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ABSTRACT With the increased distributed generation (DG) and the combination of residential, commercial,
and industrial loads connected to the distribution networks, it is more difficult to ensure the safe and
economic operation of the distribution networks because of the great volatility and randomness of DG
and complex loads. In this paper, with the aim of minimizing network loss, load balance, and maximum
voltage deviation, a multiobjective reconfiguration model of the distribution network is established under
the condition of satisfying network constraints. Moreover, a new social beetle swarm optimization algo-
rithm (SBSO) considering two social behaviors is adopted to solve the complex problem according to the
characteristics of the distribution network reconfiguration (DNRC). Based on the SBSO algorithm, grey
target decision-making (GTDM) strategy is used to choose the best beetle in the process of solving the
multiobjective problem. Additionally, The grey relation projection (GRP) method is used to divide the time
period of DNRC according to the change of DG and loads in a day, in order to reduce the number of switching
operations. Finally, the effectiveness of the proposed multiobjective model and algorithm are verified on the
standard IEEE-33 system and IEEE-69 system.

INDEX TERMS Distribution network reconfiguration, multiobjective optimization, grey target
decision-making strategy, grey relation projection, SBSO algorithm.

I. INTRODUCTION
DNRC is used to change the topological structure of the dis-
tribution network by changing the state of switches under the
condition of satisfying network constraints, thereby enhanc-
ing the efficiency and stability of the distribution network [1],
so the DNRC has been considered a powerful tool in distri-
bution system planning and operation. In the DNRC prob-
lem, we determine the optimal radial configuration, the
close/open status of each branch equipped with a controllable
switch, on the given meshed distribution system for different
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objectives [2], [3]. At present, with the large-scale renewable
energy interconnection and the combination of residential,
commercial, and industrial loads, the distribution network
has become more and more complex. Its randomness and
volatility will bring challenges for the safety and economy
of traditional distribution networks [4]. In addition, DG into
distribution networks is implemented for reducing network
losses, balancing demand overloads, improving the node
voltage level, and absorbing renewable energy [5], which
further increases the complexity of the distribution network.
Therefore, it is necessary to perform research on this issue.

In the process of DNRC, many scholars have investi-
gated network reconfiguration with different objectives and
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algorithms. [6], [7] study DNRC with the single objective
of minimizing active power loss of the distribution network.
Other researchers focused on double objectives of reduc-
ing the network loss and voltage deviation [8]. In addition,
in order to ensure that the load in the power grid is not
overloaded, Jakus established a mathematical model about
DNRC with the aim of minimizing active power loss and
load balance [9]. However, with more and more DG and
complex loads connected to the power grid, the distribution
network has become increasingly complicated for the opera-
tional control of the distribution network [10]. The dynamic
changes of renewable and load are not taken into account in
these models. In fact, wind power and photovoltaic power
change with wind speed and solar radiation, respectively, and
the wind speed and solar radiation can be simulated by the
Weibull distribution [11] and beta distribution [12], [13]. The
model of distribution network reconfiguration considering
these uncertainties is built in [14], [15], but the load time
variation is not considered. Although the uncertain variables
of DG output and loads are considered in [1], the model is a
single objective only considered.

Simultaneously, based on DG and load time variation, the
main method of dynamic reconfiguration is to segment the
time according to the change of DG and load in a day, and
the number of switching operations can be greatly reduced by
dividing the reconfiguration period. The dynamic reconfigu-
ration method based on information entropy of time intervals
is put forward in [16]. [17] proposed the index of power
moment, and the power moment imbalance is compared with
the predetermined power moment threshold. The interval that
satisfies the requirement is merged into the last period to
complete the partition of time intervals. In addition, [18]
takes the monotone interval’s integral median point of the
load curve as a piecewise point and combines the adjacent
intervals which have the minimum load decline until the
preset partition number is reached. The improved fuzzy mean
clustering algorithm is applied in [19] for the partition of
time intervals, and the value of the combined loss function
is used to determine the optimal partition number and plan.
However, the dynamic reconstruction methods put forward in
these references all need parameters such as preset partition
number or comparison threshold, which have partly human
subjectivity, on the other hand, these methods are complex
and time-consuming, a high computational cost cannot be
avoided.The GRP method is widely used in the correlation
analysis of sequence, which is simple and efficient. For exam-
ple, [20]–[22] uses GRP method to obtain the ‘best’ com-
promise solutions by calculating the priority memberships of
the solutions. However, this useful method is not utilized to
divide the reconfiguration period.

Additionally, when solving multiobjective optimization
problems, the multiobjective is usually weighted and con-
verted into a single objective. This processing process is
relatively rough, and the three objectives cannot be opti-
mized at the same time. Therefore, some scholars use the
double-layer model to address multiobjectives [23]. Other

scholars introduced the game theory and constructed a mul-
tiobjective game model [24] to solve the multiobjective
problem. At the same time, the Pareto optimal solution is
widely used in solving multiobjective optimization prob-
lems [25]–[27]. However, the Pareto optimal solution is only
an acceptable solution set of the problem, and there are mul-
tiple Pareto optimal solutions in general. At this time, people
need to make their own decisions, which is not objective.
For this problem, [28] separates the obtained Pareto-optimal
solutions(POSs) into different clusters and thereupon identi-
fies the best compromise solutions (BCSs) by assessing the
relative projections of the solutions belonging to the same
cluster usingGRP. ThemultiobjectiveGTDMcan select a sat-
isfactory scheme without losing objectivity. Professor Deng
Julong, a Chinese scholar, founded the grey system theory
in 1982 [29]. After that, the grey theory has been widely
used and a series of grey decision-making methods have been
produced, it is an effective decision-making method. GTDM
not only helps people to make an objective decision, but
also effectively solves multiobjective optimization problems
with the heuristic algorithm in recent years. A GTDM theory
based on the entropy weight method is proposed in [30] to
identify the best trade off scheduling scheme among all the
solutions. [31] integrated decision-making by combining the
fuzzy c-means algorithm (FCM) with GRP aims to extract
the best compromise solutions which reflect the preferences
of decisionmakers from the POSs. However, these algorithms
are easily affected by the parameters, and the solution is
unstable. In 2017, the beetle antennae search (BAS) was
proposed as an efficient and intelligent search algorithm [32].
The BAS algorithm does not need to know the specific
form of the search, which is simple and efficient. However,
in each iteration, the convergence result of the BAS algorithm
depends on the direction of the beetle, which has great ran-
domness [33]. To solve these problems, particle swarm opti-
mization (PSO) [34] andBAS are combined to form the beetle
swarm optimization (BSO) algorithm. At present, the BSO
algorithm and grey decision method are not effectively com-
bined to solve multiobjective optimization problems. Here,
this paper uses a BSO algorithm based on GTDM to solve the
problem of multiobjective optimal network reconfiguration.
Furthermore, to improve the efficiency of optimization, the
search speed of the global optimal solution is accelerated
by changing its operator, increasing social learning behavior,
and sorting after each iteration. On this basis, this paper
uses SBSO algorithm combined GTDM to solve the multi-
objective model to reduce the calculation time through the
individual advantage of the beetle and this method is effective
to avoid volatility and subjectivity.

The main contributions of this paper are as follows:
1 To avoid the high computational cost, the GRP method

is used to analyze the net load of the distribution network to
divide the time period of DNRC without human subjectivity.

2 A new modified SBSO algorithm considering two social
behaviors is presented to determine the best configuration,
in order to improve the search efficiency.
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FIGURE 1. Outline of this paper.

3 SBSO algorithm combined GTDM is utilized to solve the
multiobjectivemodel. Thismethod can automatically identify
the best solution without losing objectivity.

The overall framework of this paper is shown in Fig.1.
Section II provides the randommodel of renewable sources

and GRP is used to divide the reconfiguration period.
Section III introduces the objective functions and constraints.
Section IV describes the simplification and encoding of
topology based on a basic loop. Section V explains the SBSO
algorithm combined grey target decision-making and the test
results of 5 benchmark functions from the SBSO algorithm.
Section VI shows the test results from the IEEE-33 system
and IEEE-69 system. Finally, Section VII presents the paper’s
conclusions.

II. PARTITION OF TIME INTERVALS BASED ON DG AND
LOAD
A. RANDOM MODEL OF RENEWABLE SOURCES
1) MODEL OF WIND POWER
The output of wind turbine changes with wind speed, and it
is expressed as:

P =
1
2
ρv3wsCp (1)

where P is the actual shaft power obtained by the fan inW ; ρ
is the air density in kg/m3; vw is the actual wind speed inm/s;
s is the swept area of the wind turbine in m2; and Cp is the
wind energy utilization coefficient, with a maximum value of
0.593. From (1), the output of the fan is directly proportional
to the wind speed.

The Weibull distribution is useful and simple, so the
Weibull distribution is used to simulate the wind speed dis-
tribution with high randomness [11] in this paper, shown as:

fw (v) =
k tc
ct

(vw
ct

)k tc−1
exp

[
−

(vw
ct

)k tc]
(2)

where ct is the Weibull scale parameter and k tc is the Weibull
shape parameter.

