
Received October 17, 2020, accepted November 4, 2020, date of publication November 9, 2020, date of current version November 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3036916

GDPR Compliant Information Confidentiality
Preservation in Big Data Processing
LOREDANA CARUCCIO , DOMENICO DESIATO , GIUSEPPE POLESE , (Member, IEEE),
AND GENOVEFFA TORTORA , (Senior Member, IEEE)
Department of Computer Science, University of Salerno, 84084 Fisciano, Italy

Corresponding author: Loredana Caruccio (lcaruccio@unisa.it)

ABSTRACT Nowadays, new laws and regulations, such as the European General Data Protection Regulation
(GDPR), require companies to define privacy policies complying with the preferences of their users. The
regulation prescribes expensive penalties for those companies causing the disclosure of sensitive data of
their users, even if this occurs accidentally. Thus, it is necessary to devise methods supporting companies in
the identification of privacy threats during advanced data manipulation activities. To this end, in this paper,
we propose a methodology exploiting relaxed functional dependencies (RFDs) to automatically identify data
that could imply the values of sensitive ones, which permits to increase the confidentiality of a dataset while
reducing the number of values to be obscured. An experimental evaluation demonstrates the effectiveness
of the proposed methodology in increasing compliance to the GDPR data privacy, while reducing the set of
values to be partially masked, hence enhancing data usage.

INDEX TERMS Data privacy, confidentiality, data dependencies.

I. INTRODUCTION
Nowadays, thanks to the digitalization of business processes
and public administrations, many significant data collections
are available. Users are direct suppliers of data when pub-
lishing content on social networks. However, when using a
service on the web, users must often provide their data, which
will become property of the company running the service.
To this end, users are becoming aware of the privacy issues
related to the management of their data, and governments are
defining new laws and regulations to ensure the protection
of users’ personal data. At the same time, there exists the
necessity not to limit the processing of data by companies
and other public institutions.

The European Community has issued a new regulation,
namedGeneral Data Protection Regulation (GDPR), to guar-
antee greater control of users over the data they provide.
To this end, companies have many difficulties in determining
how they can use the data to avoid legal issues related to
data privacy violations. Standard privacy preservation tech-
niques, such as cryptography and obfuscation, could lead
to the impossibility of using the data, even if some of
them are not sensitive. Thus, it is necessary to distinguish
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between sensitive and non-sensitive data effectively. In gen-
eral, the management of sensitive data is tackled into dif-
ferent application areas, such as IoT applications [1], Smart
Grids [2], Social Networks [3], and so on. As an example,
the necessity to manage sensitive data arises when hospitals
adopt sensor networks to monitor patients and, in particular,
disabled patients.

Guaranteeing privacy preservation becomes an even more
complex problem in the presence of significant data pro-
cessing operations like for instance data integration [4] and
record linkage [5]. In fact, such processes could yield privacy
violations when the compared data sources contain sensitive
data. In fact, even if sensitive data are obscured to meet users’
privacy requirements, such data processing operations could
introduce new sensitive data, due to the generation of new
identification patterns.

In this paper, we present a new methodology that analyses
data correlations expressed in terms of relaxed functional
dependencies (RFDs) [6], aiming to identify new potentially
sensitive data upon significant big data operations, which
could break privacy rules. In particular, the methodology
exploits recent algorithms to automatically discover RFDs
from data, which can also be applied to identify cross-
correlations among data sources that could yield data privacy
issues [6]. The main goal is to reduce the number of values
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to be obscured while increasing the confidentiality preser-
vation level of the dataset according to users’ requirements,
aiming to increase data usage. More specifically, the pro-
posed methodology prescribes to partially encrypt sensitive
data to increase the preservation of their confidentiality. This
guarantees the possibility to use unobscured data within
data analytics processes, without risking to jeopardise users’
privacy. Concerning the GDPR, the proposed methodology
represents a useful mean for guaranteeing the recital 71, reg-
ulating user profiling activities, as described in the GDPR [7].
The methodology has been experimentally validated on data
derived from three public datasets, namely CreditClient,1

Health,2 and London.3

The paper is organized as follows. In Section II we dis-
cuss related works. Section III describes the GDPR and the
basic concepts underlying RFDs, whereas Section IV illus-
trates a formalization of the privacy preservation problem.
In Section V we describe the proposed methodology, whose
general process is provided in Section VI. Section VII illus-
trates the results of several experiments that we performed
to evaluate the effectiveness of the proposed methodology.
Finally, conclusions and future research directions are dis-
cussed in Section VIII.

II. RELATED WORK
Nowadays, users are more aware of privacy preservation
issues. To this end, GDPR has introduced a new way of
thinking about privacy preservation, but it is essential to
enforce such regulation without preventing the execution of
important data analytics tasks. This has motivated several
GDPR-related studies, most of which aim to analyse the
impact of GDPR on specific application domains. In par-
ticular, a study on the impact of GDPR from the London
Chamber of Commerce and Industry revealed that in 2018
companies were still not prepared to abide by the privacy
preservation issues prescribed by GDPR [8]. Moreover, due
to the necessity to motivate users to approach GDPR-based
privacy issues, some recent works deal with the problem of
making friendlier the management of such issues [9], [10].
In [9], authors analysed the state of the art of usability design
for privacy notifications, by highlighting how approaches
defined in the literature correlate to GDPR recitals, sum-
marising them in terms of guidelines. Instead, in [10], a tool
named privacyTracker is presented, which aims to support
basic GDPR principles, including data traceability, allowing
a user to get a cryptographically verifiable snapshot of his/her
data trails.

We focus on how privacy preservation issues concerning
Big Data context have been addressed in the literature [11].
In general, the main techniques used to manage sensitive
information are: (i) access control, and (ii) cryptography.
Access control requires the definition of data access policies

1https://www.kaggle.com/uciml/default-of-credit-card-clients-dataset
2https://healthdata.gov/dataset/health-care-provider-credential-data
3https://www.kaggle.com/hmavrodiev/london-bike-sharing-dataset

by establishing whether the user has the authorisation to
perform certain actions on the given data [12], [13]. Among
the privacy preservation techniques exploiting access control,
we find [14], which proposes a fine-grained approach for data
stored in the cloud. It aims to simplify the users’ workload
in the encryption of their data before loading them on the
cloud. Instead, in [15] biometry has been used to guarantee
identification and authentication into the Naked environment.
It aims to provide health services in a smart hospital envi-
ronment, without using specific gadgets for accessing the
services. Moreover, medical sensors embedded in the envi-
ronment provide users with the required digital services by
employing a biometric-based authentication schema. The last
two approaches represent prominent examples to understand
the usefulness of access control methodologies for privacy
preservation in emerging and/or complex contexts, such as
healthcare [15], and the cloud context in general [14].

Concerning cryptographic techniques useful to manage
privacy requirements, several methodologies can be found in
the literature, such as symmetric cryptography, hash func-
tions, pseudo-anonymity, obscuration, and so on. One of
the most recent proposals is described in [16], where a
new approach named DBMask is proposed. It represents
a novel solution supporting fine-grained, cryptographically
enforced, access control policies, including column-, row-,
and cell-level access control when evaluating queries on
encrypted data.

Another way to categorise privacy preservation method-
ologies is to distinguish how they work to preserve data
privacy, i.e. syntactically or semantically. In particular, there
exist several approaches for guaranteeing syntactic data pri-
vacy. One of the most popular is the k-anonymity model [17],
which defines a data record as k-anonymous whenever it is
indistinguishable in its identifying information from at least
k specific records or entities. Moreover, in [18] and [19] two
extensions of k-anonymity have been defined, aiming to limit
possible attribute disclosures. Furthermore, in [20] authors
propose a two-party framework that can be easily employed
to design a secure protocol, aiming to compute k-anonymous
data from two vertically partitioned data sources.

