
Received October 4, 2020, accepted October 30, 2020, date of publication November 9, 2020, date of current version November 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3036882

FPGA Implementation of Hardware-Oriented
Chaotic Boltzmann Machines
ICHIRO KAWASHIMA , (Student Member, IEEE), TAKASHI MORIE , (Member, IEEE),
AND HAKARU TAMUKOH , (Member, IEEE)
Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan

Corresponding author: Ichiro Kawashima (kawashima.ichiro172@mail.kyutech.jp)

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO).

ABSTRACT Boltzmann machines (BMs) are useful in various applications but are limited by their require-
ment to generate random numbers. In contrast, chaotic Boltzmann machines (CBMs) are neural networks
that imitate the stochastic behavior of BMs with the chaotic dynamics and deterministic behavior, without
random numbers. CBMs can potentially require fewer hardware resources than the original algorithms
due to the unnecessity of random number generators. In this study, hardware-oriented algorithms and a
differential multiply-accumulation operation are proposed to overcome the difficulties of implementing
CBMs on field-programmable gate arrays (FPGAs). A hardware-oriented algorithm for CBMs, which
includes fixed-point operations and shift operations, is proposed to reduce hardware resource utilization in
the implemented circuits. In particular, the differential multiply-accumulate operation allows us to implement
the multiply-accumulate operation with block random access memory and digital signal processors to
reduce the consumption of lookup tables and flip-flops in FPGAs without losing the calculation speed. Our
proposed approach was evaluated in numerical simulations, logical synthesis, and FPGA implementation.
The calculation speed of FPGA-implemented CBMs was compared with software-implemented CBMs,
which resulted in 1 / 6,500 of calculation time reduction in a 300-neuron CBM. Moreover, 2,048 neurons
of CBM were realized by the logical synthesis. Therefore, the proposed hardware implementation of CBMs
was shown to be feasible. The proposed CBMs can solve combinatorial optimization problems at a larger
scale with fewer resources.

INDEX TERMS Chaotic Boltzmann machines, combinatorial optimization problems, Ising model, field-
programmable gate array.

I. INTRODUCTION
Boltzmann machines (BMs) [1]–[3] are fully connected neu-
ral networks used for numerous purposes, such as time-series
data prediction and image classification [4]. BMs have appli-
cations in various fields, such as image recognition, sound
recognition, and natural language processing [5]. In many
studies, BMs exceeded conventional algorithms in image
processing tasks (such as edge detection, caption generation,
and object tracking). A remarkable feature of BMs is that the
model can learn the relationships in data, which enables us
to build applications that learn generative models of training
data, such as automatic music generation [6], [7]. However,
BMs have a high computational cost, and graphic processing
units (GPUs) are frequently used to accelerate the calcu-

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Asif .

lation speed, albeit GPUs require much more power than
CPUs. BMs can be run at high speed with less energy by
implementing a dedicated circuit into hardware, such as a
field-programmable gate array (FPGA) and a complementary
metal-oxide-semiconductor (CMOS) chip. Despite the ben-
efits of a hardware implementation of BMs, they consume
a significant amount of hardware resources because random
number generators must be included in the implemented
hardware.

The Ising models [8] were known as an equivalent model
of BMs. Ising models are used for solving combinatorial
optimization problems, which are often recognized as NP-
hard and require a tremendous amount of time to solve
with Von Neumann architecture computers. Combinatorial
optimization problem solvers are recognized as a type of
quantum computations [9], [10], and Ising models are gen-
erally used for this purpose [11], [12]. Solving combinatorial

204360 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-3061-0841
https://orcid.org/0000-0003-2708-4307
https://orcid.org/0000-0002-3669-1371
https://orcid.org/0000-0003-1839-2527


I. Kawashima et al.: FPGA Implementation of Hardware-Oriented CBMs

optimization problems is a critical requirement to solve prob-
lems in our society and artificial intelligence (AI). Many
hardware implementations of Ising models for accelerating
the calculations were reported [13], [14]. However, the neces-
sity of random numbers in Ising models often deteriorates the
efficiency of hardware implementations and BMs. To avoid
this problem, implementation methods that do not require
random numbers [15] and share random number generators
[14] were proposed.