The relationship between wind speed and wind turbine
active power output PW is as follows:

PW =


0, vw < vci, vw ≥ vco

Pr
v− vci
vr − vci

, vci ≤ vw ≤ vr

Pr , vr ≤ vw ≤ vco

(3)

where Pr is the rated capacity of the wind turbine; PW is the
actual power of the wind turbine; vci is the cut-in speed of
wind power; vr is the rated speed of wind power; and vco is
the cut-out speed of wind power. According to reference [11],
the probability function of wind power output is as follows:

P(PW = 0) = 1− exp(−(
vci
ct

)k
t
c ))+ exp(−(

vco
ct

)k
t
c )

P(PW = Pr ) = exp(−(
vr
ct
)k
t
c ))− exp(−(

vco
ct

)k
t
c )

f (PW ) =
k tc

k1ct

(
PW − k2
k1ct

)ktc−1

exp

[
−

(
PW − k2
k1ct

)k tc]
,

else
(4)

where k1 = Pr / (vr − vci) and k2 = vciPr/(vci − vr ).
The output reactive power QW is:

QW = PW ×
√
1− cos θ2/ cos θ (5)

where cosθ is the power factor.

2) MODEL OF SOLAR POWER
Photovoltaic power generation depends on climate and
weather, which is greatly affected by solar radiation fac-
tors [13]. The solar radiation can be fitted by the beta func-
tion, and its probability density function is as follows:

f (E) =
0
(
αt
c
+ β t

c

)
0
(
αt
c

)
0
(
β t
c

) ( E
Emax

)αtc−1 (
1−

E
Emax

)β tc−1
(6)

where 0 is the gamma function, αtc and β tc are the shape
parameters of the distribution functions, and Emax is the
maximum value of solar radiation, where Emax is the max-
imumsolar radiation set as 1000W/m2 based on the analysis
of sample data.

The relationship between the solar radiation and the active
output power of photovoltaic power generation PS is as
follows:

PS =
{
|!
PS =

(
E2/

(
Emax · Ef

))
, 0 < E < Ef

PS = (E/Emax) , E ≥ Ef
(7)

where Ef is the fixed-point set as 120W/m2.
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FIGURE 2. The PDF of wind speed in each period.

The probability density function of PV output in a specific
area is:

f (PS) =



1
Emax

·
0
(
αtc + β

t
c
)

2 · 0αtc0
(
β tc
) ( PS · Ef

PSREmax

) αtc−1
2

×

(
1−

(
PS · Ef

PSR · Emax

) 1
2
)β tc−1

×

(
EmaxEf
PSPSR

) 1
2

,

0 < PS <
PSREf
Emax

1
Emax

·
0
(
αtc + β

t
c
)

0
(
αtc
)
0
(
β tc
) ( PS

PSR

)αtc−1
×

(
1−

PS
PSR

)β tc−1
×
Emax

PSR
, PS ≥

PSREf
Emax

(8)

where PSR is the maximum output power of photovoltaic
power generation

The cutoff wind speed vci = 5 m/s, the cut-out wind speed
vco = 24 m/s, and the rated wind speed vr = 11 m/s. The
wind speed at the height of the fan impeller hub in this area
obeys the Weibull distribution of ct and k tc and the solar radi-
ation obeys the beta distribution of αtc and β

t
c, The parameters

of ct , k tc, α
t
c and β

t
c are obtained from 8760 samples of actual

wind speed and actual solar radiation data in a region [35],
as shown in Table 1.

The PDFs of Weibull and Beta distributions fitted to each
hour are shown in Figs. 2 and 3.

The probability density distribution function of wind
power and photovoltaic output is obtained by substituting
the parameter ct , k tc, α

t
c and β

t
c into the above equations to

calculate the integral. Simpson formula is used to solve the
problem to speed up the speed of solution, and the expected
wind power and photovoltaic output is obtained as follows,
they are shown in Figs.4 and 5.

FIGURE 3. The PDF of solar irradiance in each period.

FIGURE 4. The expected output of wind power.

FIGURE 5. The expected output of solar power.

B. LOAD DEMAND
Users usually have relatively fixed demand proportion curves
during a typical day in the same region and season, the loads
can be described by demand proportion curves per day [36],
which is shown in Fig.6.

In general, the daily loads involve three categories: resi-
dential, industrial and commercial, the concrete parameters
are given in Tables 2 and 3, they are shown in Fig.7.
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TABLE 1. The control parameters of Weibull and Beta in each period.

FIGURE 6. Load duration curves of each type for 24 hours.

TABLE 2. The load distribution in hours of three types of load.

The load curves of each node are different, and the daily
load curve PLi of node ‘i′ can be described as:

PLi =
∑
s∈S

PNiθsiδs (9)

where S ∈ {s|1, 2, 3} is the set of load types; s = 1 is
residential, s = 2 is industrial, and s = 3 is commercial;
PNi is the rated power of load node ‘i’; and θsi represents the
ratio of load type ‘s’ in the total load of node ‘i’, δs represents
the demand curves of load type ‘s’ [36].

TABLE 3. The proportion of three types of load in each bus.

TABLE 4. Type, location and capacity of DG.

C. NET LOAD
Parameters of DG type, capacity and access node are shown
in Table 4 [37].

According to the above analysis, the net load on each node
is obtained.

PNLi = PLi − PWi − PSi (10)

D. PARTITION OF TIME INTERVALS BASED ON GREY
RELATION PROJECTION ANALYSIS
The combination of unit periods with similar network proper-
ties can greatly reduce the number of switching operations in
the process of distribution network reconfiguration, and GRP
is an effective method to analyze the similarity of sample
data. Through the analysis of small sample data to judge
whether different data series are closely related, the closer
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FIGURE 7. The proportion of three types of load in each bus.

the sequence is, the greater the correlation degree is, so the
effective data sequence was clustered.

The sample data needed is small and the calculation is
simple while using the grey correlation analysis and cluster-
ing. At the same time, this method can effectively reduce the
number of switching operations, which is more economical.

Taking the net load on different nodes as a group of sample
data, the grey correlation analysis is utilized to analyse the
similarity of sample data.
Xt = (xt(1), xt(2), . . . , xt(i), . . . , xt(n)), (t = 1, 2, . . . ,

24, i = 1, 2, . . . , 33) is the sample data.
The original sequence is multiplied by the starting point

zero operator D0 in order to be analyzed by grey absolute
correlation analysis.

XtD0
= (xt (1)d0, xt (2)d0, . . . , x t (i)d

0, . . . , xt (n)d0),

X0
t (i) = xt (i)d0 = xt (i)− x t (1).

Grey absolute correlation degree εt,t+1 is obtained by
equations (11)-(13).

εt,t+1 =
1+

∣∣S0t ∣∣+ ∣∣S0t+1∣∣
1+

∣∣S0t ∣∣+ ∣∣S0t+1∣∣+ ∣∣S0t+1 − S0t ∣∣ (11)

∣∣∣S0t ∣∣∣ =
∣∣∣∣∣
n−1∑
i=2

x0t (i)+
1
2
x0t (n)

∣∣∣∣∣ (12)

∣∣∣S0t+1−S0t ∣∣∣ =
∣∣∣∣∣
n−1∑
i=2

(
x0t+1 (i)−x

0
t (i)

)
+
1
2

(
x0t+1 (n)−x

0
t (n)

)∣∣∣∣∣
(13)

The original sequence is multiplied by the initial valued
operator D1 in order to be analyzed by grey absolute correla-
tion analysis.

XtD1
= (xt (1)d1, x t (2)d

1, . . . , x t (i)d
1, . . . , x t (n)d

1),

xt (i)d1 = xt (i)/xt (1).

Grey relative correlation degree rt,t+1 is obtained by equa-
tions (14)-(16).

rt,t+1 =
1+

∣∣S1t ∣∣+ ∣∣S1t+1∣∣
1+

∣∣S1t ∣∣+ ∣∣S1t+1∣∣+ ∣∣S1t+1 − S1t ∣∣ (14)

∣∣∣S1t ∣∣∣ =
∣∣∣∣∣
n−1∑
i=2

x1t (i)+
1
2
x1t (n)

∣∣∣∣∣ (15)

∣∣∣S1t+1−S1t ∣∣∣ =
∣∣∣∣∣
n−1∑
i=2

(
x1t+1 (i)−x

1
t (i)

)
+
1
2

(
x1t+1 (n)−x

1
t (n)

)∣∣∣∣∣
(16)

The grey comprehensive correlation degree not only rep-
resents the similarity degree of sequences Xt and Xt+1, but
also reflects the similarity degree of change rate relative to
the starting point. It can comprehensively reflect whether the
connection between sequences is close, the grey comprehen-
sive correlation degree is obtained.

ρt,t+1 = θεt,t+1 + (1− θ) rt,t+1, θ ∈ [0, 1] (17)

In the actual process of reconfiguration, we pay more
attention to the similarity of the sequence. The more similar
the net load distribution on the nodes, the better the unit
period consolidation can be combined. When the absolute
correlation degree is more important, the absolute correlation
degree is given greater weight. In this paper, we take θ = 0.7.

III. MULTIOBJECTIVE MODEL OF DISTRIBUTION
NETWORK RECONFIGURATION
A. MULTIOBJECTIVE MODEL
In this paper, aiming at minimizing active power loss, load
balancing and the maximum voltage deviation, a multiobjec-
tive model of the distribution network is formed.