Concerning privacy preservation approaches for semantic
models, in [21] authors present p-sensitivity, aiming to mask
user locations by taking into account query diversity and
semantic information. The authors exploit a PE-Tree struc-
ture and search algorithms for implementing the p-sensitivity
model, aiming to find the optimal p-sensitivity privatization
in the tree.

Confidentiality issues have been studied in-depth in several
application domains. In the data mining context, the Frame-
work for Accuracy in Privacy-Preserving mining (FRAPP)
represents a generalised model for random perturbation-
based methods, operating on categorical data under strict
privacy constraints [22]. Instead, guaranteeing privacy preser-
vation in the context of big data processing tasks adds further
complexity, since there might be several complex operations
potentially yielding privacy threats. A typical example is

VOLUME 8, 2020 205035



L. Caruccio et al.: GDPR Compliant Information Confidentiality Preservation in Big Data Processing

represented by data integration, since data integrated from
several data sources might partially or totally imply obscured
data [4], [5]. An essential pioneering work in this context was
carried out byDalenius T. in 1986 [23]. The author shows how
it is possible to identify unique records in a dataset by merely
sorting them. This simple idea turns out to be highly effective
because it permits to discover unique records. A more recent
proposal is the general framework presented in [24], which
concerns normalised measures to practically evaluate and
compare privacy-preserving record linkage (PPRL) solutions.
Furthermore, the authors aimed at comparing the state of the
art PPRL techniques, by considering widely used numerical
measures, such as scalability, linkage quality, and privacy.
Instead, Schnell et al. propose the Bloom Filter-based pro-
tocol, which aims to guarantee privacy preserving record
linkage [25]. It uses encrypted identifiers, and similarity com-
putations of Bloom filters with HashMessage Authentication
Codes (HMACs) on a q-grams similarity function [26]. Bit
Vectors (BV) is another approach for representing numerical
data values in privacy-preserving record linkage [27]. It rep-
resents an accurate distance preserving encoding schema
for embedding numerical values into a privatization space,
in a way that preserves the initial distances. In particular,
in order to compute hash values, BV uses extremely simple
and computationally cheap operations, instead of expensive
cryptographic hash functions. Finally, a Privacy-Preserving
Probabilistic Record Linkage (P3RL) methodology has been
proposed in [28]. It facilitates the linkage of existing datasets
in health-related research settings, and provides a different
solution w.r.t. the classical cryptographic methods. Among
all the analysed works in the context of privacy-preserving
record linkage, the last three represent possible solutions that
can be used to address the problem of record linkage. Instead,
the first two can be analysed to deepen the record linkage
problem in the data integration context.

With respect to all the proposals analysed before, our
methodology preserves the information confidentiality by
reducing the amount of data to be encrypted, hence increasing
data usage. It exploits RFDs to identify data correlations that
could potentially violate the privacy according to the user’s
requirements. As a consequence, the proposed methodology
permits to partially encrypt data according to the different
privacy preservation requirements that a user could specify.

III. BACKGROUND
Since the proposed methodology exploits RFDs to pursue
GDPR compliant privacy preservation, in the following sec-
tions we provide details on GDPR and RFDs.

A. GENERAL DATA PROTECTION REGULATION
The General Data Protection Regulation (GDPR) prescribes
how companies must process and manage private data [29]
of their users, aiming to offer significant improvements to
the regulatory environment of companies and institutions.
In particular, GDPR establishes a uniform framework for
data protection legislation across nations belonging to the

European Community, without having to comply with the
regulations of the single governments. This represents a sig-
nificant advantage for companies operating across multiple
countries of the European Community. Furthermore, even
companies located outside the European Community must
abide by the GDPR if they manage data of European users.

GDPR classifies as personal data any information related
to individuals, without prescribing the usage of spe-
cific methodologies/technologies. Even if personal data are
obscured and/or partially encrypted, the organization man-
aging them still incurs violations if it is possible to disclose
users’ sensitive data upon some data processing activities,
such as data integration, entity resolution, and so on. The
central concept underlying GDPR concerns the ‘‘user agree-
ment’’, i.e. the specification on how users’ data should be
processed through an explicit declaration, which should be
freely given, specifically informed, and unambiguous.

GDPR prescribes the following two activities: (i) the adop-
tion of a privacy preservation methodology, and (ii) the def-
inition of default policies to preserve the privacy of any
user. Thus, according to the first activity organizations need
to employ a privacy preservation methodology from the
design to the development of their services. Instead, the sec-
ond activity prescribes the implementation of proper default
methodologies/technologies to guarantee data processing in
a trusted way. These prescriptions aim to provide a friendly
privacy setting, by also providing the possibility to adopt
default settings.

Concerning the possibility to share personal data,
the GDPR is not limited to the European Economic Area
(EEA),4 since when data are transferred outside the EEA, all
privacy preservation policies defined on data are transmitted
along with the data themselves. Moreover, GDPR is com-
posed of several recitals addressing the privacy preservation
issues to specific activities, such as marketing, user profiling,
data integration, and so on. Among all recitals defined in
the GDPR, the recital 71 expresses, in a summarised way,
the fact that a company performing analytical activities
should use appropriatemathematical or statistical procedures,
and implement technical and organizational measures nec-
essary to ensure the privacy of data related to a physical
person [7].

GDPR has become effective since May 25th, 2018. To this
end, by offering the possibility to manage different policy
requirements concerning single users, the proposed method-
ology turns out to particularly useful in pursuing GDPR
compliant privacy preservation.

B. RELAXED FUNCTIONAL DEPENDENCIES
Let us recall some basic concepts of relational databases.

A relational database schema R is defined as a collection
of relation schemas (R1,. . .,Rn), where eachRi is defined over
a set attr(Ri) of attributes (A1,. . ., Am). Each attribute Ak has

4European Economic Area (EEA), includes all European Community
countries, and Island, Liechtenstein, and Norway
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associated a domain dom(Ak ), which can be finite or infinite.
A relation instance (or simply a relation) ri of Ri is a set of
tuples such that for each attribute Ak ∈ attr(Ri), t[Ak ] ∈
dom(Ak ), ∀ t ∈ ri, where t[Ak ] denotes the projection of
t onto Ak . A database instance r of R is a collection of
relations (r1,. . .,rn), where ri is a relation instance of Ri,
for i ∈ [1, n].
In the context of relational databases, data dependencies

have been mainly used to define data integrity constraints,
aiming to improve the quality of database schemas and to
reduce manipulation anomalies. There are several types of
data dependencies, including functional, multivalued, and
join dependencies. Among these, functional dependencies
(FDs) are the most commonly known, mainly due to their use
in database normalization processes. Since RFDs extend FDs,
let us recall the definition of FD.
Definition 1 (Functional Dependency): A functional dep-

endency (FD) ϕ, denoted as X → Y , between two sets
of attributes X ,Y ⊆ attr(R), specifies a constraint on the
possible tuples that can form a relation instance r ofR: X →
Y iff for every pair of tuples (t1, t2) in r , if t1[X ] = t2[X ], then
t1[Y ] = t2[Y ]. The sets X and Y are also called Left-Hand-
Side (LHS) and Right-Hand-Side (RHS), resp., of ϕ.
RFDs extend FDs by relaxing some constraints of their

definition. In particular, they might relax on the attribute
comparisonmethod, and on the fact that the dependencymust
hold on the entire database.

