the dataset in case the number of
samples in one class is greater than the other classes. The
balanced dataset is used as an input matrix (A) to the feature
selection phases. Thereafter, the relation matrix M (R) for
each feature inA is calculated, as well as the information gain.
The next step is to generate a set of solutions that represent the
population of SCA, each solution is converted into a binary
solution. The Boolean form helps to determine which feature
will be selected and which one will be ignored. In order to
determine the quality of each solution, the fitness function
is computed among the selected features. Then, the best
solution is selected and the other solutions will be updated
using the operators of SCA, as discussed in Section II-B. The
updating process is iterated until reaching the stop conditions.
Thereafter, the best solution is passed to the prediction phase.
In this phase, the dataset is split into train and test sets after
reducing the size of features. The train set is applied to
learn the classifier and the test set is applied to assess the
trained model by computing the prediction accuracy of the
output.

The full description of the proposed method is given in the
following subsection with more details.

A. IMBALANCED DATASETS AND PRE-PROCESSING
PHASE
The problem of imbalanced datasets is one of the main
problems faced in real applications, and it occurs whenever
the number of samples inside one group of a dataset is
larger than the number of samples in the other groups. The
problem of imbalanced datasets reduces the efficiency of the
classifiers used to predict the labels of groups in training

FIGURE 1. The general architecture of the proposed approach.

and testing stages because the minority of the samples (the
smallest number of samples in one group) is misclassified in
a frequent form. There are several approaches used to avoid
this problem, such as kernel-based methods, cost-sensitive
methods, and sampling methods. Sampling methods are
popular approaches used to solve the problem of imbalanced
datasets. They balance the samples inside each group by
modifying the prior distribution of the minority and major-
ity groups in the training stage to obtain an appropriately
balanced dataset. The synthetic minority over-sampling tech-
nique (SMOTE) is one of the sampling methods that aims to
construct samples in the group of minority samples [34]. Its
effective application was presented in literature such as [35],
[36]. The SMOTE achieves this by calculating the simi-
larities between the minority samples in these groups. e.g.,
let xi be a sample in the minority group Gmin, the SMOTE
selects the k-nearest neighbors (kNN) for xi, and a new
synthetic sample xnew is generated by using the following
equation:

xnew = xi+fij × δ=xi+(x̂ij × xi), j=1, 2, . . . , J (16)

where x̂ij ∈ Gmin is one sample from the kNN of xi and δ ∈
[0, 1] is a random number [34]. The output of this phase is
the balanced dataset in which all the groups have the same
number of samples.
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B. FEATURE SELECTION PHASE
In this phase, the SCAFRG algorithm starts by computing the
relation matrix M (R) for each feature of a dataset (A) using
Equation (1), then for each relation matrix, the information
gain Gain(a,U , d) is computed (for each a ∈ U ). The next
step is to generate a population of size N in which each
solution represents (reduct set); however, the solutions are
converted from real numbers to binary numbers using the
following formula:

Sij =

{
1 if 2(Sij) > σ

0 otherwise,
2
(
Sij
)
=

1
1+ exp(−Sij)

(17)

where σ is a random value and Si denotes the ith solution,
the feature corresponds to 1 in S is selected and otherwise
0 in S not selected.

For each solution, the objective function is computed by
using the following equation:

Fini =
L∑
l=1

Gain(al,USi , d), ∀al ∈ USi (18)

where USi and L represent the subset of selected attributes,
and the total number of the selected attributes using the
current solution Si, respectively.

To decrease the number of evaluations of the fitness func-
tion, the SCAFRG algorithm is running in a parallel environ-
ment. Each fitness function Fini is compared with the global
best fitness Finb. If Fini is better than Finb, then Finb = Fini
and Sb = Si (Sb represents the reduced set which is corre-
sponding to the best feature subset). After that, the solutions
are updated based on the value of coefficient λ4 as follows,
if the value of λ4 ≥ 0.5, the cosine equation is used; other-
wise, the sine equation is used as in Equation (14). These
previous steps are repeated until the stopping conditions are
reached.

C. CLASSIFICATION PHASE
The classification phase starts with dividing the dataset
into two sets (training and testing) by using the k-fold
cross-validation (CV) method. Based on k-fold CV, the sam-
ples in the dataset are divided into k groups (nearly with the
same size), then the experiment is run k times. One group
is selected to test the model at each run and the remaining
groups are selected as a training set. The output is the average
accuracy of k runs in which the predicted output is compared
with the actual values.