The minimization of the sum of active power loss is:

f (1) = min
T∑
t=1

J∑
j

DjRj
P2j + Q

2
j

V 2
j

(18)

where Pj is the active power of the j-th branch, Qj is the
reactive power of the j-th branch, Rj is the resistance of the
j-th branch, Vj is the initial voltage of the j-th branch, and Dj
is the binary value. If Dj is the opening switch status for the
j-th branch, Dj = 0; otherwise, Dj = 1. J is the number of
branches, and T is the time length.

The minimization of the sum of load balancing is:

f (2) = min
T∑
t=1

J∑
j=1

Dj

√
P2j + Q

2
j

Smax
j

(19)
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where Smaxj is the maximum complex power of
branch ‘j′.
The minimization of the sum of maximum voltage devia-

tion is:

f (3)=min(
T∑
t=1

max(
V1−V1r
V1r

, . . . ,
Vn−Vnr
Vn

, . . . ,
VN−VNr
VNr

))

(20)

where Vn is the virtual voltage of the n-th node, Vnr is the
rated voltage of the nth node, and N is the total number of
nodes.

B. CONSTRAINTS
The following constraints must be meet in DNRC.

a: POWER FLOW EQUATION CONSTRAINTS

Pn + PDG,n = PL,n + Un
N∑
q=1

Uq
(
Gnq cos θnq+Bnq sin θnq

)
Qn + QDG,n = QL,n + Un

N∑
q=1

Uq
(
Gnq sin θnq−Bnq cos θnq

)
(21)

where Pn andQn are the active and reactive power injected on
node n, respectively; PDG,n,QDG,n are the active and reactive
power output of DG on node n, respectively; PL,n and QL,n
are the active and reactive power of the load on node n,
respectively; Gnq, Bnq, θnq are the conductance, susceptance,
and voltage phase angle difference of the branch between
nodes n and q, respectively; Un and Uq are the voltages of
nodes n and q, respectively; and N is the number of system
nodes.

b: NODE VOLTAGE CONSTRAINTS

Un,min ≤ Un ≤ Un,max (n = 1, . . . ,N ) (22)

Un,min andUn,max are the lower and upper voltage limits of
node n, respectively.

c: BRANCH POWER CONSTRAINTS

Sj ≤ Sj,max (j = 1, . . . , J) (23)

Sj is the power of branch j; Sj,max is the maximum power
allowed by branch j, and J is the total number of branches.

d: DG CAPACITY CONSTRAINTS

PDG,n,min ≤ PDG,n ≤ PDG,n,max (n = 1, . . . ,NDG) (24)

PDG,n is the active output of distributed energy on
node n; PDG,n,min, PDG,n,max are the minimum and max-
imum output power of distributed energy on node n,
respectively; and NDG is the total number of distributed
generations.

e: NETWORK CONSTRAINTS
The distribution network cannot appear loops and islands,
it must be radial.
When the constraint condition exceeds the limit,

it is included in the penalty function, the amount
of the limit determines the size of the penalty, and
finally, the penalty function is included in the objective
function [38].

IV. NETWORK SIMPLIFIED CODING
In this paper, the IEEE-33 node system with DG is selected.
33 nodes, 32 section switches and 5 tie switches appear in this
system. And the reference voltage is 12.66 kV. The specific
parameters are shown in [39].
The DG type, capacity and access node are shown in

Table. 4.
There are many switches in the DNRC, so the parti-

cle dimension is large. To avoid many infeasible solutions,
the coding strategy of the distribution network is shown in
Table. 5.
The distribution network in this paper is divided into

five ring networks by the coding strategy in reference [40].
In each ring network, only one switch is able to be dis-
connected, which ensures the radial topology of the dis-
tribution network and the infeasible solutions are largely
excluded.
The network loop switch matrix is defined as:

SLsu =
(
aa,b

)
w×w (25)

where w is the number of interconnection switches; SLsu
is a 0/1 matrix; and if the switch number b corresponding
switch is in loop a, aa,b is 1; otherwise, it is 0. For example,
the numbered particle Ssu = [3 6 11 12 2] corresponds to
switches (4, 14, 4, 17, 4). Switch 4 is in loop 1, so α1,1 is 1;
switch 14 is not in loop 1, so α1,2 is 0; switch 4 is in loop 1,
so α1,3 is 1; switch 17 is not in loop 1, so α1,4 is 0; switch 4 is
in loop 1, so α1,5 is 1; and so on, the corresponding SLsu
is:

SLsu =


1 0 1 0 1
0 1 0 0 0
1 0 1 0 1
0 0 0 1 0
1 0 1 0 1

 (26)

The SLsu matrix corresponding to Ssu is a nondiagonal
matrix, if the same row appears in the matrix, it indicates that
the public switch in the loop has been turned on not only one
time, and the loop network appears in the network, which is
an infeasible solution. If the elements of a row of SLsu are all
0, there are no switch turned on in the ring network, which
indicates that an island has been generated, and the particle is
also an infeasible solution.

In summary, R (SLsu) is the rank R of SLsu; if R(SLsu) < a,
the particle is an infeasible solution.
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FIGURE 8. Simplified diagram of the IEEE 33-bus distribution network.

TABLE 5. Loop vectors of the IEEE 33-bus distribution network.

V. IMPROVED SBSO ALGORITHM BASED ON GREY
TARGET DECISION-MAKING
A. IMPROVED SBSO ALGORITHM
X. Jiang first proposed the beetle antennae search algorithm
in 2017. The beetle moves by comparing the fitness values
corresponding to the two antenna positions of the beetle. If the
left fitness value of the beetle is greater than that of the right,
the beetle moves to the left, vice versa [32], [33]. In this
paper, multidimensional function optimization is taken as an
example to solve the optimal value. The steps are as follows:

(1) The position of the beetle in the o-dimensional solution
space is:

X0
= (x1, x2, . . . , xo) (27)

(2) The spatial coordinates of the left and right sides of
beetles are as follows:{

xl = x + LEb
xr = x − LEb

(28)

where xl is the left side of the search area, xr is the right side
of the search area, which is a random unit vector, L is the
distance from two whiskers to the center of mass, and Eb is the
random unit vector.

(3) The update rule of beetle is as follows:

x t+1 = x t − δt · Eb · sign
[
f
(
x tl
)
− f

(
x tr
)]

(29)

where x t is the centroid coordinates of the t-th iteration of
the beetle; x tl and x

t
r are the left and right antennas of the t-th

iteration, respectively; f (x) is the fitness value of x; δt is the
step size at the t-th iteration; and sign(x) is a sign function.
TheBAS algorithm only focuses on the individual, the PSO

algorithm is for groups. So, to improve the performance of
optimization algorithm, the BAS algorithm and PSO algo-
rithm are combined in this paper [41], [42], and reduce the
computational time by social behaviors between beetles.

To avoid premature convergence, the SBSO algorithm con-
sidering chaos migration strategy is used in this paper.

The similarity of beetles is:

S =
NP∑
p=1

sp (30)

sp =


1, d (q, p) <

dmax − dmin

2

0, d (q, p) ≥
dmax − dmin

2

(31)

where d(q,p) is the Euclidean distance from individual q to
p, q is the beetle with the best fitness value, dmin is the
Euclidean distance of the nearest individual to q, and dmax
is the Euclidean distance of the beetle farthest from q, B is
the number of populations.

The logistic map is:{
Xd = ηX sd

(
1− X sd

)
, S > 0.2B

No chaotic disturbance, if not
(32)

where Xd is the d-dimensional variable of chaotic sequence
X , Xd ∈ [0; 1], and η ∈ (3.569, 4).

The chaos initial population is scaled into [0, 1], and the
chaotic sequence G = {X1 . . . ,XS} is obtained iteratively.

newXd = bmin + (bmax − bmin)Xd

where bmax and bmin are the upper and lower boundary values
of the d-dimensional variable new Xd , respectively.

The iterative process from t to t + 1 for individual p is:

x t+1pd =

{
round

(
x tpd + Y

t
+ V t+1

)
, if ptp > PLp

x tpd , otherwise
(33)

where PLp is the learning probability of individual p, which
is inversely proportional to its own fitness value; ptp is the
random number of individual p, with a value of [0, 1].
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In the SBSO algorithm, the cognitive factors and social
learning factors are considered. And, the bad particles are
replaced by the preference random method in each iteration,
the particles with bad fitness values are eliminated during this
progress. Based on this, an improved beetle search particle
swarm optimization algorithm was proposed.

In the knowledge sharing process, beetles can obtain the
information from individuals who are better than themselves
and learn the knowledge from the average status of the
social group including bad beetles to handle the problem
of premature convergence, the social learning factors are
proposed considering these two social behaviors [43]–[45].
Beetles can learn from different individuals in each dimen-
sion, which can greatly reduce the number of iterations and
solve high-dimensional and complex problems.