Relaxing on the attribute comparison method means to
adopt an approximate operator to compare tuples, instead of
the ‘‘equality’’ operator. In order to define the type of attribute
comparison method used within an RFD, we use the concept
of constraint [30].
Definition 2 (Constraint): A constraint φ is a predicate

evaluating whether the similarity/distance, or the order rela-
tion, between two values of an attribute A falls within a
predefined interval.
Thus, a constraint depends on a similarity/distance func-
tion, or an order relation, defined on an attribute domain, plus
one or more comparison operators with associated threshold
values defining the feasible intervals of values.

A sample constraint φ defined on the attribute Address and
the edit distance ED could be: 0 ≤ ED(addr1, addr2) ≤ ε,
where addr1 and addr2 are two address values, whereas 0
and ε are two given threshold value.
Definition 3 (Set of Constraints): Given a set of attributes

X = {A1, . . . ,Ak}, a set of constraints 8 = {φ1, . . . , φk} on
them represents a collection of constraints that are applied to
{A1, . . . ,Ak}, respectively.
A functional dependency holding on ‘‘almost’’ all

tuples or on a ‘‘subset’’ of them is said to relax on the
extent [6]. In the case of ‘‘almost’’ all tuples, a coverage mea-
sure should be specified to quantify the degree of satisfiability
of the RFD. Whereas, in the case of ‘‘subset’’ (constrained
domain in the following), conditions on the attribute domains
should be specified to define the subset of tuples satisfying
the RFD.

Definition 4 (Coverage Measure): A coverage measure9
on ϕ, 9: dom(X )× dom(Y )→ R+, quantifies the amount of
tuple pairs in r satisfying ϕ.
As an example, the confidence measure introduced in [31]

evaluates the cardinality of the greatest set of tuples r1 ⊆ r
for which ϕ holds in r1.
Several coverage measures can be used to define the sat-

isfiability degree of an RFD, but usually they return a value
normalized on the total number of tuples n, with n cardinality
of r , so producing a value v ∈ [0, 1]. For the canonical FD,
this measure evaluates to 1.
Definition 5 (Constrained Domain): Given a relation

database schema R with attributes {A1, . . . ,Ak} defined on
domains {D1, . . . ,Dk} respectively, D1 × D2 × · · · × Dk =

dom(R), respectively, and let ci be a condition on Di, i =
1 . . . k , the constrained domain Dc is defined as follows

Dc =
{
t ∈ dom(R)|

k∧
i=1

ci(t[Ai])
}
.

Constrained domains enable the definition of tuple ‘‘sub-
sets’’ on which a functional dependency holds.

Then, a general definition of RFD can be given:
Definition 6 (Relaxed Functional Dependency): Let us

consider a relational schema R. An RFD % on R is denoted
by [

X81

9≥ε
−−→ Y82

]
Dc

(1)

where
• Dc is the constrained domain that filters the tuples on
which % applies;

• X ,Y ⊆ attr(R), with X ∩ Y = ∅;
• 81 and82 are sets of constraints on attribute sets X and
Y , respectively;

• 9 is a coverage measure defined on Dc;
• ε is a threshold, with 0 ≤ ε ≤ 1.
Given r ⊆ Dc, a database instance r on R satisfies the

RFD %, denoted by r |H %, if and only if: ∀ (t1, t2) ∈ r , if 81
is true for each constraint φ ∈ 81, then almost always 82 is
true for each constraint φ′ ∈ 82. Here, almost always means
that 9(X ,Y ) ≥ ε.
In other words, if t1[X ] and t2[X ] agree with the constraints

specified by 81, then t1[Y ] and t2[Y ] agree with the con-
straints specified by82 with a degree of certainty (measured
by 9) greater than ε.

Based on definition (1), the canonical FD X → Y can also
be written as: [

XEQ
91
−→ YEQ

]
Dtrue

(2)

where true is a sequence of tautologies,Dtrue = dom(R), EQ
is the equality constraint, and 91 represents the fact that the
dependency must hold on all tuples of the instance r (i.e.,
9(X ,Y ) = 1, and ε = 1).
In the following, we use RFDs having only one attribute

on the RHS; this condition can always be reached employing
the usual transformations of FDs.
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TABLE 1. A database storing customers’ information.

Example 1: Let us consider the database shown in Table 1,
which represents a portion of the census income dataset,
containing the following data of citizens: Name, Surname,
SSN, Age, Address, Native-Country, Occupation, and Sex.
According to this, it is likely to have the same Native-Country
for costumers having the same Name and Surname thus,
an FD Name, Surname→ Native-Country might hold. How-
ever, the names, surnames, and countries might be stored
by using different abbreviations/variations, and/or typos may
have been introduced during tuple insertion operations. Thus,
the following RFD might hold:[

Name≈,Surname≈
91
−→ Native-Country≈

]
Dtrue

where ≈ is the string similarity function. On the other hand,
few cases of homonyms for the customers have to be con-
sidered. For this reason, the previous RFD should also admit
exceptions. This can be modeled by introducing a different
coverage measure to make the RFD relax on the extent:[

Name≈,Surname≈
9(X ,Y )≥0.90
−−−−−−−→ Native-Country≈

]
Dtrue

IV. PROBLEM DESCRIPTION
According to the GDPR, companies and organizations can
use sensitive data only for business application purposes,
avoiding their exposure to third parties, or their transfer for
commercial activities, such as user profiling. All activities
affecting the confidentiality of data have to be considered as
data privacy violations. To this end, we always need to pay
attention to data representations that might refer to users.

Data privacy concerns several aspects, among which we
focus on Information Confidentiality (IC). The latter is a
general privacy preservation concept by which users request
to preserve the confidentiality of their specific data, also
referred to as sensitive data, aiming to protect them against
unauthorized accesses [32].

In what follows, we formalize the concept of information
confidentiality in the context of relational databases.
Definition 7 (Information Confidentiality): Given a rela-

tional database schema R, defined on a set of attributes
attr(R = {A1, . . .An}), an instance r of it, where each tuple
t over r represents a single user, and its projection t[Y ] onto
Y ⊆ attr(R) the data s/he defines as sensitive, then ensuring
the information confidentiality for t requires that i) t[Y ] is

masked, and ii) no subset of data t ′[Y ′] permits to disclose
any value in t[Y ].

Starting from Definition 7, it is possible to derive the
concept of data usage for our context, that is: a data can be
used without jeopardising the privacy of any user if and only
if i) it has not been declared as sensitive by its owner, and
ii) it cannot be used to disclose any other data declared as
sensitive.

In what follows, we formalize the information confi-
dentiality problem issues in terms of attribute correlations
expressed by RFDs, yielding the concept of confidentiality-
violating attribute set.
Definition 8 (Confidentiality-Violating Attribute Set):

Given a relational database schemaR, an instance r of it, and
two attribute sets X ,Y ⊆ attr(R), where Y = {Y1, . . . ,Yh} is
the set of data defined as sensitive, then X is a confidentiality-
violating attribute set if and only if it is not a key, and there
exists Yi ∈ Y that is the RHS of an RFD holding on r and
having X as LHS.

According to Definition 8, a relational database schemaR
preserves the information confidentiality if and only if: (i)R
contains all the user-specified sensitive attributes in a masked
form, and (ii) R does not contain confidentiality-violating
attribute sets. In other words, if the user specifies a set of
sensitive attributes, other than obscuring them, we also need
to prevent the possibility to derive their values from other
attribute values. For instance, a sensitive attribute might be
derived by the LHS of an RFD ϕ in which it appears as RHS.
In this case, we say that the LHS of ϕ determines the RHS.
Thus, given a sensitive attribute A, knowing the values of
attributes determining A, a third party could infer the values
of A with high certainty and accuracy degrees according to
the thresholds of ϕ. As a consequence, we need to identify
all the confidentiality violating attribute sets, that is, all the
attribute sets functionally determining sensitive attributes.