Based on the classification accuracy, the selected features
may be relevant and either sufficient or insufficient. Different
types of classifiers, in literature, are used to calculate the
accuracy of experiments’ outputs including support vector
machines [37], k-nearest neighbor [38], and so on. In this
study, we applied an SVMalongwith four classifiers, namely,
naive Bayes (NB), repeated incremental pruning to produce
error reduction (RIPPER or Jrip), logistic regression (LOG),
and logistic model tree (LMT) to evaluate the accuracy of the
selected features.

TABLE 1. Parameter Settings of the Algorithms.

D. COMPUTATIONAL COMPLEXITY
In this section, we detail the computational complexity (CC)
of the SCAFRG approach. The fuzzy condition (FC) feature,
the fuzzy equivalence partition (FEP) matrix for each condi-
tion feature, and the decision feature to be constructed before
computing the gain are used to compute the complexity. The
CC to build a (NFEP × Nobj) FEP matrices is O(NFQPNobj),
where NFQP and Nobj represent the number of fuzzy equiva-
lence partitions (FEPs) and the number of samples (objects)
in the dataset, respectively.

However, if we consider two FEP matrices with size (p1×
Nobj) and (p2 × Nobj) have to be constructed to calculate
the gain of the FC feature according to fuzzy decision (FD)
feature (note that p1 and p2 represent the number of FEPs of
FC feature and FD feature, respectively). Therefore, the total
time complexity to compute the relevance of a FC feature
is O(p1 Nobj) + O(p2Nobj) + O(p1p2Nobj) = O(p1p2Nobj).
Hence, the overall time complexity to calculate the gain of a
FC feature is O(p1p2Nobj) = O(Nobj) as p1; p2<Nobj.
Also, the number of the selected features (Nsel) by the

proposed approach has an influence on the CC, in which CC
becomesO(NobjNsel) where this is the first order incremental
search approach.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
To evaluate the proposed approach, we compared the pro-
posed approach to three algorithms: PSO, harmony search
(HS), and SSO—these algorithms commonly use the rough
set as a fitness function in literature. The parameter settings
of each algorithm are given in Table 1, which were taken from
our previous studies that were tested and showed good results
in these studies; as such, we applied them to the current study.
The experiments were performed using MATLAB and run
on Windows 10 with an Intel Core 2 Duo 64-bit CPU. The
global parameters were set as the following: the size of the
population was set to 25, the max number of iteration was set
to 100, and the stopping condition equaled the max number
of iterations.

In this section, we describe some experiments used to
test the proposed algorithm on several datasets, including
osteoporosis prediction and other public data.
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TABLE 2. Dataset Description and Selected Features Achieved by all
Methods.

A. PERFORMANCE MEASURES
In order to evaluate the performance of the classification
phase according to the selected features, a set of classifica-
tion measures was used including precision, recall, accuracy,
F-measure, specificity, and negative predictive values. The
definitions of these measures are listed below.

The precision rate (Pre) was calculated as:

Pre =
TP

TP + FP
× 100% (19)

The recall rate (Rec) is calculated as:

Rec =
TP

TP + FN
× 100% (20)

The accuracy (Acc) is calculated as:

Acc =
TP + TN

TP + TN + FP + FN
(21)

The F-measure (FM ) is calculated as:

FM =
2(Rec× pre)
(Rec+ pre)

(22)

The specificity (Spec) is calculated as:

Spec =
TN

TN + FP
(23)

The negative predictive value (NPV ) is defined as:

NPV =
TN

TN + FN
(24)

here TP denotes the true positive samples.FP denotes the false
positive samples. TN denotes the true negative samples. FN
denotes the false negative samples.

B. FIRST EXPERIMENT: UCI DATA
In this experiment, four datasets, including Wine, Iono-
Sphere, Sonar, and Pima Indians, were used to evaluate the
proposed approach. These datasets were selected from the
UCI Repository Machine Learning Database [39], and these
datasets all have different properties—see Table 2.

The selected features obtained from the proposed approach
and other methods are given in Table 2. The dataset was
split according to these selected features into training and
testing sets using 10-fold CV. Then, five classifiers were
used (i.e., SVM, NB, LOG, LMT, and RIPPER—in this
study, we refer to RIPPER as Jrip) to evaluate the accuracy
of these features. These classifiers were chosen since they
are well-known algorithms and have shown good results in
different literature.