Thus, the speed update rules of the beetle are as follows:

Y t = zt0Ebsign
(
f
(
x tr
)
− f

(
x tl
))

V t+1
= z1V t

+ z2
(
x tpd − x

t
bd

)
+ z3ε

(
x tpd − x

t
m

)
z1 = z1,max −

(
z1,max − z1,min

)
· t

Tmax

x tm =

(
x tpd − x

t
min,d

) (
x tmax,d − x

t
min,d

)
x tpd − x

t
max,d

+ x tmin,d


(34)

where b(Pb > Pp) is the individual randomly selected by
individual p among populations with greater fitness than that
of itself, and individual p can learn from different objects
randomly in different dimensions. p can learn from different
objects who are better than it, which can obtain more useful
information during this process. x tpd is the position of the
individual p in the d dimension of generation t(1 ≤ d ≤ D);
D is the dimension of the decision space; zt0 is a cognitive
factor; z2−z3 are random numbers of individual p between [0,
1]; ε is the influence factor for controlling the social influence
of x tm, which is taken as 0.01 in this paper; z1,max , z1,min are the
maximum andminimum inertia weights, respectively; Tmax is
the maximum number of iterations; and x tmax,d , x

t
min,d are the

upper and lower search bounds of the d-dimension variables,
respectively.

When the individual is lower than the average value, the
individual performance is not good. So, to strengthen the
global search ability, it is necessary to increase the cognitive
factor; otherwise, to accelerate the convergence speed, the
cognitive factor is reduced [46].z

t
0 = z0,max −

(
z0,max − z0,min

) (
F − F tmin

)
F tmax − F tavg

, F ≥ F tavg

zt0 = z0,max, F < F tavg
(35)

F , Fmin, Fmax and Favg are the current individual fitness
value, population minimum fitness value, population max-
imum fitness and average fitness, respectively; and z0,max
and z0,min are the maximum and minimum cognitive factors,
respectively.

FIGURE 9. Chaos migration strategy and social learning strategy.

Rank the fitness values and replace the last beetles of B/6.
In order to make full use of the effective information of the
current solution set, the preference random method is used to
update the position of the beetle to reduce the probability of
falling into the local optimal solution.

Replace the bad beetles by the following formula:

x t+1pr = x tpr + z4
(
x tp,1 − x

t
p,2

)
(36)

x tpr is the bad beetle; x tp,1 and x tp,2 are any two different
particles in the population; and z4 is random numbers of
individual p between [0, 1].
The probability function is:

PLp = 1−
g− 1
B

(37)

where g is the rank of individual p in the population after
fitness sorting.

The chaos migration strategy and the social learning strat-
egy are shown in Fig. 9.

B. GREY TARGET DECISION-MAKING
GTDM is one of the useful methods to solve multi-index
decision-making problems in grey system theory, which can
be used to optimize the optimal solution. GTDM is tomeasure
and transform all indexes to the Euclidean space of the same
dimension, that is, grey target. A target center is found in
the grey target as the standard model, and then the decision
points in the grey target are compared with the target center,
and different target center distances are obtained to obtain
the optimal scheme. The weight and target distance of each
scheme are calculated based on entropy value, which does not
depend on expert evaluation or decision-maker’s preference,
so as to improve the credibility and authenticity of decision-
making. In this paper, the GTDM is used to analyze and
solve themultiobjective distribution network reconfiguration,
so that the sum of the active power loss, the load balancing
index, and the maximum node voltage deviation index can
simultaneously reach the optimal.

The four elements of grey decision-making are event, strat-
egy, target and effect.
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Distribution network reconfiguration event is A = {a1},
and all possible strategy set are B = {b1, b2, . . . , bB},
in which bp(p = 1, 2, . . . ,B) is the p-strategy.

The decision scheme set S of grey decision is the Carte-
sian product of event set A = {a1} and strategy set B =
{b1, b2, . . . , bB}.

S = A× B =
{(
a1, bp

)∣∣ a1 ∈ A, bp ∈ B}
= {s11, s12, . . . , s1B} (38)

The decision scheme set S is obtained by SBSO algorithm,
that is the break switch combination of the p-th beetle.
The objective of GTDM is the goal of distribution network

reconfiguration f (k)(k = 1, 2, 3). At the same time, u(k)1p is the
effect value of the decision scheme set S1p of objective k .

u(k)1p : S 7→ R, S1p 7→ u(k)1p (39)

u(k)1p is the effect mapping of S with respect to objective ‘k ′

and represents the satisfaction degree of p-decision-making
under k-objective.

u(k)1p = λ1f
k
1p + λ2fS (40)

where f (k)1p is the evaluation index of scheme S1p with respect
to objective ‘k’, fS is the number of switching operation index.
λ1 and λ2 is calculated by the entropy method.
fs is modeled as follows:

fS =
T∑
t

M∑
m

0.5(Dm,p+1 ⊕ Dm,p + Dm,p ⊕ Dm,p−1) (41)

where Dm,p is the status of switch ‘m’ of reconguration
scheme S1p,Dm,p+1 andDm,p−1 are the statuses of switch ‘m’
for the other two reconfiguration schemes.

Since the meaning, dimension and properties of different
target effect values is different, in order to obtain a compara-
ble comprehensive effect measure, the target effect value u(k)1p

is transformed into a consistent effect measure r (k)1p based on
the averaging operator t (k).

t(k) =
1
B

B∑
p=1

u(k)1p , k = 1, 2, . . . ,K (42)

If the target value is benefit index,

r (k)1p =

(
u(k)1p − t

(k)
)

max
{
max
1≤p≤B

{
u(k)1p

}
−t(k), t(k)− min

1≤p≤B

{
u(k)1p

}} (43)

If the target value is a cost index,

r (k)1p =

(
t(k) − u(k)1p

)
max

{
max
1≤p≤B

{
u(k)1p

}
− t(k), t(k) − min

1≤p≤B

{
u(k)1p

}}
(44)

If the target value is an interval index of [a, b],

r (k)1p =



2u(k)1p − a− min
1≤p≤B

{
u(k)1p

}
a− min

1≤p≤B

{
u(k)1p

} , u(k)1p < a

1, a ≤ u(k)1p ≤ b

−

2u(k)1p − b− max
1≤p≤B

{
u(k)1p

}
max
1≤p≤B

{
u(k)1p

}
− b

, u(k)1p > b

(45)

Based on the above transformation, the consistent effect
matrix R(k) is obtained.

R(k) =
(
r (k)1p

)
=

[
r (k)11 r (k)12 . . . r (k)1B

]
(46)

There is only one event a1 in the grey decision model
of distribution network reconfiguration, and its consistent
effect matrix can be transformed into a decision matrix R
corresponding to objectives and strategies.

R =
(
rkp
)
K×B ,

(
rkp = r (k)1p

)
and

(
rkp ∈ [−1, 1]

)
(47)

Finally, the center of GTDM R0 is determined.

R0 =
[
R01 . . . R0k . . . R0K

]
(48)

R0 is described as follows:

R0k = max
{
rkp
∣∣ 1 ≤ p ≤ B} (49)

The target distance reflects the advantages and disadvan-
tages of each scheme. The smaller the target distance is, the
closer the scheme is to the ideal one, the better the scheme
is, and vice versa. Therefore, the scheme with the minimum
target distance is the optimal one [30].

Effect vector Rp of scheme p is described as follows:

Rp =
[
R1p . . . Rkp . . . RKp

]
(50)

Target distance dp of scheme p is described as follows:

dp =
∣∣∣Rp − R0∣∣∣ =

√√√√ K∑
k=1

φk
(
Rkp − R0k

)2
(51)

where ϕk (ϕk (k = 1, 2, . . . ,K ) is the weight of each target.
The weight coefficient reflects the influence of objective k

on decision-making.
In this study, the weights are obtained by the comprehen-

sive analytic hierarchy process (AHP) and entropy weight
method [30], [47]. Firstly, the static weight is calculated by
AHP, and then the improved weight is determined by the
entropy weight method, and is used to modify the static
weight to obtain the comprehensive weight ϕk .
1) AHP is used to determine the static weight, the impor-

tance of K parameters is assigned and then the judgment
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FIGURE 10. The algorithm flow chart of this paper.

FIGURE 11. The path of beetles.

matrix is obtained according to the results of comparison.

I =



α1

α1

α1

α2
. . .

α1

αK
α2

α1

α2

α2
. . .

α2

αK
. . . . . . . . . . . .
αK

α1

αK

α2
. . .

αK

αK


(52)

αi/αj is the importance of the i-th parameter relative to the j
parameter. Then, the matrix weight method is used to find an
optimal weight vectorW for the judgment matrix A satisfying
the consistency test condition.

W = (β1, β2, . . . , βK )T (53)

2) Entropy weight method is used to determine the
improved weight, for the multiobjective evaluation problem
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TABLE 6. Function expression.

TABLE 7. Performance comparison of five functions.

with K parameters and B evaluation objects, the grey target
coefficient matrix is described as follows:

Q =
(
γij
)
=


γ11 γ12 . . . γ1K
γ21 γ22 . . . γ2K
. . . . . . . . . . . .