V. METHODOLOGY
From the discussion above, it is clear that the GDPR might
be a serious burden, especially for big companies managing
huge volumes of data concerning their customers. By refer-
ring to the scenario shown in Table 1, a solution could be
to obscure all data, by means of cryptographic techniques.
However, in this way a company could never use such data,
even those that are not sensitive, and would have to deal
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with computationally expensive encryption processes, e.g.
not all the data showed in Table 1 can be considered as
sensitive. Moreover, by manually specifying both sensitive
data and those fromwhich they can be derived could require a
huge effort when managing big data collections. To this end,
we propose a new methodology that reduces the number of
attributes to be encrypted while pursuing information confi-
dentiality, hence maximizing data usage. The methodology
exploits attribute correlations, expressed in terms of Relaxed
Functional Dependencies (RFDs) [33], to identify attribute
sets from which sensitive data can be derived.

More specifically, the proposed methodology exploits
algorithms to automatically discover RFDs from data [6],
[34], together with ranking techniques to decide their appli-
cation order, aiming to derive a minimal set of attributes to
encrypt for pursuing information confidentiality.

Given a relational database schema R, and an instance r
of it, we need to identify the set X4 = {Xζ1 , . . . ,Xζn} of
all confidentiality violating attribute sets Xζi within R, and
define a way to make each of them not accessible. To this
end, we consider the following types of RFDs holding on r :[

X81

9≥ε
−−→ A82

]
Dtrue

(3)

where A ∈ attr(R), and search for the LHSs of RFDs having
a sensitive attribute on the RHS.

More formally, in order to preserve the confidentiality of
R we need to identify the minimal set of attributes Z ⊆
attr(R) such that there exists no valid RFD Xζi\Z → A,
with A sensitive attribute ofR. In other words, it is necessary
to invalidate all the RFDs having a user-specified sensitive
attribute as RHS. The set of user-specified sensitive attributes
is also named IC-attribute set.
In order to automatically derive the minimal set Z of

attributes to be removed, we must use a heuristic. This is
due to the fact that this problem is NP-complete, since the
Minimum Feedback Vertex Set [35], which is the problem
of finding the smallest set of vertices to be removed from an
undirected cyclic graph to make it acyclic, can be reduced to
it. In particular, each Xζi ∈ X4 can be modeled as a cycle
in an undirected graph, where the vertices of the cycle are
the attributes in Xζi . Thus, given an undirected graph G with
one or more cycles, the vertices of a cycle can be seen as a
confidentiality-violating attribute set Xζi . Thus, solving the
problem of finding the minimal set Z defined above would
also solve the MFVS one.

A. HEURISTICS
We defined three heuristics: (i) the counting heuristic, scor-
ing the number of Xζi containing a given attribute; (ii) the
weighted counting, similar to the counting heuristic, but
instead of adding a 1 for each Xζi in which an attribute
appears, it adds 1/|Xζi |, which represents the weight of the
attribute over Xζi ; and (iii) the MFVS heuristic, derived from
an approximate solution for the MFVS problem, which is

FIGURE 1. MFVS problem associated to (4) and (5).

based on the Depth First Search (DFS) visit to approximately
evaluate the number of times a node is involved in a cycle.

In particular, the first two heuristics associate scores to the
attributes belonging to the confidentiality-violating attribute
sets in X4, eliminating them in descendant order of their
score, until all the RFDs associated to X4 are invalidated.
Instead, as mentioned above, with the third heuristic an undi-
rected graph is produced. In particular, the heuristic scores
each node with the number of backward edges encountered
during a DFS visit. More specifically, we adapted the well-
knownDFS visit to count backward edges. Then, the heuristic
removes nodes in descendant order of their score, until no
more cycles exist in the graph. For all three heuristics, a basic
case is represented by RFDs with one attribute on the LHS,
since we can remove it without considering any score.

As an example, let us consider the following two RFDs:

A B C → F (4)

A E D → F (5)

where F is a confidential attribute. If they are the only RFDs
with F on the RHS, we must encrypt some of the attributes
on their LHSs together with F , in order to guarantee the
information confidentiality of F . By applying the counting
heuristic defined above, attribute A has a score of 2, whereas
each of the remaining attributes has a score of 1. Thus, we first
remove A, which already invalidates both RFDs (4) and (5).
A similar action is decided upon applying theweighted count-
ing heuristic, since attribute A has a score of 2/3, whereas the
remaining ones have a score of 1/3 each. Finally, the MFVS
heuristic could be used to solve the MFVS problem of the
graph in Figure 1, yielding the deletion of the vertex A only,
since it is the node with the maximum number of backward
edges derived from the DFS visit. Moreover, upon removing
A, the resulting graph is acyclic. Thus, in all three cases, A
will be the only attribute to be encrypted together with F .
Example 2: Let us consider the database of customers

shown in Table 1, and let us suppose that a user wants
to ‘‘obscure’’ the Occupation attribute in order to pre-
serve his/her privacy. In this case, there are three attribute
sets determining Occupation, i.e. Name, {Age, Sex}, and
{Age, Street}, since they are the LHSs of all the RFDs
holding on the considered relation, and having attribute
Occupation as RHS. To guarantee information confiden-
tiality, besides ‘‘obscuring’’ the attribute Occupation we
should also ‘‘obscure’’ the attributeName, since it determines
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TABLE 2. A privacy-preserving database of customers’ information.

the attributes Occupation and Age, based on the defined
heuristics.

B. PARTIAL ENCRYPTION
The cryptographic technique used in the proposed methodol-
ogy is block cipher [36]. The latter is a method using a secret
key to encrypt text (to produce cipher-text). In particular,
it applies encryption to blocks of data (e.g., 64 contiguous
bits) rather than to one bit at a time. Formally, a block cipher
is a permutation with a key that can be efficiently computed,
i.e. F : {0, 1}n × {0, 1}l → {0, 1}l such that, given a key k
and a block of data to be encrypted x

Fk (x)
def
= F(k, x) is a permutation (6)

where n is the length of k , l the length of x, and Fk , Fk
−1

must be efficiently computed.
In particular, given the set X i = X i1, . . .X

i
m of user-

specified ‘‘sensitive’’ attributes, together with those derived
through RFDs, we apply the block cipher to all X i. It is
worth to notice that each X i is encrypted with a different
secret parameter k , which is the user’s secret parameter that
permits to decrypt his/her sensitive data. This implies that we
can have a database containing both visible and encrypted
data, that is still privacy-preserving. The block cipher guar-
antees security with respect to the Chosen Plaintext Attacks
(CPA-security) [37].
Example 3: Let us consider the database of customers

shown in Table 1, and let us suppose that the last five of them
required attribute Occupation to be confidential. As shown
in Table 2, by applying the proposed methodology we obtain
partial encryption, where the values denoted as ‘‘*****’’ are
encrypted as explained in the previous examples.

C. OVERVIEW OF THIRD PARTIES
In what follows, we analyze the robustness of the proposed
methodology by considering the power of third parties in dis-
closing values of attributes specified as confidential. In par-
ticular, we prove how RFDs can help identify confidentiality
threats by also analyzing several critical scenarios.

One of the main properties of RFDs is minimality [6],
which concerns both the number of attributes on their LHS
and the associated similarity thresholds. For the critical sce-
narios analyzed below, we are only concerned with how the
minimality property is related to the LHS attributes. Let r

be an instance of a relational database schema R, and ϕ:
X → Y a minimal RFD holding on r , then for each A ∈ X ,
ϕ′: X\A→ Y does not correspond to a RFD holding on r . In
general, RFD discovery algorithms aim at finding the set of
all minimal RFDs holding on a given dataset.