Table 3 shows the prediction accuracy of each algorithm
along with each dataset using the selected features. From
this table, it can be noted that the proposed approach and
HS, PSO, and SSO methods have higher classification accu-
racy than when compared to using all the features as input
for the classifier overall datasets; however, the proposed
approach has the best accuracy when compared to HS, PSO
and SSOmethods in most cases. Figure 2 shows the accuracy
of each classifier along with the dataset according to the
selected features. This confirms that the prediction accuracy
of SCAFRG outperforms PSO, SSARS, and HS approaches.
The previous results indicate that the proposed SCAFRG can
help to improve the classification accuracy by selecting the
optimal subset of relevant features. The time-efficiency for
all methods is shown in Figure 3.

C. SECOND EXPERIMENT: OSTEOPOROSIS PREDICTION
The goal of this experiment was to improve the accuracy of
predicting osteoporosis by removing the irrelevant features,
which will lead to a more effective use of time. The proposed
method was compared to the SSO algorithm that was allo-
cated as the second rank based on the accuracy in the previous
results.

1) DATASET DESCRIPTION
Fifty mature female Sprague–Dawley rats (250–260 gb wt
and 10–12 weeks old) were used in this study. The rats were
obtained by the third author from the Animal Colony Labora-
tory, Helwan, Egypt. The rats were kept under hygienic condi-
tions at a room temperature of 22± 2◦C, a humidity of 50%,
and a 12 hr light/dark cycle. Rats were granted free access
to food and distilled water. The biological experiments were
carried over according to the guide for the care and use of
laboratory animal resources, Commission on Life Sciences,
National Research Council [40].

The rats lived on a basal diet containing 14% casein (pro-
tein > 80%), corn oil 4%, fiber 5%, salt mixture 3.5%,
vitamin mixture 1%, choline chloride 0.25%, and corn
starch [41]. The vitamin composition of the diets were in line
with [42]. Before their use in the experiment, rats were kept
for one week in order to acclimatize to laboratory conditions.
After this period, they were split into two groups; the first
group (i.e., 20 rats) were orally administered normal saline
(4.5 ml/kg body weight / twice per week) as a basal healthy
group. The second group (i.e., 30 rats) got oral Glucocorticoid
(prednisone acetate; 4.5 ml/kg body weight / twice per week)
to activate osteoporotic models as stated by [43].

Biochemical StudiesAfter the experiment had ended (i.e.,
six weeks), the animals were fasted overnight, then the rats
were anesthetized and sacrificed. A blood sample was col-
lected from the aorta, left standing for 10 minutes to clot, and
centrifuged at 12000 rpm for 15 minutes to detach the serum,
which was kept frozen at −20◦C until biochemical analyses
were performed. The serum concentration of calcium and the
other serums were predicted as in the literature.
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FIGURE 2. Prediction accuracy of all algorithms overall datasets.

FIGURE 3. Time-efficiency for all algorithms overall datasets.

Femur bones (right and left) got detached after scarifica-
tion. Femur bones were placed in a foil paper and preserved
in a deep-freezer. Bone mineral density (BMD) and bone

mineral concentration (BMC) were both measured by Dual
Energy X-ray Absorptiometry (DEXA) in the osteoporosis
unit at the Egyptian center of excellence for medical and
scientific research.

The dataset of this article consists of 17 features and
50 samples. The target variable contains two values: bad and
good to indicate if the subject suffers or does not suffer from
osteoporosis, respectively. Table 4 shows the feature names
and their abbreviation of the osteoporosis dataset.

2) EXPERIMENT
In this experiment, the proposed approach was compared
with well-known methods and all features (note that, in the
following, the word ‘‘ALL’’ is used to indicate that all features
were used as inputs to the classifiers).

The selected features and the reduction rate of the dataset
are recorded in Table 5. Table 5 shows that the proposed
method achieved a better selection rate than the HS and SSO
algorithms, in which the SCAFRG has a smaller selection
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TABLE 3. Results of the Algorithms Based on Different Classifiers Overall Datasets.

rate (41%) and is ranked first followed by the HS, whereas
the SSO achieved (65%) and is ranked last. In addition,
the ‘‘Selected Features’’ column shows the most relevant
features achieved by the algorithms. The selected features
by SCAFRG can be considered the most important features
for the prediction of osteoporosis and can provide specialists
with good information about relevant features responsible for
osteoporosis (these features are Serum Ca, FB Ca, BMD,
TSH, UA, BUN/Cr, and ALP).