γB1 γB2 . . . γBK

 (54)

After normalization,

R′ =
{
γ ′ij

}
, γ ′ij = γij

/
B∑
i=1

γij (55)

The information entropy of the i-th parameter is defined as:

Hi = −
1
InB

B∑
i=1

γijInγij (j = 1, 2, . . . ,K ) (56)

Weight is defined as:

εi = (1− Hi)

/
K∑
i=1

(1− Hi) (57)

3)The comprehensive weight ϕk is described as follows:

φi =
(
βi
/
εi
)/(

K∑
i=1

βi

/
εi

)
(58)

Because the SBSO algorithm is a heuristic search method,
its optimization results have certain randomness. A large
number of tests show that the algorithm runs independently
for 30 times, the frequency of the minimum value is the
largest. If the difference between the values is less than
10−7, these values are regarded as the same number. And
the open switches corresponding to the minimum value is
the final solution. In this paper, the algorithm runs inde-
pendently for 50 times each time, and the occurrence times
of the minimum value are counted. If the minimum value
appears the most times, the minimum value is the opti-
mal solution, otherwise, run independently for 50 times
again.

The algorithm flow chart of this paper is shown in Fig.10.
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FIGURE 12. The number of iterations.

FIGURE 13. The computation cost of five benchmark functions.

FIGURE 14. Load demand curve based on IEEE-33 node over 24 hours.

C. EXPERIMENTAL DESIGN AND RESUILS ANALYSIS
To preliminarily verify the effectiveness of the SBSO algo-
rithm, it is used to solve the Griewank function. The initial
parameters are set as follows: the dimension is 2, the number
of beetles is 10, and the number of iterations is 100, L = 2,
z0,max = 2.5, z0,min = 1.5, z1,max = 0.9, z1,min = 0.4 and the
social impact factor is 0.01. The SBSO algorithm is used to

FIGURE 15. The results of different cases.

TABLE 8. Different cases of optimal network reconfiguration.

solve this function, the solving process is shown in the Fig.11,
and the number of iterations is shown in the Fig.12.

The SBSO algorithm can effectively find the mini-
mum value of the function, and the minimum value of
Griewank can be obtained after approximately 40 iterations
with fewer iterations, a fast convergence speed and a high
efficiency.

To further verify the superiority of the SBSO algorithm,
five representative benchmark functions are simulated and
compared with the PSO, BAS, and BSO algorithms. The
initial parameters are set as follows: the dimension is 5, the
number of beetles is 10, and the number of iteration is 300.
Table 6 shows the names of the five benchmark functions, the
function expression F , the solution search space range, and
minimum value Fmin, and the dimension D of the variable.
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FIGURE 16. Comparison of DG output and optimization objectives.

To ensure the fairness and objectivity of the evaluation,
in the test, the four algorithms run independently for 50 times,
and the variable dimension is 5. The average values of the
experimental results are shown in Table 7.

Table.7 shows that the SBSO algorithm is superior to
the PSO, BAS, and BSO algorithms. The BAS algorithm
obviously falls into the local optimal value when solving F1
and F2, and can jump out of the local optimal value with a
small probability when solving other test functions. Overall,
BAS has a limited global optimization ability. The global
optimization ability of PSO is better than that of BAS, but it
sometimes falls into the local optimal solution. BSO is better
than PSO algorithm and BAS algorithm, it can avoid local
optimal value in a high probability, but the value obtained
by the BSO algorithm is insufficient. By comparison, the
SBSO algorithm has the strongest global optimization ability.
From Fig.13, PSO and BAS need hundreds of iterations to
reach the optimal value, while BSO and SBSO iterations are
less than those of PSO and BAS, so the solving efficiency
has been significantly improved. The number of iterations of
SBSO is less than that of BSO, showing a steady and rapid
decline trend in the three test functions. On the other hand,
the running time of SBSO algorithm is the least, which means
the computational cost of the SBSO algorithm is the least and
this algorithm can be computationally efficient to be used in
practical applications.

VI. SIMULATION VERIFICATION
The CPU model of the computer used in this study was
an Intel (R) core (TM) i5-2400CPU@3.10. The operating
system was Windows 7 ultimate 64 bit, and the running envi-
ronment wasMATLAB 2016a. Based on the abovementioned
IEEE-33 node distribution network system. The weight coef-
ficients of the objective function were α = 2, β = 1, γ = 1,
and λ = 2. The evaluation factors were a = 0.6 and b = 0.4.
The total number of beetles was 50, the maximum number
of iterations was 300, L = 2, z0,max = 2.5, z0,min = 1.5,
z1,max = 0.9, z1,min = 0.4, and the social impact factor

was 0.01. The scheme before reconfiguration set as one that
does not consider the uncertainty of wind power and load,
that was to disconnect five tie switches. The original network
was to disconnect 33, 34, 35, 36, and 37 switches, without
considering network reconfiguration. The total network loss
was 3467.45 kWh, the voltage deviation was 0.9560 p.u, and
the load balance was 7.2797 p.u. Fig. 14 shows the total
demand profile based on IEEE-33 node over 24 hours.

A. DIFFERENT CASES
To validate the presented method and compare it with other
methods, the optimal network reconfiguration is solved for
the following cases.

Fig.15(a) shows that the optimization effects of case 1 and
case 2 are similar, those of case 3 and case 4 are close, and
the optimization effect of case 4 is obviously better than those
of case 1, case 2 and case 3, which means that DG access to
the power grid and distribution network reconfiguration can
effectively reduce the active power loss.

Fig.15(b) shows that the optimization effects of case 3 and
case 4 are similar and they are much better than those of
case 1 and case 2, indicating that DG can also reduce voltage
deviation. The voltage deviation of case 4 is also less than
that of case 3, which indicates that the distribution network
reconfiguration can reduce the voltage deviation andmaintain
the voltage level above 0.960 p.u.

Assuming that the load is constant, the DG output changes
within 24 hours, the relationship between output of DG and
objectives over 24h as shown in Fig. 15.

From Fig.16, with the increase in the output of DG, the
active power loss and voltage deviation decrease, which
shows that the greater the DG output, the better the grid
performance.

B. PARTITION OF TIME INTERVALS
The net load on 33 nodes within 24 hours is analyzed by GRP.
When the comprehensive correlation degree is greater than
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TABLE 9. Parameters of grey correlation degree.

FIGURE 17. The active power loss change of each node in 24h.

0.865, the time interval can be merged. The combined results
are shown in the Table 9.

Case A is reconfiguration twenty-four times over 24 hours,
case B is reconfiguration five times over 24 hours.

Case A compared with case B. The results in each node are
shown in the Figs.17 and 18.

From Figs.17 and 18, active power loss, load balancing and
maximum node voltage deviation on 33 nodes over 24 hours
of case A are similar to case B. The results of case A and case
B in 24h are shown in Table 10 and Fig.19.

From Fig.19, active power loss, load balancing and max-
imum node voltage deviation over 24 hours of case A are
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FIGURE 18. The voltage change of each node in 24h.

FIGURE 19. The results of case A and case B in 24h.

FIGURE 20. Switch distribution diagram of Case A.

similar to case B, it is only that the load balance and voltage
deviation of case B are slightly larger than that of case A, the
load balance degree of case B is 0.0072884 larger than that
of case A, and the voltage deviation of case B is 0.0427327
larger than that of case A, which only affects the power grid
performance and voltage quality in the permissible range.
In contrast, the active power loss of case B is less than that
of case A.

The network loss of distribution network will cause extra
cost which is obtained by active power loss f 1 and electricity
price C1($220.92/MW∗h). And cost of the switching opera-
tion is obtained by the number of switching operation fs and
the cost of per switching operation C2($147.28/per). Based
on this, the total cost of case A is $522812.6811, the total cost
of case B is $511835.805, so case B cut down the unnecessary
expense of $10976.8761, which is more economical.
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FIGURE 21. Switch distribution diagram of Case B.

TABLE 10. The results of case A and case B over 24h.

Green and red represent connection and disconnection in
the distribution network respectively.

The switch distribution diagram of case A and case B are
shown in Figs.20 and 21.

It clearly shows that case B causes a substantial reduction
in the number of switching operations.

If the wind speed and solar radiation are predicted, the
DG output will be obtained. The data series is reconstructed

VOLUME 8, 2020 205003



Q. Chen et al.: Social Beetle Swarm Algorithm Based on Grey Target Decision-Making

TABLE 11. Parameters of GTDM.

by the above-mentioned GRP. It can be known that the
switching operation can be carried out as soon as possi-
ble in a reconstruction period to avoid multiple complex
operations each hour. The simulation results show that the
proposed method can greatly reduce the switching oper-
ations and reduce the total cost of distribution network
reconfiguration.

C. GREY TARGET DECISION-MAKING
GTDM uses objective data to determine the ideal scheme as
the target center. By calculating the target distance between
the candidate scheme and the ideal scheme, the smaller the
target distance is, the better the effect is. The grey decision
theory is integrated into the SBSO algorithm to solve the
multiobjective optimization problem, which avoids the sub-
jectivity and objectivity of directly weighting the target value.
The average effect and the center of GTDM in the algorithm
are shown in Table 11.

From Fig.22, The average effect value has the same
trend with the real parameters of distribution network

FIGURE 22. The mean value of effect value.

reconfiguration in 24h, which can reflect the reconfiguration
effect to a certain extent.

The algorithm based on the GTDM method and the
algorithm based on the entropy weight method are used
to solve the distribution network reconfiguration problem.
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TABLE 12. The results of two methods based on IEEE 33-node.

FIGURE 23. The results of two methods based on IEEE-33nodes.