In this study, chaotic Boltzmann machines (CBMs) [16]
are introduced to solve the problem of the requirement of
random numbers in BMs and Ising models. CBMs are neural
networks that imitate BMs’ stochastic behavior by non-linear
and chaotic dynamics. The deterministic behavior of CBMs
can be implemented into hardware without random numbers,
unlike in Ising models and BMs; therefore, the replacement
of Isingmodels and BMswith CBMs enables us to implement
applications with fewer hardware resources than the original
models. The number of hardware circuits is reduced, owing
to the removal of random number generators. This enables
us to enlarge the scale of the network implemented in one
FPGA or chip. Hence, larger-scale combinatorial optimiza-
tion problems can be solved, as the resource utilization has
been reduced. CBMs have been implemented in an analog
chip, and their efficiency was reported [17], [18].

However, there are difficulties implementing the original
algorithm of CBMs, such as the use of floating-point num-
bers and multiply-accumulate operation (the multiplication
is conducted for a binary value and a decimal value in
CBMs). In this study, hardware-oriented algorithms and a
differential multiply-accumulate operation are proposed to
solve those difficulties. These proposals reduce the hard-
ware resource utilization of the implementation circuits of
CBMs without a significant impact on accuracy and the
calculation time. The proposals were verified with numer-
ical simulations and evaluated by comparing with the con-
ventional implementations. Our experimental results show
that the hardware-oriented algorithms and the differential
multiply-accumulation can reduce a remarkable amount of
hardware resource consumption; as a result, a 2,048 node-
fully-connected network was synthesized into a single FPGA.
Additionally, the calculation speed of our hardware imple-
mentation was compared with software implementation. It
was revealed that the hardware implementation accelerated
the calculation speed at most 6,500 times as fast as software
implementation. Finally, the comparison with related works
revealed the ascendancy of this work on the hardware imple-
mentation scale; our hardware-implemented CBM has the
most edges in the related works.

The remainder of this article is organized as follows. The
algorithm of CBMs is explained in Section II. Our propos-
als (i.e., the hardware-oriented algorithms and the differ-
ential multiply-accumulation), designed CBM circuits, and
our implemented system are described in Section III. The
results of numerical simulations, logical synthesis, and the
comparison of software and FPGA-implemented CBM are

FIGURE 1. Temporal change of the internal state and the output of i th
neuron.

FIGURE 2. Temporal change of the internal state xi and output si of i th
neuron when the input value zi is fixed.

presented in Section IV. Additionally, an evaluation of our
implementation based on hardware resource consumption
and the calculation speed, and the comparison with related
studies are described in Section V.

II. CHAOTIC BOLTZMANN MACHINES
BMs are neural networks with stochastic behavior [1]. BMs
are composed of neurons whose output changes with the
following probability:

P[si = 1] =
1

1+ exp
− zi
T

, (1)

where P[si = 1] refers to the probability that the output
of ith neuron becomes 1. Moreover, si ∈ {0, 1}, zi, and T
refer to the output value, input value, and temperature of
ith neuron, respectively. As shown in the equation, random
number generators are required to produce the outputs of
neurons stochastically when the BMs are implemented into
hardware.

Chaotic Boltzmann machines (CBMs) are neural networks
that behave deterministically by imitating the stochastic
behavior of BMs by the chaotic dynamics [16]. Therefore,
random number generators are required for each neuron when
BMs are implemented into hardware, owing to their stochas-
tic behavior. In contrast, CBMs do not require random num-
ber generators because of their deterministic calculations,
which reduces the use of hardware resources compared to
BMs. CBMs operate in continuous time and have an addi-
tional parameter for each neuron, called an internal state. The
neuron’s output is determined using this internal state. The
behavior of the internal state is described by the following
differential equation:

dxi
dt
= (1− 2si)

(
1+ exp

(1− 2si)zi
T

)
, (2)

VOLUME 8, 2020 204361



I. Kawashima et al.: FPGA Implementation of Hardware-Oriented CBMs

where xi ∈ [0, 1], si ∈ {0, 1}, zi, and T refer to the internal
state, output value, input value, and temperature of ith neuron,
respectively. The output is calculated deterministically by the
following equation:{

si← 0 (xi = 0)
si← 1 (xi = 1)