To evaluate the SCAFRG, the selected features were
passed to classifiers and the accuracy of classification was
computed—see Table 6. According to the results, we can

conclude that the SCAFRG method achieved good results,
especially when compared to the HS, SSO, and ALL. In addi-
tion, the SCAFRG based on SVM, LMT, and kNN classifiers
performed better than the SCAFRG based on all other classi-
fiers in terms ofmeasures. The least accuracywas obtained by
the SCAFRG based on the LOG classifier, also, the SCAFRG
based onNB performed better than the SCAFRG based on the
Jrip classifier.

These results provide strong proof that the proposed
SCAFRG approach can be used to predict osteoporosis; fea-
ture selection can also help inform specialists when it comes
to making decisions for their osteoporosis patients.
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TABLE 4. Dataset Features Description.

TABLE 5. Selected Features Obtained by all Methods.

In addition, to evaluate the effectiveness of the SMOTE
technique versus other methods, a new experiment was
performed to compare the results of SMOTE to random-
over-sample (ROS), random-under-sample (RUS), and con-
densed nearest neighbor (CNN) using all features. This com-
parison applied five classifiers and three performance mea-
sures: accuracy, precision, and recall. The results of this
experiment are recorded in Table 7. This table concludes that
the SMOTEmethod achieved the better results in all measures
and it is ranked first based on the average of the results of all
classifiers followed by ROS, and RUS, whereas, CNN was
ranked last. Therefore, SMOTE is the most effective method
that can be used in solving imbalanced datasets classes.

3) THE RELATION BETWEEN OSTEOPOROSIS AND THE
SELECTED FEATURES
Given that the health implications of osteoporotic fractures
indicate that the immediate objective of osteoporosis therapy
should be to limit fractures, which has an increased risk of
occurring due to decreased or eliminated bone loss, keeping
bone strength, and limiting or eradicating factors that may be
a reason for fractures [44].

Among biochemical markers of bone and mineral disor-
ders, mean values of serumCa (mmol/L) for the second group
of rats showed a serious decrease p < 0.05 when compared to

TABLE 6. Classification Results of all Methods.

the serum Ca values of the healthy group. Calcium certainly
has an important relationship with osteoporosis.

Calcium is a crucial nutrient that is critical for various
functions in the human body, and necessary for good health.
Calcium is the greatest ample mineral in the body, with 99%
of calcium discovered in teeth and bone, whereas only 1% is
found in serum. Bone formation and maintenance is a process
that happens throughout life. Early consideration of solid
bones in childhood and adulthood will produce more bal-
anced bone mass through the aging years [45]. The calcium
of the skeleton can be a capital supply of calcium that allows
the body to meet its needs in the case of calcium inadequacy.

Calcium inadequacy is easily induced because of the
compulsory losses of calcium via the bowel, kidneys, and
skin [46]. It is widely acknowledged that calcium is useful as
a phenotypemarker for bone construction. In [47], the authors
confirmed that dietary supplementation with calcium and
vitamin D increases bone health, limits the risk of fractures,
and advances the performance of pharmacological manage-
ment. The North American Menopause Society [48] pre-
dicted that acceptable intakes of calcium for pre-menopausal
and post-menopausal women according to proof relating to
osteoporosis hindrance. At least 1200 mg/day of calcium is
vital for most women; to provide acceptable calcium con-
sumption, a daily intake of 400–600 IU of vitamin D is
preferred, either through sun exposure or through diet or
supplementation.

As stated in the study, using glucocorticoids (GC) to induce
osteoporosis caused serious shortcomings in bone mineral
density (BMD g/cm2) when compared to the BMD of the
negative control group.

As stated by theWorld Health Organization (WHO), BMD
measurement can be used to assess the fracture hazard in hip,
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TABLE 7. Results of Solving Imbalanced Datasets Using all Features.

lumbar, or spine and to establish the diagnosis and severity
of osteoporosis. Individuals with the lowest BMD are at the
highest risk of fracture; this is estimated by dual-energyX-ray
absorptiometry (DXA), which is the gold standard used to
diagnose osteoporosis. BMD testing can be used to assess
developments over time (monitoring) in treated and untreated
individuals [44].