The weights of active power loss, voltage deviation and load
balance are 0.5, 0.3, and 0.2, respectively. The results are as
follows.

From Fig.23, the SBSO algorithm based on GTDM
has obvious advantages in solving multiobjective dis-
tribution network reconfiguration, active power loss,
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TABLE 13. Detail comparison based on IEEE-33 node with PSO, BAS, BSO algorithm.

FIGURE 24. Detail comparison based on IEEE-33 node with PSO, BAS, BSO algorithm.

Load balancing index and maximum node voltage devi-
ation index are less than the algorithm based on the
entropy weight method. SBSO algorithm based on GTDM

is a more effective multiobjective algorithm, which
can find the optimal solution of multiple objectives
simultaneously.
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TABLE 14. The results based on IEEE-33 node compared with PSO, BAS, BSO algorithm.

FIGURE 25. The results based on IEEE-33 node.

D. DIFFERENT ALGORITHM
For case 4 of the IEEE-33 system, the reconfigura-
tion strategy of the algorithm in this paper is used to
reconstruct the distribution network, and the active power
loss, voltage deviation and load balance are recorded.
The detail results are compared with those of the PSO
in [34], BAS in [32], and BSO algorithm in Table 13 and
Fig. 24.

Table 13 and Fig.24 show that SBSO and BSO have
smaller values than BAS and PSO. Although the results
obtained by SBSO algorithm is not the smallest in 24 hours,
which is related to the power grid state at that time,
it can be seen from the Fig.24 that the surface enclosed
by SBSO algorithm is closer to the origin, and its value is
optimal.

TABLE 15. The specific parameters and the locations of DG access to IEEE
69-node.

Table 14 and Fig.25 show that SBSO and BSO have
smaller values than those of BAS and PSO, and Fig.26
shows that the SBSO more easily finds smaller global opti-
mal solutions in a shorter time. And the number of iter-
ations is substantially fewer for SBSO than for the other
three algorithms, and the fitness value is smaller, which
means the computation cost of the proposed approach is the
least.

The BSO algorithm combines the advantages of the PSO
and BAS, improves the efficiency of the PSO algorithm, and
helps the BAS jump out of the local optimal solution to a great
extent. The above results also verify this conclusion. BSO has
a better global search ability and higher solution efficiency
than those of PSO and BAS. Based on BSO, this algorithm
improves its operator, adds social learning progress, and sorts
and updates each optimization result to form an improved
SBSO algorithm. From the above results, it is apparent that
the SBSO algorithm has a stronger global search ability than
the BSO algorithm, and it can find the global optimal value

FIGURE 26. The computation cost based on IEEE-33 node.
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TABLE 16. The results of two methods based on IEEE 69-node.

with higher efficiency and the highest accuracy in fewer
iterations.

E. SCALABILITY
The SBSO algorithm is used to reconstruct the stan-
dard IEEE-69 node distribution network in 24 hours.
The parameters of the DG type, capacity and access
node are shown in Table 15 [36]. In Fig. 27 shows
the total demand profile based on IEEE-69 node over
24 hours.

The results compared with weight factors are shown in the
Table 16 and Fig.28.

From Fig.28, the SBSO algorithm based on GTDM has
obvious advantages in solving multiobjective distribution
network reconfiguration, active power loss, load balanc-
ing index and maximum node voltage deviation index are
less than those of algorithm based on the entropy weight
method simultaneously. The results obtained by SBSO

FIGURE 27. Load demand curve based on IEEE-69 node over 24 hours.

algorithm based on GTDM is almost the smallest in 24 hours.
From Fig.28, the surface enclosed by SBSO algorithm
based on GTDM is closer to the origin, and its value is
optimal.
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TABLE 17. The open switches of four algorithms.

TABLE 18. Detail comparison based on IEEE-69 node with PSO, BAS, BSO algorithm.

The open switches of four algorithms are shown
in Table 17. The results are compared with those of

the PSO, BAS, and BSO algorithms in Table 18 and
Fig.29.
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FIGURE 28. The results of two methods based on IEEE-69 nodes.

FIGURE 29. Detail comparison based on IEEE-69 node with PSO, BAS, BSO algorithm.

FIGURE 30. The results based on IEEE-69 node.

Table 18 and Fig.29 show that SBSO andBSOhave smaller
values than those of BAS and PSO. Although the results

obtained by SBSO algorithm is not the smallest in 24 hours,
which is related to the power grid state at that time, it can
be seen from the Fig.29 that the results by SBSO algo-
rithm is almost under the other values, and its value is
optimal.

Table 19 and Fig.30 show that the SBSO and BSO have
smaller values than those of BAS and PSO, and Fig.31 shows
that the SBSO more easily finds smaller global optimal solu-
tions in a shorter time. And the number of iterations of SBSO
is significantly less than those of other three algorithms,
which means the computation cost of the proposed approach
is the least. These results indicate that the SBSO algorithm
in this paper is also useful for IEEE-69 node. Therefore, the
presented method is scalable.

FIGURE 31. The computation cost based on IEEE-69 node.
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TABLE 19. The results based on IEEE-69 node compared with PSO, BAS, BSO algorithm.

VII. CONCLUSION
Since a large number of distributed generation and complex
load are connected to the distribution network, the safe and
economic operation of the network is affected. In this paper,
a multiobjective reconfiguration model of the distribution
network considering wind power, solar power, and load is
implemented for minimizing the sum of active power loss,
the load balancing index, and the maximum node voltage
deviation. In addition, SBSO based on a GTDM strategy was
designed to solve the multiobjective optimization problem.
Moreover, the grey correlation clusteringmethod is utilized to
divide the time period of DNRC in order to reduce the number
of switching operations.

Here, proper DG access to the distribution network not
only helps to absorb renewable energy but also improves the
performance of distribution network indicators. At the same
time, distribution network reconfiguration technology is also
a very useful tool to reduce active power loss, improve the
node voltage level, minimize load balancing. Additionally,
the GRP method can effectively segment the time period
of DNRC according to the randomness caused by DG and
load in a day. Compared with the Entropy method, the SBSO
based on GTDM strategy can achieve the goal of optimiz-
ing multiple indexes in the distribution network simulta-
neously. Moreover, the SBSO algorithm in this paper can
effectively solve the complex multidimensional distribution
network reconfiguration problem, and compared with the
PSO, BAS, and BSO algorithms, it is more accurate and
efficient.

REFERENCES
[1] W. Zheng,W. Huang, and D. J. Hill, ‘‘A deep learning-based general robust

method for network reconfiguration in three-phase unbalanced active dis-
tribution networks,’’ Int. J. Electr. Power Energy Syst., vol. 120, Sep. 2020,
Art. no. 105982, doi: 10.1016/j.ijepes.2020.105982.

[2] I. Benitez Cattani, E. Chaparro, and B. Baran, ‘‘Distribution system
operation and expansion planning using network reconfiguration,’’ IEEE
Latin Amer. Trans., vol. 18, no. 5, pp. 845–852, May 2020, doi: 10.1109/
TLA.2020.9082912.

[3] I. A. Quadri, S. Bhowmick, and D. Joshi, ‘‘Multi-objective approach to
maximise loadability of distribution networks by simultaneous reconfigu-
ration and allocation of distributed energy resources,’’ IET Gener., Trans-
miss. Distrib., vol. 12, no. 21, pp. 5700–5712, Nov. 2018, doi: 10.1049/iet-
gtd.2018.5618.

[4] J. Payne, F. Gu, G. Razeghi, J. Brouwer, and S. Samuelsen, ‘‘Dynamics of
high penetration photovoltaic systems in distribution circuits with legacy
voltage regulation devices,’’ Int. J. Electr. Power Energy Syst., vol. 124,
Jan. 2021, Art. no. 106388, doi: 10.1016/j.ijepes.2020.106388.

[5] J. Shukla, B. K. Panigrahi, and P. K. Ray, ‘‘Stochastic reconfiguration of
distribution system considering stability, correlated loads and renewable
energy basedDGswith varying penetration,’’ Sustain. Energy, Grids Netw.,
vol. 23, Sep. 2020, Art. no. 100366, doi: 10.1016/j.segan.2020.100366.

[6] A. M. Imran, M. Kowsalya, and D. P. Kothari, ‘‘A novel integration
technique for optimal network reconfiguration and distributed genera-
tion placement in power distribution networks,’’ Int. J. Electr. Power
Energy Syst., vol. 63, pp. 461–472, Dec. 2014, doi: 10.1016/j.ijepes.2014.
06.011.

[7] M. J. Quintero-Duran, J. E. Candelo-Becerra, and K. Cabana-Jimenez,
‘‘Distribution network reconfiguration with large number of switches
solved by a modified binary bat algorithm and improved seed population,’’
Tehnički Vjesnik, vol. 26, no. 5, pp. 1284–1291, Feb. 2019.

[8] A. O. Salau, Y.W. Gebru, and D. Bitew, ‘‘Optimal network reconfiguration
for power loss minimization and voltage profile enhancement in distri-
bution systems,’’ Heliyon, vol. 6, no. 6, Jun. 2020, Art. no. e04233, doi:
10.1016/j.heliyon.2020.e04233.