Before detailing the sample scenario, we first introduce
the preliminaries of the third parties that we consider for our
threat model. Let us suppose that a third party can access:

• the dataset structure together with metadata concerning
the value distribution of each attribute;

• the set of all minimal RFDs holding on the dataset;
• the dataset partially encrypted according to the proposed
methodology.

Moreover, we assume that the third party can ask an oracle all
the information defined above by simply providing the name
of the dataset. In particular, the value distributions enable
the third party to know all possible values that an attribute
can assume, whereas the set of minimal RFDs holding on
the unencrypted dataset enables the third party to catch the
data validating possible RFDs. Notice that, we use the term
dataset also referring to the ones obtained as a result of
data integration, data augmentation, or any other big data
processing task.

By considering the characteristics of this threat model,
we can reduce the likelihood of success for a third party to the
safest scenario, i.e. a totally encrypted dataset. Thus, the like-
lihood of success for a third party in disclosing a target value
can be reduced to a random guess on the value distribution it
belongs to. In other words, even when a dataset is completely
encrypted, the third party can try to disclose the target value
by only choosing one of the values of its distribution. To this
end, in what follows, we show that our target is to reduce the
likelihood of success of the third party to a random guess on
the value distribution of each IC attribute.
Example 4: Let us consider the sample dataset 1 shown

in Table 3(a), for which we assume that there is only one
IC attribute for the tuple t1, e.g. attribute D. This means that
the owner of t1 requires confidentiality for the value t1[D].
According to the proposed methodology, we consider RFDs
implying attribute D. Thus, the only RFD to be considered
among those holding on the given dataset is ϕ: AB → D.
Then, if we obscure only the value t1[D], it could still be
derived from the correlation expressed by ϕ. In fact, by look-
ing at tuple t2, a third party could infer the value on t1[D]
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TABLE 3. A sample scenario.

through the similarity between t1 and t2 on the combination
of values for attributes A and B.
Example 4 shows how minimal RFDs help us solve some

issues concerning the third parties’ derivation process. In fact,
since ϕ : AB → D is minimal on the dataset shown
in Table 3(a), then by masking t1[A] or t1[B] would guarantee
that a third party could not derive the value t1[D], since both
ϕ′: A → D and ϕ′′ : B → D do not hold on the considered
dataset. For this reason, by simply observing the values of A
(or B), a third party could not derive the value t1[D], since ϕ′

(ϕ′′) is not valid.
Example 5: Starting from the scenario described in

example 4, let us assume that our methodology prescribes to
mask attribute A to break the attribute correlation expressed
by ϕ: AB→ D, as shown in Table 3(b). To this end, the third
party can only observe the free values of attribute B and
consider the tuples that are similar to t1[B] = 2, which means
all tuples. In particular, the dataset contains the value ′True′

for t2[D] and the value ′False′ for t3[D]. Thus, the third party
can only try a randomguess, which in this case is equivalent to
a coin toss. Similar considerations also apply when the value
t1[B] is masked and t1[A] is not.
In what follows, we analyze a borderline case of the afore-

said scenario, which is the only one jeopardising the proposed
methodology to the risk of value disclosures.
Example 6: Let us consider the sample dataset shown

in Table 3(c), and suppose that there is only one IC attribute
for the tuple t1, e.g. attribute D. Consequently, the only RFD
to be considered, among those holding on the given dataset,
is ϕ: AB → D. Let us now suppose that the methodology
prescribes to mask attribute A in order to break the attribute
correlation expressed by ϕ, as shown in Table 3(d). If a third
party knew that ϕ is a minimal RFD holding on the dataset,
then s/he would be aware that ϕ′: B → D did not hold
on the dataset. Furthermore, since the value distribution of
attribute D is limited to {True,False}, and the tuples similar
to t1 on B are t2 and t3, which have value False, a third
party could exactly infer the value of t1[D], since the only
violation invalidating the RFD ϕ′ can be generated from the
value ′True′.
In general, this case can occur onlywhen the RFD violation

is caused by the attribute value declared as confidential,
which has been obviously masked. However, although this

borderline case occurs rarely, we need to undertake additional
actions in order to guarantee the requested confidentiality.

More formally, let A be an attribute, and t be a tuple for
which t[A] is declared as confidential, then a third party can
infer the masked value t[A] with higher likelihood than a
random guess, if and only if:

1) A third party knows the minimal RFDs holding on the
unencrypted dataset, hence s/he can also infer the non-
holding RFDs by looking at the partially encrypted
dataset;

2) There exists a set of attributes X such that ϕ′: X → A
does not hold on r , but it holds on r\t , and there exists
a non-empty set of tuples s whose projection on X is
similar to t[X ], and all tuples in r\t share the same
value of A.

In fact, in this case, the reason why ϕ′ does not hold on r can
only be that the masked value t[A] is different from that of the
tuples in s, hence the third party can discard that value from
his/her guesses. To tackle this borderline case, we encrypt the
value of a further attribute on the LHS of the minimal RFD.
Example 7: Let us consider the scenario described in the

example 6, where for the RFD ϕ: AB→ D we highlighted a
borderline case (see Table 3(d)). According to the proposed
methodology, also attribute B is encrypted. In this way, also
the violation induced by tuple t1 is masked so that a third party
could only give a random guess on the value distribution for
attribute D.

VI. THE GENERAL PROCESS
In this section, we describe the general process of the pro-
posed methodology and provide a sample scenario.

Figure 2 shows how the proposed methodology can be
applied to a generic scenario. The process starts by consid-
ering a given dataset, the set of RFDs holding on it, and a
file containing several IC attribute sets, i.e. users’ policies
concerning attributes specified as confidential. The first step
(RFD parsing) aims to filter out only non-key RFDs from the
set of RFDs holding on the given dataset, since key RFDs
cannot permit to determine any values, since all tuples differ
on the attributes of their LHS, hence they are not a threat to
confidentiality. Moreover, users are grouped according to the
specified policies, through an aggregator module. Then, for
each specified policy, RFDs are filtered out by selecting those
having one of the confidential attributes on their RHS (filter
by IC attributes). All of their LHSs will represent the collec-
tion of confidentiality-violating attribute sets for the specific
policy. Thus, one of the three heuristics defined above can
be applied to retrieve the minimal set of attributes to be
encrypted. Moreover, to verify whether the borderline case
described in Section V occurs, we must check whether its two
conditions are satisfied. To this end, we need to compute the
set of non-holding RFDs, which is accomplished by removing
attributes to be masked from the LHSs of the RFDs in which
they are involved. If a resulting RFD reveals a borderline
case, then its LHS will be added as confidentiality-violating
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FIGURE 2. The general process for masking data according to users’ policies.

attribute set. Once all borderline cases have been detected,
the process iterates the application of a heuristic to derive the
additional attributes to be encrypted. At the end of this pro-
cess, a de-aggregator module permits to obtain the attributes
to be encrypted for each user, according to his/her specified
policy. Finally, the prescribed masking is applied to the entire
dataset.