, (3)

where si refers to the state of the neuron. Fig. 1 illustrates the
time change of the internal state and the output. As shown in
the figure, the internal state continues oscillating between 0
and 1, and the change of the output occurs accordingly. The
time change of the internal state and the output in the case
the input value zi is fixed, as shown in Fig. 2. In the figure,
α and β are defined as time widths when the output is 1 and
0, respectively. By the incline of xi described in (2), the time
widths are described as follows:

α =
1∣∣∣∣∣dxidt
∣∣∣∣∣
si=1

=
1

1+ exp
− zi
T

, (4)

β =
1∣∣∣∣∣dxidt
∣∣∣∣∣
si=0

=
1

1+ exp
zi
T

. (5)

The time width when the output is 1 in the whole calculation
time of the CBM is calculated as

α

α + β
=

1

1+ exp
− zi
T

, (6)

which illustrates the ratio matches to the firing probability of
BMs’ neurons described in (1). For this reason, it is apparent
that a CBM is a neural network model that expands the
stochastic behavior of BMs into the time axis.

III. PROPOSED METHODS
A. HARDWARE-ORIENTED ALGORITHMS
Hardware-oriented algorithms of CBMs are proposed in
this study. The algorithms are composed of a fixed-point
operation and shift operation, which enables the FPGA-
implemented CBMs to reduce hardware resource consump-
tion.

Fixed-point numbers are used to replace floating-point
numbers. The original algorithm of CBMs assumes the use of
floating-point numbers to represent decimal values, which are
expressed with a sign bit, significant bits, and exponent bits.
There is a disadvantage that implemented circuits of floating-
point numbers tend to be more complicated than the ones of
fixed-point numbers. However, floating-point numbers can
represent a wide range of numbers due to the exponential
expression; mainly, the phenomena are critical in adder cir-
cuits. The operation is that the circuit needs to adjust the
digits to two inputs before and after the addition. On the other
hand, fixed-point numbers are expressed with integer bits
and fraction bits, which do not use exponential expressions.

FIGURE 3. Exponential and shift operations.

Therefore, the replacement of floating-point numbers with
fixed-point numbers enables implementation circuits to be
simplified because of the identity for numerical calculation
circuits for integer numbers. The simplification of digital
calculation circuits of CBMs reduces a significant number of
hardware resources for the implementation.

The exponential operation in (2) is replaced with the shift
operation, as shown in Fig. 3a. To implement transcendental
functions (e.g., sin, cos, and exp) into digital circuits, dedi-
cated circuits for the approximation of those functions are fre-
quently used, such as the table approximation and the coordi-
nate rotation digital computer (CORDIC) [19]. Table approx-
imation, which calculates functions by storing the output
values in memory devices, often combined with linear inter-
polation or quadratic interpolation, consumes an enormous
amount of memory resources. Additionally, CORDIC, which
expresses the transcendental functions as a combination of
addition, subtraction, and table reference, has a disadvantage
in iterative operations. In contrast, the shift operation, shown
in Fig. 3b, is represented as

shift(x) =

{
2bxc (x ≥ 0)
2dxe (x < 0)

(7)

and it can be implemented with a single barrel shifter circuit.
Therefore, by replacing dedicated circuits for the calculation
of exponentials, the consumption of hardware resources can
be reduced. Moreover, the barrel shifter’s calculation speed,
which does not have iterative calculations, is faster than that
of CORDIC.

The proposed hardware-oriented algorithm affects the
computing ability of CBMs. The impact was confirmed by
numerical simulations in this study.

B. DIFFERENTIAL MULTIPLY-ACCUMULATION
In this study, hardware resource consumption is reduced
by time-division. Additionally, the differential multiply-
accumulation is proposed to restrain the increasing calcula-
tion speed resulting from the time-division of the multiply-
accumulation. The number of lookup tables (LUTs) and flip-
flops (FFs) consumption, which increases in proportion to
the number of neurons in a network, is reduced to a single
digital signal processor (DSP) and a single random access
memory (RAM) by the time-division of the calculation. In

204362 VOLUME 8, 2020



I. Kawashima et al.: FPGA Implementation of Hardware-Oriented CBMs

our proposal, the increased calculation time due to the time-
division is reduced by the omitted calculation steps, with a
focus on the difference between the former output and the
present output of a network.