[9] D. Jakus, R. Čaenović, J. Vasilj, and P. Sarajčev, ‘‘Optimal reconfiguration
of distribution networks using hybrid heuristic-genetic algorithm,’’ Ener-
gies, vol. 13, no. 7, p. 1544, Mar. 2020, doi: 10.3390/en13071544.

[10] A. Azizivahed, A. Arefi, S. Ghavidel, M. Shafie-khah, L. Li, J. Zhang,
and J. P. S. Catalao, ‘‘Energy management strategy in dynamic distribution
network reconfiguration considering renewable energy resources and stor-
age,’’ IEEE Trans. Sustain. Energy, vol. 11, no. 2, pp. 662–673, Apr. 2020,
doi: 10.1109/TSTE.2019.2901429.

[11] P. P. Biswas, P. N. Suganthan, B. Y. Qu, and G. A. J. Amaratunga, ‘‘Mul-
tiobjective economic-environmental power dispatch with stochastic wind-
solar-small hydro power,’’ Energy, vol. 150, pp. 1039–1057, May 2018,
doi: 10.1016/j.energy.2018.03.002.

[12] Y. Yin, T. Liu, and C. He, ‘‘Day-ahead stochastic coordinated
scheduling for thermal-hydro-wind-photovoltaic systems,’’ Energy,
vol. 187, Nov. 2019, Art. no. 115944, doi: 10.1016/j.energy.2019.
115944.

[13] V. K. Jadoun, V. C. Pandey, N. Gupta, K. R. Niazi, and A. Swarnkar,
‘‘Integration of renewable energy sources in dynamic economic load
dispatch problem using an improved fireworks algorithm,’’ IET Renew.
Power Gener., vol. 12, no. 9, pp. 1004–1011, Jul. 2018, doi: 10.1049/iet-
rpg.2017.0744.

[14] H. Teimourzadeh and B. Mohammadi-Ivatloo, ‘‘A three-dimensional
group search optimization approach for simultaneous planning of dis-
tributed generation units and distribution network reconfiguration,’’
Appl. Soft Comput., vol. 88, Mar. 2020, Art. no. 106012, doi: 10.1016/
j.asoc.2019.106012.

[15] M. Esmaeili, M. Sedighizadeh, and M. Esmaili, ‘‘Multi-objective opti-
mal reconfiguration and DG (distributed generation) power allocation
in distribution networks using big bang-big crunch algorithm consider-
ing load uncertainty,’’ Energy, vol. 103, pp. 86–99, May 2016, doi: 10.
1016/j.energy.2016.02.152.

[16] J. Zhao, H. Niu, and Y. Wang, ‘‘Dynamic reconfiguration of active distri-
bution network based on information entropy time division,’’ Power Syst.
Technol., vol. 41, no. 2, pp. 402–408, Feb. 2017, doi: 10.13335/j.1000-
3673.pst.2016.2381.

[17] D. Jiang, T. Liu, and F. Li, ‘‘Dynamic distribution network reconfigura-
tion based on dynamic partition of time intervals and hierarchical opti-
mization,’’ Power Syst. Technol., vol. 36, no. 2, pp. 153–157, 2012, doi:
10.13335/j.1000-3673.pst.2012.02.030.

[18] C. Yu, T. Wei, X. Chen, P. Cong, and Z. Lu, ‘‘Tie switch allocation
optimization based on dynamic segment of equivalent load-PV curve,’’
Electr. Power Autom. Equip., vol. 35, pp. 47–53, Mar. 2015.

[19] Z. Dong and L. Lin, ‘‘Dynamic reconfiguration strategy based on parti-
tion of time intervals with improved fuzzy C-means clustering,’’ in Proc.
China Int. Conf. Electr. Distrib. (CICED), Sep. 2018, pp. 398–404, doi:
10.1109/CICED.2018.8592081.

[20] Y. Li, B. Feng, G. Li, J. Qi, D. Zhao, and Y. Mu, ‘‘Optimal distributed
generation planning in active distribution networks considering integration
of energy storage,’’ Appl. Energy, vol. 210, pp. 1073–1081, Jan. 2018, doi:
10.1016/j.apenergy.2017.08.008.

VOLUME 8, 2020 205011

http://dx.doi.org/10.1016/j.ijepes.2020.105982
http://dx.doi.org/10.1109/TLA.2020.9082912
http://dx.doi.org/10.1109/TLA.2020.9082912
http://dx.doi.org/10.1049/iet-gtd.2018.5618
http://dx.doi.org/10.1049/iet-gtd.2018.5618
http://dx.doi.org/10.1016/j.ijepes.2020.106388
http://dx.doi.org/10.1016/j.segan.2020.100366
http://dx.doi.org/10.1016/j.ijepes.2014.06.011
http://dx.doi.org/10.1016/j.ijepes.2014.06.011
http://dx.doi.org/10.1016/j.heliyon.2020.e04233
http://dx.doi.org/10.3390/en13071544
http://dx.doi.org/10.1109/TSTE.2019.2901429
http://dx.doi.org/10.1016/j.energy.2018.03.002
http://dx.doi.org/10.1016/j.energy.2019.115944
http://dx.doi.org/10.1016/j.energy.2019.115944
http://dx.doi.org/10.1049/iet-rpg.2017.0744
http://dx.doi.org/10.1049/iet-rpg.2017.0744
http://dx.doi.org/10.1016/j.asoc.2019.106012
http://dx.doi.org/10.1016/j.asoc.2019.106012
http://dx.doi.org/10.1016/j.energy.2016.02.152
http://dx.doi.org/10.1016/j.energy.2016.02.152
http://dx.doi.org/10.13335/j.1000-3673.pst.2016.2381
http://dx.doi.org/10.13335/j.1000-3673.pst.2016.2381
http://dx.doi.org/10.13335/j.1000-3673.pst.2012.02.030
http://dx.doi.org/10.1109/CICED.2018.8592081
http://dx.doi.org/10.1016/j.apenergy.2017.08.008


Q. Chen et al.: Social Beetle Swarm Algorithm Based on Grey Target Decision-Making

[21] Y. Li, Y. Li, G. Li, D. Zhao, and C. Chen, ‘‘Two-stage multi-objective
OPF for AC/DC grids with VSC-HVDC: Incorporating decisions analysis
into optimization process,’’ Energy, vol. 147, pp. 286–296, Mar. 2018, doi:
10.1016/j.energy.2018.01.036.

[22] Y. Li, Z. Yang, D. Zhao, H. Lei, B. Cui, and S. Li, ‘‘Incorporating
energy storage and user experience in isolated microgrid dispatch using
a multi-objective model,’’ IET Renew. Power Gener., vol. 13, no. 6,
pp. 973–981, Apr. 2019, doi: 10.1049/iet-rpg.2018.5862.

[23] J. P. Avilés, J. C. Mayo-Maldonado, and O. Micheloud, ‘‘A multi-objective
evolutionary approach for planning and optimal condition restoration of
secondary distribution networks,’’ Appl. Soft Comput., vol. 90, May 2020,
Art. no. 106182, doi: 10.1016/j.asoc.2020.106182.

[24] Q. Lu, L. Chen, and S. Mei, ‘‘Typical applications andprospects of game
theory in power system,’’ Proc. CSEE, vol. 34, no. 29, pp. 5009–5017,
Feb. 2014.

[25] S. Ganguly, N. C. Sahoo, and D. Das, ‘‘Multi-objective planning of elec-
trical distribution systems using dynamic programming,’’ Int. J. Electr.
Power Energy Syst., vol. 46, pp. 65–78, Mar. 2013, doi: 10.1016/j.
ijepes.2012.10.030.

[26] H. Khazraj, B. Y. Khanghah, P. Ghimire, F. Martin, M. Ghomi, F. Faria
da Silva, and C. Leth Bak, ‘‘Optimal operational scheduling and reconfig-
uration coordination in smart grids for extreme weather condition,’’ IET
Gener., Transmiss. Distrib., vol. 13, no. 15, pp. 3455–3463, Aug. 2019,
doi: 10.1049/iet-gtd.2019.0507.

[27] M. H. R. Nascimento, M. V. A. Nunes, J. L. M. Rodríguez, and J. C. Leite,
‘‘A new solution to the economical load dispatch of power plants and
optimization using differential evolution,’’ Elect. Eng., vol. 99, no. 2,
pp. 1–11, 2016, doi: 10.1007/s00202-016-0385-2.

[28] Y. Li, J. Wang, D. Zhao, G. Li, and C. Chen, ‘‘A two-stage approach
for combined heat and power economic emission dispatch: Combining
multi-objective optimization with integrated decision making,’’ Energy,
vol. 162, pp. 237–254, Nov. 2018, doi: 10.1016/j.energy.2018.07.200.

[29] Y. G. Dong and S. F. Liu,Grey System Theory and its Application. BeiJing,
China: Science Press, 2014, pp. 256–261.

[30] G. Zhang,W.Wang, J. Du, andH. Liu, ‘‘Amultiobjective optimal operation
of a stand-alone microgrid using SAPSO algorithm,’’ J. Electr. Comput.
Eng., vol. 2020, pp. 1–16, Mar. 2020, doi: 10.1155/2020/6042105.