The pseudo-code of the proposed methodology is provided
in Algorithm 1. It takes as input the dataset D to be masked,
the set 6 of RFDs holding on D, and the set 3 of users
specified policies, each defined in terms of IC attribute sets,
and it returns as output the masked datasetD∗. At Lines 1−2,
the algorithm invokes the functions REMOVE_KEY_RFDs
and POLICY_AGGREGATOR to remove key RFDs and
group equal policies specified by different users. Then, for
each specified policy, the algorithm performs the following
steps: (i) it computes its associated confidentiality-violating
attribute set (Line 4), (ii) it applies one of the three proposed
heuristics to identify the additional attributes to be encrypted
(Line5); (iii) it verifies whether there exist borderline
cases, by updating the confidentiality-violating attribute sets
(Line 6), and iteratively repeating the application of heuristics
until no more borderline cases exist (Lines 7 − 10); and
(iv) it runs the DEAGGREGATOR_FOR_POLICY function
for mapping attributes to be encrypted to the data of users
(Line 11). Finally, the encryption step is performed (Line 13).

Figure 3 shows a masked dataset resulting from the appli-
cation of Algorithm 1 to the CreditClient dataset. In par-
ticular, aiming to simulate the definition of users’ policies,
we implemented a module that randomly assigned confiden-
tial attributes to each user tuple. It is possible to notice that
at the end of the application of the proposed methodology,
only few values are encrypted, whereas many others remain

Algorithm 1 The Main Algorithm
INPUT: A dataset D, a set of rfds 6, a set of policies 9
OUTPUT: A dataset partially encrypted D∗

1: 6′←REMOVE_KEY_RFDs(6)
2: 3←POLICY_AGGREGATOR(6′,9)
3: for each pi ∈ 3 do
4: Xζ ← FILTER_BY_IC_ATTRIBUTES(6′,pi)
5: Z ←GET_IC_ATTRIBUTES(Xζ)
6: Xζ ← UPDATE_X_SET(Z)
7: while BORDERLINE_CASE(Xζ,D) do
8: Z ← ADD_IC_ATTRIBUTES(Xζ)
9: Xζ ← UPDATE_X_SET(Z)
10: end while
11: 9 ′←DEAGGREGATOR_FOR_POLICY(3,Z,pi)
12: end for
13: D∗←DATASET_ENCRYPTION(D,9 ′)

free. Moreover, it is worth to notice that many differences
among the encrypted values are obtained. More specifically,
the number of values encrypted for each tuple depends on
(i) its associated policy, and (ii) the RFDs holding on the con-
sidered dataset. In this way, data declared as confidential can
never be derived from free data. Thus, this strategy permits to
limit the number of values to be encrypted in order to preserve
information confidentiality, by increasing the possibilities to
perform data analytic processes.
Proof of correctness. In the following, we prove the cor-

rectness of the proposed methodology.
Theorem 1: Each attribute value t[Ai] defined as sensitive

by user t is preserved after the application of the proposed
methodology.
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FIGURE 3. Masked dataset after the application of the proposed methodologies.

Proof: We proceed by contradiction. Let us assume that
the user t defined a sensitive value on the attribute Ai and a
third party is able to disclose t[Ai] after the application of the
proposed methodology. To this end, according to the threat
model described in Section V.c, the third party can access
i) the value distribution of each attribute d(Ai), ii) the set 6
of all minimal RFDs holding on the dataset D, and iii) the
partially encrypted dataset D∗ resulting upon the application
of the proposed methodology. The latter says that t[Ai] is
encrypted, together with other values on t . Thus, since t[Ai]
is encrypted on D∗, the third party has been able to disclose
t[Ai] by only using some free values on D∗ and some of the
RFDs in 6. This could occur if and only if at least one of the
two following cases occurs:

1) there exists a tuple t ′ containing a combination of free
values such that t ′[X ] is similar to t[X ], and there exists
an RFD ϕ: X → Ai. This means that whenever two
tuples (t, t ′) are similar on X , then almost always they
are similar on Ai, yielding the possibility of determin-
ing t[Ai] by looking at t ′[Ai];

2) there exists a combination of free values on all the
tuples of D∗, such that t[Z ] is similar to any t ′[Z ] on
D∗, then all tuples in D∗ \ t are free and have a similar
value on Ai, and it does not exist an RFD ϕ′: Z → Ai
in 6, but there exists at least one RFD ϕ : X → Ai in
6 such that Z is a direct subset of X , i.e. ZB = X for
at least an attribute B /∈ Z and B 6= Ai. This means
that, since all tuples of D∗ are similar on Z , and all
tuples of D∗ \ t are similar on Ai, then only the tuple
t represents a violation making ϕ′: Z → Ai not holding
on D, yielding the possibility of determining t[Ai] with
a higher likelihood than a random guess, by looking
at the value distribution of d(Ai) and by excluding all

the values similar to at least one t ′[Ai] on D∗ \ t . This
becomes a certainty for |Ai| = 2.

However, the third party is unable to exploit case 1), since
the proposed methodology considers the LHS of each RFD
in6 that determines Ai as a confidentiality-violating attribute
set, and encrypts at least one attribute for each of them. Thus,
no combination of free values can satisfy the LHS of any RFD
in 6 that determines Ai. Moreover, the third party is unable
to exploit case 2), since the proposed methodology considers
it as borderline case and forces the encryption of at least
another attribute on the confidentiality-violating attribute set
representing the LHS of an RFD revealing such borderline
case. This implies that neither case 1) nor case 2) occur, and
a third party cannot exploit attribute correlations and free
values to disclose values declared as sensitive, contradicting
the original assumption.

VII. EVALUATION
This section presents the experiments we performed for eval-
uating the proposed methodology on several public datasets.
Our goal is to evaluate the performances of the three defined
heuristics on different real-world datasets. This is due to the
fact that they represent approximate solutions to the problem
of finding the minimum number of attributes to be encrypted.
For this reason, we expected that heuristics produce different
results in terms of the number of attributes. As detailed in
the following, we also tried to use different settings for RFD
relaxation criteria.

A. IMPLEMENTATION DETAILS
We implemented several tools to support our methodology
by using the Java language. In particular, to discover RFDs
holding on a given dataset, we used the discovery algorithm
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FIGURE 4. Evaluation results of the proposed methodology for Information Confidentiality.

TABLE 4. Statistics on the datasets used in the evaluation.

defined in [6], and analyzed output RFDs through the algo-
rithm described in Section VI. The latter also implements
the three heuristics counting, weighted counting, and MFVS,
in order to select values to be partially encrypted. In particu-
lar, the values of selected attributes are encrypted with AES
in Cipher-Block-Chaining (CBC) mode [37].

B. HARDWARE
The experiments were performed on a machine with an
Intel Core i5-4210U CPU with 2.4 GHz, 8 GB of memory,
running Windows 10 operating system, and a 64-Bit Java
environment.

C. DATASETS
We used three public datasets [38], which were augmented
by artificially introducing some confidential data. In particu-
lar, we added attributes Name, Surname, and StreetAddress,
randomly selecting their values for all tuples. Statistics on
the characteristics of the considered datasets are reported
in Table 4.

D. EVALUATION SESSION ON INDIVIDUAL DATASETS
We defined a privacy preservation scenario, in which we
supposed that each user specified one attribute to be confi-
dential. Moreover, for each of them, we used the proposed
methodology to derive the minimum number of attributes
to be encrypted for guaranteeing users’ privacy. This sce-
nario has been evaluated through four experimental sessions,
in which we considered different sets of RFDs, according
to several threshold settings. In particular, we tried canon-
ical FDs, RFDs relaxing on the extent only (total accuracy
degree), on the attribute comparison method only (total cer-
tainty degree), and on both.

In the first session, we considered total certainty and
total accuracy degree. In the second session, we reduced the
certainty degree by also considering RFDs relaxing on the
extent only, admitting a g3-error of 10%. In the third session,
we reduced only the accuracy degree, by considering RFDs

relaxing on the attribute comparison method only, setting a
distance threshold equal to 1 for each attribute in the dataset.
Finally, in the last session, we considered RFDs relaxing on
both criteria.