Multiply-accumulation is a common obstruction of most
neural network implementations. In operation, the summa-
tion of multiplied values of outputs of neurons connected
to a neuron, and synaptic weights between the neurons and
other neurons, needs to be calculated. In CBMs’ calculation,
a neuron’s output is represented by a binary value (i.e., 0 or 1);
therefore, the multiplication can be implemented with a mul-
tiplexer instead of a multiplier circuit. However, the number
of adder circuits (proportional to the number of neurons) is
essential to calculate the multiply-accumulation owing to the
fully-connected network topology. Hence, as the size of the
network increases, the number of adder circuits expands in
proportion to the square number of neurons. To overcome the
problem, a method to reduce the number of adder circuits is
proposed as the differential multiply-accumulation.

In the conventional multiply-accumulation, the input of ith
neuron zi in the network is described as

zi = bi +
N∑
j6=i

sjwij

= bi + s1wi1 + s2wi2
+ · · · + si−1wi(i−1) + si+1wi(i+1)
+ · · · + sNwiN , (8)

where N , bi, sj, and wij, respectively, represent the number
of neurons in the neural network, the bias of ith neuron,
the output of jth neuron, and the synaptic weight value wij
between ith neuron and jth neuron. In the adder circuits of the
multiply-accumulation circuit, adder circuits with two inputs
are arranged into a tree structure, as shown in Fig. 4a. The
circuit has a disadvantage that the number of adder circuits
increases in proportion to the number of neurons. Fig. 4c
shows a part of a network circuit implemented with the
conventional multiply-accumulation. In this network circuit,
neuron circuits are connected via synapse circuits, whose
registers hold the synaptic weight. The synapse circuit out-
puts the weight value when the input value of the circuit is
1; otherwise, 0 is output. The number of synapse circuits
and adders required to implement the network increases in
proportion to the square number of neurons.

The time-division is introduced to replace the conventional
multiply-accumulation. The synapse circuits and the adder
circuits in Fig. 4c are replaced with a single block RAM
and a single embedded DSP in FPGAs. In the time-division
method, the input value of ith neuron is defined as

zi = ANi ,

Aτi =

{
Aτ−1i + bi (τ = i)
Aτ−1i + sτwiτ (τ 6= i)

,A0i = 0, (9)

where zi, τ ∈ [1,N ], and Aτi represent the input value,
iterator of the time-division, and accumulated value at time

τ , respectively. The multiply-accumulation circuit with time-
divided addition is constructed as shown in Fig. 4b. The addi-
tion circuit holds the accumulated value with a register and
adds the input value into the accumulated value sequentially.
Fig. 4d shows a part of the network circuit implemented
with the time-divided multiply-accumulation. In the circuit,
the iteration of the time-division is implemented as two mul-
tiplexers whose select signal is τ . Next, the output of neuron
sτ and the corresponding synaptic weight wiτ are input to the
addition circuit one by one.

The behavior of the network circuit implemented for our
proposal is shown in Fig. 5. The network’s weight matrix is
expressed by an array of RAMs in the left side of the figure.
Notably, the diagonal elements of the weight matrix are used
to store biases of neurons, to reduce extra resources to store
the biases, and this architecture is reflected in (9). As shown
in the figure, multiplied values of outputs in the networks
and synaptic weights are accumulated as τ iterates from 1
to N . However, the time-division of multiply-accumulation
increases the calculation time in proportion to the number of
neurons.

The differential multiply-accumulation is proposed to
overcome the problem of increased calculation time. In the
neuron circuit with the conventional multiply-accumulation,
as shown in Fig. 6a, the output value of neuron circuits, si,
and synaptic weight, wij, circuits are input to the neuron
circuits one by one. Therefore, these iterations in calculations
increase processing time. On the other hand, the proposed
differential multiply-accumulation improves the calculation
speed, as shown in Fig. 6b. In the circuit, the iteration covers
the neurons whose output changed. The former input of a
neuron zt−1i is updated as the current input zti with the differ-
ence between the former output of the network st−1 and the
present one st . The calculation is described by the following
equations:

z0i = bi +
N∑
j6=i

s0j wij,

zti = zt−1i +

N∑
j′ 6=i

st−1
j′
6=st

j′

d tj′wij′ , (10)

d tj′ =

{
−1 (st−1j′ = 1, stj′ = 0)