[31] M. Zhang and Y. Li, ‘‘Multi-objective optimal reactive power dispatch of
power systems by combining classification-based Multi-objective evolu-
tionary algorithm and integrated decision making,’’ IEEE Access, vol. 8,
pp. 38198–38209, 2020, doi: 10.1109/ACCESS.2020.2974961.

[32] Z. Zhu, Z. Zhang, W.Man, X. Tong, J. Qiu, and F. Li, ‘‘A new beetle anten-
nae search algorithm for multi-objective energy management in micro-
grid,’’ in Proc. 13th IEEE Conf. Ind. Electron. Appl. (ICIEA), May 2018,
pp. 1599–1603, doi: 10.1109/ICIEA.2018.8397965.

[33] X. Jiang and S. Li, ‘‘BAS: Beetle antennae search algorithm for
optimization problems,’’ 2017, arXiv:1710.10724. [Online]. Available:
http://arxiv.org/abs/1710.10724

[34] H. S. Ramadan, A. F. Bendary, and S. Nagy, ‘‘Particle swarm optimization
algorithm for capacitor allocation problem in distribution systems with
wind turbine generators,’’ Int. J. Electr. Power Energy Syst., vol. 84,
pp. 143–152, Jan. 2017, doi: 10.1016/j.ijepes.2016.04.041.

[35] X. Li, W. Wang, H. Wang, J. Wu, X. Fan, and Q. Xu, ‘‘Dynamic
environmental economic dispatch of hybrid renewable energy systems
based on tradable green certificates,’’ Energy, vol. 193, Feb. 2020,
Art. no. 116699.

[36] J. Wang, W. Wang, Z. Yuan, H. Wang, and J. Wu, ‘‘A chaos disturbed
beetle antennae search algorithm for a multiobjective distribution network
reconfiguration considering the variation of load and DG,’’ IEEE Access,
vol. 8, pp. 97392–97407, 2020, doi: 10.1109/ACCESS.2020.2997378.

[37] M. R. Dorostkar-Ghamsari, M. Fotuhi-Firuzabad, M. Lehtonen, and
A. Safdarian, ‘‘Value of distribution network reconfiguration in presence
of renewable energy resources,’’ IEEE Trans. Power Syst., vol. 31, no. 3,
pp. 1879–1888, May 2016.

[38] X. Jiang and S. Li, ‘‘Beetle antennae search without parameter tuning
(BAS-WPT) for multi-objective optimization,’’ 2017, arXiv:1711.02395.
[Online]. Available: http://arxiv.org/abs/1711.02395

[39] M. E. Baran and F. F. Wu, ‘‘Network reconfiguration in distribution
systems for loss reduction and load balancing,’’ IEEE Trans. Power Del.,
vol. 4, no. 2, pp. 1401–1407, Apr. 1989, doi: 10.1109/61.25627.

[40] Y. Zheng, X. Fu, andY.Xuan, ‘‘Active distribution network reconfiguration
considering distributed generation and load uncertainty,’’ J. Shanghai Inst.
Electr. Eng., vol. 22, no. 5, pp. 262–269, 2019.

[41] M. Lin and Q. Li, ‘‘A hybrid optimization method of beetle antennae
search algorithm and particle swarm optimization,’’ in Proc. Int. Conf.
Elect., Control, Automat. Robot. (ECAR), Xiamen, China, Sep. 2018,
pp. 396–401, doi:10.12783/dtetr/ecar2018/26379.

[42] J. Wang and H. Chen, ‘‘BSAS: Beetle swarm antennae search algorithm
for optimization problems,’’ 2018, arXiv:1807.10470. [Online]. Available:
http://arxiv.org/abs/1807.10470

[43] C. Li, S. Yang, and T. Thanh Nguyen, ‘‘A self-learning particle swarm
optimizer for global optimization problems,’’ IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 42, no. 3, pp. 627–646, Jun. 2012.

[44] V. Vahidinasab, M. Tabarzadi, H. Arasteh, M. I. Alizadeh, M. Mohammad
Beigi, H. R. Sheikhzadeh, K. Mehran, and M. S. Sepasian, ‘‘Overview of
electric energy distribution networks expansion planning,’’ IEEE Access,
vol. 8, pp. 34750–34769, 2020, doi: 10.1109/ACCESS.2020.2973455.

[45] B. Mukhopadhyay and D. Das, ‘‘Multi-objective dynamic and static
reconfiguration with optimized allocation of PV-DG and battery energy
storage system,’’ Renew. Sustain. Energy Rev., vol. 124, May 2020,
Art. no. 109777, doi: 10.1016/j.rser.2020.109777.

[46] M. B. Shafik, H. Chen, G. I. Rashed, R. A. El-Sehiemy, M. R. Elkadeem,
and S. Wang, ‘‘Adequate topology for efficient energy resources
utilization of active distribution networks equipped with soft open
points,’’ IEEE Access, vol. 7, pp. 99003–99016, 2019, doi: 10.1109/
ACCESS.2019.2930631.

[47] J. Zhang, Y. Cao, Y. Li, and L. Zhang, ‘‘Aeroengine health monitoring
method based on improved grey target theory,’’ J. Vib. Meas. Diagnosis,
vol. 38, no. 2, pp. 228–233, Apr. 2018, doi: 10.16450/j.cnki.issn.1004-
6801.2018.02.002.

QIAN CHEN received the B.E. degree in elec-
tric power systems and automation from Xinjiang
University, Urumqi, China, in 2017, where she is
currently pursuing the Ph.D. degree with the Engi-
neering Research Center of Renewable Energy
Power Generation and Grid-Connected Control,
Ministry of Education. Her current research inter-
ests include control of renewable energy power
generation and smart grid technology.

WEIQING WANG received the B.E. degree in
electric power systems and automation from the
Xinjiang Institute of Technology, Urumqi, China,
in 1983, and the M.E. degree in electric power
systems and automation from Zhejiang Univer-
sity, Hangzhou, China, in 1990. He is currently
a Professor with the Engineering Research Cen-
ter of Renewable Energy Power Generation and
Grid-Connected Control, Ministry of Education,
Xinjiang University. His current research inter-

ests include control of renewable energy power generation and smart grid
technology.

HAIYUN WANG received the B.E. degree in
electric power systems and automation from Xin-
jiang University, Urumqi, China, in 1995, and the
M.E. degree in electrical engineering from the
Dalian University of Technology, Liaoning, China,
in 1999. She is currently a Professor with the Engi-
neering Research Center of Renewable Energy
Power Generation and Grid-Connected Control,
Ministry of Education, Xinjiang University. Her
current research interests include control of renew-

able energy power generation and smart grid technology.

205012 VOLUME 8, 2020

http://dx.doi.org/10.1016/j.energy.2018.01.036
http://dx.doi.org/10.1049/iet-rpg.2018.5862
http://dx.doi.org/10.1016/j.asoc.2020.106182
http://dx.doi.org/10.1016/j.ijepes.2012.10.030
http://dx.doi.org/10.1016/j.ijepes.2012.10.030
http://dx.doi.org/10.1049/iet-gtd.2019.0507
http://dx.doi.org/10.1007/s00202-016-0385-2
http://dx.doi.org/10.1016/j.energy.2018.07.200
http://dx.doi.org/10.1155/2020/6042105
http://dx.doi.org/10.1109/ACCESS.2020.2974961
http://dx.doi.org/10.1109/ICIEA.2018.8397965
http://dx.doi.org/10.1016/j.ijepes.2016.04.041
http://dx.doi.org/10.1109/ACCESS.2020.2997378
http://dx.doi.org/10.1109/61.25627
http://dx.doi.org/10.12783/dtetr/ecar2018/26379
http://dx.doi.org/10.1109/ACCESS.2020.2973455
http://dx.doi.org/10.1016/j.rser.2020.109777
http://dx.doi.org/10.1109/ACCESS.2019.2930631
http://dx.doi.org/10.1109/ACCESS.2019.2930631
http://dx.doi.org/10.16450/j.cnki.issn.1004-6801.2018.02.002
http://dx.doi.org/10.16450/j.cnki.issn.1004-6801.2018.02.002


Q. Chen et al.: Social Beetle Swarm Algorithm Based on Grey Target Decision-Making

JIAHUI WU received the B.E. degree in chemical
technology and automation from the Beijing Uni-
versity of Chemical Technology, Beijing, China,
in 2011, and the Ph.D. degree in electric power
systems and automation from Xinjiang University,
Urumqi, China, in 2018. She is currently an Asso-
ciate Professor with the Engineering Research
Center of Renewable Energy Power Generation
and Grid-Connected Control, Ministry of Edu-
cation, Xinjiang University. Her current research

interests include control of renewable energy power generation and smart
grid technology.

XIAOZHU LI received the B.E. degree in mea-
surement and control technology and instruments
from the Changsha University of Technology,
in 2013, and the M.E. degree in control science
and control engineering from Xinjiang University,
China, in 2017, where she is currently pursuing
the Ph.D. degree with the Department of Electrical
Engineering.

JIONGFENG LAN received the B.E. degree in
human resource management from North Minzu
University, Yinchuan, China, in 2018. He is
currently pursuing the M.E. degree with the Inter-
national Business Management, Newcastle Uni-
versity. His current research interest includes
electricity market analysis.

VOLUME 8, 2020 205013