Figure 4 shows evaluation results for each considered
dataset, grouping bars according to the used heuristics: count-
ing (IC-Count), weighted counting (IC-Feq), and MFVS
(IC-MFVS). More specifically, we show the number of
attributes to be encrypted for each used heuristic, and each
of the sessions specified above. We use Full to denote no
relaxation, Cer_Rel to denote relaxation on the extent only,
Acc_Rel to denote relaxation on the attribute comparison
method only, and Cer_Acc_Rel to denote relaxation on both.

In Figure 4(a) it is possible to notice that although the num-
ber of attributes to be encrypted for theCreditClient dataset is
quite different across several configurations, it is quite similar
across the three heuristics on the same configuration. Among
the three heuristics, IC-MFVS is the best-performing one
with the Cer_Acc_Rel configuration. On the contrary, with
the Cer_Rel configuration IC-Count and IC-Freq heuristics
achieve better performances than IC-MFVS. In Figure 4(b)
we notice that on the Health dataset IC-Count and IC-Freq
achieve better performances than IC-MFVS in all config-
uration settings, except for the Cer_Acc_Rel configuration,
where the number of attributes to be encrypted is the same
as the other two heuristics. Similar considerations apply for
the London dataset (Figure 4(c)), where IC-MFVS results are
worse than those of IC-Count and IC-Freq. Moreover, for this
dataset, we notice that no variability is encountered across
several configuration settings.

We can conclude that relaxation settings can affect the
number of attributes to be encrypted. As expected, RFD
relaxation usually increases the number of attributes to be
encrypted, sincemore attribute correlations are generated, but
this also yields stronger confidentiality preservation. In par-
ticular, results highlight the trade-off between the amount of
encryption and the degree of confidentiality preservation that
could be achieved with the proposed methodology.

E. GENERAL EVALUATION SESSION ON
INTEGRATED DATASETS
Since the proposed methodology aims to highlight the
information confidentiality risks arising during several big
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FIGURE 5. Evaluation results for Information Confidentiality on the integrated datasets.

TABLE 5. Statistics of the integrated datasets.

data processing activities, like for instance data integration,
we performed an evaluation session on datasets derived
through data integration processes. In particular, we repeated
the general evaluation session defined above for each of the
following integrated datasets:
(i) CreditHealth, integrating CreditClient and Health
(ii) CreditLondon, integrating CreditClient and London
(iii) HealthLondon, integrating Health and London
Statistics on the characteristics of the integrated datasets

are reported in Table 5. The data integration process was
accomplished based on the following attributes common to
the three datasets: Name, Surname, and StreetAddress.

Results are shown in Figure 5. In detail, in Figure 5(a)
it is possible to notice that for the CreditHealth dataset
the IC-Freq heuristic performs better than the other two.
In particular, this arose in both Cer_Rel and Cer_Acc_Rel
settings. Figure 5(b) shows that the IC-Count and IC-
Freq heuristics perform better than the IC-MFVS on
the CreditLondon dataset, in all configuration settings. A
similar behaviour occurred for the HealthLondon dataset
(Figure 5(c)).

Although we expected that the number of attributes to
be encrypted would increase when integrating datasets with
respect to the single datasets, by comparing results in Figure 4
and Figure 5, we notice that this happens only when RFD
relaxation is introduced. This might be due to the fact that
RFD relaxation potentially increases the possibility to catch
inter-schema relationships between attributes.

F. IC VARIABILITY EVALUATION SESSION ON
INDIVIDUAL DATASETS
As a further experiment, we performed IC variability evalua-
tion, by monitoring the number of attributes to be encrypted
as the number of IC attributes grows.

Table 6 shows the attributes used for the IC variability eval-
uation on the dataset CreditClient, Table 7 those used for the

TABLE 6. Attributes selected for evaluating IC variability on the
CreditClient dataset.

TABLE 7. Attributes selected for evaluating IC variability on the Health
dataset.

TABLE 8. Attributes selected for evaluating IC variability on the London
dataset.

Health dataset, and Table 8 those used for the London dataset.
We varied the IC attributes in the range [1, 5], by adding an
attribute concerning personal or non-personal user’s data at a
time. Furthermore, in order to compare results concerning all
three defined heuristics, for each of them we have analysed
how the number of attributes to be encrypted changes as the
number of IC attributes increases.

Figure 6 shows the results achieved on the CreditClient
dataset. In particular, the x-axis represents the number of
IC attributes, whereas the y-axis represents the number of
attributes to be encrypted in order to guarantee requirements
on IC attributes for each defined heuristic. More specifically,
for the CreditClient dataset, all the defined heuristics show
a linear growth of the number of attributes to be encrypted
w.r.t the number of IC attributes for both Full and Acc_Rel
configurations, and a sub-linear growth for both Cer_Rel
and Cer_Acc_Rel configurations. However, although we can
notice an increasing trend for all the three heuristics, some-
times the number of attributes to be encrypted decreases

VOLUME 8, 2020 205045



L. Caruccio et al.: GDPR Compliant Information Confidentiality Preservation in Big Data Processing

FIGURE 6. Evaluation results of the proposed methodology on IC variation for the CreditClient dataset.

FIGURE 7. Evaluation results of the proposed methodology on IC variation for the Health dataset.

FIGURE 8. Evaluation results of the proposed methodology on IC variation for the London dataset.

as the number of IC attributes increases (Cerr_Acc_Rel
configuration).

Figure 7 shows the results achieved on the Health dataset.
In particular, IC-Count in Figure 7(a) and IC-Freq in
Figure 7(b) exhibit a linear growth for all the configurations.
Instead, IC-MFVS in Figure 7(c) shows more variability in
the growing trend for all configurations. In particular, for the
Cer_Rel configuration, results exhibit a strong growth in the
range [1 − 2], and a constant trend in the range [2 − 4].
Similarly, for the Acc_Rel configuration a strong growth is
registered in the range [1 − 3] and a constant trend in the
range [3− 5].

Figure 8 shows results achieved on the London
dataset. In particular, IC-Count and IC-Freq heuristics
(Figure 8(a)-Figure 8(b)) follow a similar trend for each
considered configuration, i.e. a linear growth for both Full
and Acc_Rel configurations, and a sub-linear growth for
both Cer_Rel and Cer_Acc_Rel configurations. However,
the number of attributes to be encrypted is greater for
IC-Count than for IC-Freq. For IC-MFVS (Figure 8(c)) the

trends are similar to those described above for Full, Cer_Rel,
and Acc_Rel configurations, but not for Cer_Acc_Rel, due to
the strong growth registered in the range [2 − 3]. Moreover,
it also registered a decrease in the range [3 − 4]. Generally,
results of IC-MFVS are worse in terms of the number of
attributes to be encrypted w.r.t. the other two heuristics.

In general, it is not obvious that the number of attributes
to be encrypted decreases when the number of confiden-
tial attributes increases. However, when a new confidential
attribute is added, the process typically considers many more
RFDs. Thus, the incidence of each attribute w.r.t. the selection
criteria of a heuristic could change. Consequently, a heuristic
could converge towards a more optimal solution, i.e. fewer
attributes to be encrypted.

G. IC VARIABILITY EVALUATION SESSION ON
INTEGRATED DATASETS
We have accomplished a further IC variability evaluation ses-
sion on the previously described integrated datasets (Table 5).
In particular, also in this case we started by specifying one
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FIGURE 9. Evaluation results of the proposed methodology on IC variation for the CreditHealth dataset.

FIGURE 10. Evaluation results of the proposed methodology on IC variation for the CreditLondon dataset.