A general consensus, confirmed by the U.S. Preventive
Services Task Force USPSTF, 2002 [49], is that all women
aged 65 and older should have a BMD test, and that women
at-risk of bone disease who are under age 65 should also
be screened. The National Osteoporosis Foundation (NOF)
also favors BMD testing for men who present with fractures
or are getting treatment for prostate cancer, as well as for
all people who have primary hyperparathyroidism or are on
long-term glucocorticoid treatment [50]. BMD testing was
shown to be necessary [51] and should also be performed on
any person who has other possible risk factors for osteoporo-
sis, specifically anyone who exhibits any clinical symptoms
of osteoporosis, such as hyperthyroidism or hyperparathy-
roidism, any person who has had a low-trauma fracture or
medications that cause bone loss like glucocorticoids and
diseases that cause poor intestinal absorption.

Taking the current study into consideration, kidney func-
tion, uric acid (mg/dl), and blood urea nitrogen/creatinine
(BUN/Cr) ratio of osteoporosis female rats had significant
changes p < 0.05 compared to healthy group (control
negative). Patients whose kidney function is damaged have
bone and mineral disturbances causing extraskeletal calci-
fications and complicated developments in bone turnover,
which predisposes them to an increased risk of fracture along
with increased morbidity and mortality [52]. Furthermore,
patients with chronic renal disease were reported by [53]
to not only at risk of developing rickets and osteomalacia,
but also renal osteodystrophy, a complicated bone disease.
This condition is defined by stimulation of bone metabolism
caused by a rise in parathyroid hormone and by a setback
in bone mineralization that is caused by decreased kidney
production of 1,25–dihydroxy vitamin D [54]. Patients who
have end-stage renal disease were proven by [55] to be at
increased hazard of osteopenia and hip fracture.

Dialysis and transplantation may not limit the progres-
sion of bone disease, although they may lengthen the
life-expectancy of these patients. Managing the patient
through dialysis could cause increased bone irregular-
ities, which become superimposed on the underlying

osteodystrophy, hence increasing the hazard of fractures.
Furthermore, the authors of [56] proved that hip frac-
ture in dialysis patients is related to increased mortality.
Cross-sectional and longitudinal relation with measures of
renal function and bone mineral density (BMD), bone loss,
and osteoporotic fracture in older individuals were investi-
gated in 2007 by [57].

There was a serious linear relation between creatinine or
glomerular filtration rate and hip BMD. It was found by
[58] via logistic regression analysis that creatinine levels are
affected slightly by muscle mass, which is related to age,
gender, and weight. Even though the estimated glomerular
filtration rate (eGFR) can be used as an improved marker
of renal function, it is also calculated from serum creatinine
and eGFR was related positively related with femur BMD.
The authors of [59] confirmed that BUN can be elevated in
patients who are receiving corticosteroids, those with raised
catabolism or those with gastrointestinal tract bleeding. Also,
the Food and Drug Administration reports that blood urea
nitrogen/creatinine ratio raise is found among individuals
with osteoporosis, particularly females who are 60+ old, who
take medication Fosamax and have bone density unnatural.

Unnatural thyroid status in childhood has been shown to
disturb bone maturation and thin growth, while in adulthood,
it causes modified bone reshaping and a raised hazard of
fracture. Also, population studies show that both thyroid hor-
mone shortcoming and excess are related to a raised hazard
of fracture [60]. Thyroid hormones (T3 and T4) raise the
energy manufacturing of all body cells, including bone cells.
They improve bone growth by triggering osteoblasts. A lack
of thyroid hormones can decrease growth in children, while
enormous loads of it can result in too much bone breakdown
and reduce the skeleton’s development [61]. The pituitary
hormone that controls the thyroid gland, thyrotropin or TSH,
may have immediate influences on bone too [62].

The authors of [63] revealed that the hormonesmost impor-
tant for growth during childhood are the insulin-like growth
factors (IGFs), which are produced by the liver and bone
tissue. IGFs encourage osteoblasts and enhance the synthesis
of the proteins necessary to construct new bone. Furthermore,
the pancreas’ hormone, insulin, enhances bone growth by
raising the synthesis levels of bone proteins [64].

Experimental studies in mice lacking either the thyroid
hormone receptors (TR) (i.e., TR-alpha or TR-beta) suggest
a bone loss is mediated by TR-alpha [65]. Hence, thyroid
hormone can influence bone calcium metabolism by a direct
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action on osteoclasts or effect on osteoblasts that one turn
mediates osteoclastic bone resorption [66]. Through exper-
iments, it was discovered that triiodothyronine T3 (ng/dl)
and thyroxine T4 (µg/dl) from female rats suffering from
osteoporosis rise dangerously (p < 0.05) in contrast to the
negative control group.