FIGURE 11. Evaluation results of the proposed methodology on IC variation for the HealthLondon dataset.

TABLE 9. Attributes selected for evaluating IC variability on the
CreditHealth dataset.

TABLE 10. Attributes selected for evaluating IC variability on the
CreditLondon dataset.

confidential attribute, and adding new ones up to 5. More
precisely, Table 9 shows the attributes used for IC variabil-
ity experiments on the CreditHealth dataset, Table 10 those
for the CreditLondon dataset, and Table 11 those for the
HealthLondon dataset.

TABLE 11. Attributes selected for evaluating IC variability on the
HealthLondon dataset.

Figure 9 shows the results achieved on the CreditHealth
dataset. In general, all three heuristics mainly show an
increasing trend for all considered configurations. More
specifically, the trend is exactly the same for Full and
Acc_rel configurations with IC-Freq. Moreover, in these two
configurations, the number of attributes to be encrypted
remains sufficiently low. Instead, a remarkable growth occurs
with IC-MFVS for Full and Acc_Rel configurations in the
variability range [1− 2].
Figure 10 shows the results achieved on the CreditLondon

dataset. In particular, also for this dataset IC-MFVS exhibited
a similar behaviour for Full and Acc_Rel configurations, and
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for Cer_Rel and Cer_Acc_Rel configurations. Better perfor-
mances are achieved with IC-Count and IC-Freq, where the
latter follows a non-monotonic trend for the Cerr_Acc_Rel
configuration.

Figure 11 shows the results obtained on the HealthLon-
don dataset. In particular, IC-Count and IC-Freq heuris-
tics (Figure 11(a)-Figure 11(b)) do not require to encrypt
many attributes for Full and Acc_Rel configurations. This
does not occur with IC-MFVS for the same configura-
tions (Figure 11(c)). Moreover, we notice that although the
Cerr_Acc_Rel configuration requires the maximum number
of attributes to be encrypted, it follows a quasi-constant trend
with all three defined heuristics.

By comparing results achieved in this evaluation w.r.t. the
previous one, we can notice that there are no relationships
between the trends on the integrated datasets and those on
the single datasets from which they are derived. Often, Full
and Acc_Rel configurations required less attributes to be
encrypted than Cer_Rel and Cer_Acc_Rel configurations.

H. INFORMATION GAIN EVALUATION SESSION
In this section, we describe another evaluation session aiming
to analyze the effectiveness of the proposed methodology.
In particular, we considered a classification scenario in which
it is important to guarantee the quality of data even if the
privacy preservation must be ensured. Thus, we measured
the data quality in terms of information gain on the unen-
crypted dataset, and compared it to the partially encrypted
one obtained by the application of the proposedmethodology.
More specifically, we aimed to understand the dispersion of
the data in terms of information gain [39], which exploits the
concept of entropy. The latter is defined in equation (7), and
characterizes the purity of an arbitrary collection of examples.

Entropy = H (X ) = −
∑

p(X ) log p(X ) (7)

where
• X is an attribute of the dataset;
• H (X ) is the entropy of X ;
• p(X ) is the probability of getting a value of X when
randomly selecting one from the set.

Instead, the Information Gain is the expected reduction in
entropy caused by partitioning the examples according to a
given attribute. The formal definition of the information gain
is expressed in (8).

Information Gain = I (X ,Y ) = H (X )− H (X |Y ) (8)

where
• X and Y are attributes of the dataset;
• I (X ,Y ) is the information gain on the attribute Y ;
• H (X ) is the entropy on X ;
• H (X |Y ) is the entropy of X given Y .

To perform our analysis, we evaluated the variation of infor-
mation gain for each attribute in the Health dataset, and used
Status as the target attribute of the classification scenario.
Thus, we evaluated the information gain of each attribute

FIGURE 12. Evaluation results of the information gain on the Health
dataset.

w.r.t. Status. Moreover, in the computation of information
gain, we considered every encrypted value as belonging to
the same class, like in the case of null values.

Figure 12 shows the obtained results, where the blue bar
is related to the information gain computed on the attributes
without encryption (e.g. exposed to privacy threats), and the
red one is related to the information gain computed after the
application of the proposed methodology, i.e. the partially
encrypted dataset. According to Figure 12, it is possible to
notice that the variation of information gain is almost always
small. This highlights the fact that the proposed methodology
is a useful means to guarantee privacy preservation without
affecting too much the quality of data. More specifically,
some exceptions have been encountered. A slightly worse
behavior is obtained for IG-Attr1, i.e. LastName, due to the
many encryptions on an attribute whose distribution con-
tains many values. Instead, for IG-Attr3 the information gain
remains unchanged.

This evaluation represents a specific analysis scenario,
which allowed us to verify how in a real-world scenario it
is possible to work with partially encrypted data, aiming to
ensure both privacy preservation and data usage.

VIII. CONCLUSION
We proposed a methodology to automatically identify and
partially encrypt ‘‘sensitive’’ data, in order to detect several
threats to information confidentiality. The methodology pro-
vides a contribution to organizations in the effort to comply
with new regulations concerning privacy preservation, like
GDPR. The identification procedure exploits the semantic
correlations among data, represented through automatically
discovered RFDs [6], [33], to derive the minimal set of data
to be encrypted. The methodology exploits RFDs holding
between attributes belonging to different sources since an
attacker might inquire them, or they might be put together as
a result of big data processing operations, like for instance
data integration, entity resolution, and so on, because data
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belonging to different data sources could imply the values of
previously specified confidential ones. To this end, the pro-
posed methodology supports the detection of such threats,
providing organizations with a useful means to accomplish
complex data processing operations in a safe way, contribut-
ing to reduce the risk of incurring expensive penalties, as pre-
scribed by the GDPR regulation.
The proposed methodology exploits partial encryption

methods, aiming to maximize the amount of free data on
which organizations can perform analysis. In particular,
we have defined a threat model and analyzed how the pro-
posed methodology reduces the possibility of breaking infor-
mation confidentiality. To this end, one of the limitations
of the proposed methodology is that a third party could
identify unique records and attempt to disclose confidential
information by exploiting, for instance, record linkage tech-
niques. Nevertheless, in our application scenario, we exclude
attributes typically used for identifying tuples referring to
a single user (e.g. SSN, student ID, and so on). More-
over, although not impossible, an attacker should have much
detailed external information to link user data to the spe-
cific target ones. Finally, another limitation of the proposed
methodology is that users are not always aware of all of
their sensitive data. To this end, even if organizations could
support users by defining some default sensitive attribute sets,
in our opinion this problem should be further investigated in
the context of GDPR compliant privacy preservation. Exper-
imental results demonstrated that the proposed methodology
can help to detectmany confidentiality threats while requiring
to encrypt a reduced number of attributes to prevent them.

To tackle the above-mentioned problems, in the future we
plan to extend the proposed methodology in several direc-
tions. In particular, beyond the possibility to use the proposed
methodology in combination with some anonymity preserv-
ing strategies (e.g. k-anonymity, and so on), we would like to
leverage on recent data profiling tools [40] to gain additional
metadata other than RFDs, which could be useful to detect
this and other potential confidentiality threats, highlighting
further privacy preservation threats and the corresponding
actions for neutralizing them. In particular, these tools can
provide metadata concerning many different types of data
dependencies, unique values, foreign keys, and so on, based
on which we can empower the proposed methodology to pre-
vent several additional potential attacks. Moreover, we would
like to define new heuristics from the characteristics of RFDs,
aiming to further minimize the number of attributes to be
encrypted. Finally, we aim to embed the proposed method-
ology within self-service data preparation tools, especially
those targeted to end-users and data stewards.
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