Diseases that hinder the function of the liver (mainly alco-
holic cirrhosis, biliary cirrhosis, cirrhosis due to hepatitis B
and C, and chronic active hepatitis) could cause disruptions
in vitamin D metabolism and could also result in bone loss
by other mechanisms. Primary biliary cirrhosis is related to
particularly severe osteoporosis. Fractures are more constant
in patients with alcoholic cirrhosis than any other types of
liver disease [67].

Biochemical monitoring of bone metabolism depends
upon a measurement of enzymes and proteins released during
bone construction and of degradation products produced dur-
ing bone resorption [68] and total alkaline phosphatase (ALP)
is counted as one of the bone construction markers. When
ALP concentration is immensely high, it is fundamental to
differentiate the cause from hepatic diseases, osteomalacia,
secondary osteoporosis, or bone tumor [69].

Secondary osteoporosis is often suspected if the alkaline
phosphate level is unusual. Immensely high levels of ALP are
usually encountered in elderly individuals, although in many
cases, liver function is within the usual limit. Because ALP
combines numerous isoenzymes from other tissues, a definite
diagnosis cannot be completed by exclusively depending on
high levels of ALP [70]; however, it was proved by [71]
that after surgery, increases in the concentration of total ALP
and subsequent decreases could reflect the usual healing
process. They also confirmed that the values of ALP and
bone markers are influenced by bone fractures. One of the
causes of elevation in bone-specific ALP (BSAP) and ALP
could be the healing of unrecognized bone fractures in elderly
women with osteoporosis. It was confirmed by [70] that
high bone turnover is the primary cause of elevated ALP
in postmenopausal women. They concluded that alkaline
phosphatase (ALP) is still a good marker for bone turnover
or therapy evaluation instead of bone-specific ALP. As is
evident in the results ALP (U/L) concentration was usually
higher in female rats suffering from osteoporosis with a seri-
ous difference at p<0.05, than ALP concentration in female
rats from health group (NC).

Based on our results, we can conclude that the proposed
SCAFRG method provides superior results when compared
to the other methods and can effectively select the best fea-
tures and attributes in the benchmark and real datasets, and
can effectively predict osteoporosis and the risk of hip bone
fractures, even though most features are closely related to
each other in the datasets, which makes the identification of
relevant features a challenging task.

The proposed method also had the highest accuracy results
in both experiments. The advantages of the SCAFRGmethod
can be due to: the use of SCA as a fast convergence algorithm,
the simplicity of implementation, and its ability to effectively

escape from local optima, which leads to maintaining the
population and promoting the ability of FR to find the best
features in the dataset; therefore, the behavior of the proposed
SCAFRG method, which benefited from the characteristics
of SCA and FR, can effectively select the most important
features and delete the irrelevant ones in the dataset. These
promising results encourage us to use it in different fields and
tasks.

V. CONCLUSION AND FUTURE WORK
In recent years, the etiology of osteoporosis has got more
attention in the medical field because of the effect on the
treatment outcome. Treatment can be accelerated and the
quality of life can be enhanced by determining the relation-
ship between the nutrients that are associated with any given
health problem. In order to contribute to this goal, in this arti-
cle, we proposed a new computational method that combines
the SCA algorithm with the fuzzy-rough set (FR) theory to
select the most relevant features and improve the prediction
accuracy of osteoporosis. The proposed approach consists of
three stages, in the first stage, the SMOTE sampling method
is used to obtain a balanced dataset. In the second stage,
the most features are selected using the SCAFRG algorithm;
in this algorithm, the gain information based on fuzzy-rough
theory is used as the fitness function to distinguish between
the features. In the third stage, some classifiers were used
to predict osteoporosis. In order to investigate the superi-
ority of the proposed method, a set of experiments were
performed using different kinds of datasets: the first kind is
taken from UCI benchmark datasets, whereas the second is
a real osteoporosis dataset. The experimental results showed
that the proposed approach improved the classification accu-
racy of UCI datasets, as well as having a good ability to
predict osteoporosis. Moreover, the proposed SCAFRG with
SVM is better than using any other classifier in terms of all
measures and time complexity. According to the promising
results of the proposed approach (SCAFRG) in predicting the
osteoporosis, we will apply this approach in future to other
applications such as classification of galaxy images, as well
as improving it by using chaotic maps in its first stage.
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