1 (st−1j′ = 0, stj′ = 1)
, (11)

where t , zti , and d
t
j′ represent time, the input of ith neuron

at time t , and the difference between the former output of
jth neuron st−1j and the present output for stj , respectively.
The equation indicates that the first multiply-accumulation is
the same as in the original calculation (8). However, iterator
j is replaced with j′, which only covers the neurons whose
output has changed. The difference value d tj′ replaces s

t
j′ to

update the present input value zti . The replacement of iterator
jwith j′ reduces the number of iterations significantly because
every neuron changes its output twice in a period, as shown

VOLUME 8, 2020 204363



I. Kawashima et al.: FPGA Implementation of Hardware-Oriented CBMs

FIGURE 4. Designed summation and multiply-accumulation circuits.

FIGURE 5. Network behavior designed using the proposed method.

204364 VOLUME 8, 2020



I. Kawashima et al.: FPGA Implementation of Hardware-Oriented CBMs

FIGURE 6. Conventional and differential multiply-accumulation.

FIGURE 7. Neuron circuit designed by using the conventional algorithm (Numbers represent the calculation steps).

in Fig. 2. The low-frequent output change of neurons of
CBMs increases the efficiency of the differential multiply-
accumulation.

C. DESIGNED CIRCUITS
FPGA circuits are designed to compare hardware resource
consumptions of the conventional method and our proposal.
First, neuron circuits that use both the conventional and our
hardware-oriented algorithms are designed to evaluate our
proposed approach. Second, a conventional network circuit
and a network circuit that uses our differential multiply-
accumulation are designed to compare hardware resource
usage. Note that both the conventional and the proposed
network circuit have our hardware-oriented algorithm in their
neuron circuits.

A neuron circuit designed using the conventional method
(i.e., floating-point numbers and exponential operations) is
shown in Fig. 7. IP cores produced by Xilinx are used as
floating-point operation circuits, which include an exponen-
tial calculator, adders, multipliers, and comparators, and are

represented by the broken lines in the figure. Double lines
in the figure show handshake-protocol bus lines (i.e., AXI
Stream), which are used to connect Xilinx IP cores. The fork
module is used for distributing data and is required to arbitrate
control signals. The former internal state and the former
output of ith neuron are represented as x ′i and s

′
i, respectively.

Moreover, xi and si refer to the current internal state and the
current output, respectively. Operation sign changes the sign
of input of a neuron depending on the output of the neuron as

sign(x) = (1− 2si)× x. (12)

The calculation steps of the neuron circuit are as follows:
1) Calculate zi/T by the multiply-accumulation and mul-

tiplying the inverted temperature 1/T .
2) Calculate dxi by multiplying the right-hand side of (2)

and dt .
3) Calculate x ′i +dxi by adding dxi to x

′
i and calculating xi

and si as
• 0 if x ′i + dxi ≤ 0,
• 1 if x ′i + dxi ≥ 1.

VOLUME 8, 2020 204365



I. Kawashima et al.: FPGA Implementation of Hardware-Oriented CBMs

FIGURE 8. Neuron circuit designed by using the hardware-oriented algorithm (Numbers represent the calculation steps).

FIGURE 9. Updating method of the proposed neuron circuit.

Clip xi to a value between 0 and 1.
4) Update x ′i and s

′
i with xi and si to use them in the next

calculation of the neuron.
5) Output si.

A neuron circuit is designed using our hardware-oriented
algorithm (i.e., fixed-point operation and shift operation), and
its structure is shown in Fig. 8. In the circuit, four types of
fixed-point operation circuits are included: a shift operator,

adders, multipliers, and comparators. Dashed lines’ input to
twomultiplexers represents the overflow signal of fixed-point
operation and the transition signal of the neuron’s output.
The former output and the former internal state of the ith
neuron are denoted as x ′i and s

′
i, respectively. Moreover, xi

and si refer to the current internal state and the current output,
respectively. In the designed circuit, the CBM algorithm is
modified as shown in Fig. 9a. Next, si can be updated by the
carry bit of xi when the bits of si and xi are connected and dxi
are added, as shown in Fig. 9b. The calculation steps of the
neuron circuit are as follows:

1) Calculate zi/T by the multiply-accumulation and mul-
tiplying the inverted temperature 1/T .

2) Calculate dxi by multiplying the right-hand side of (2)
and dt , monitoring overflows.

3) Calculate {si, xi} as

• {v s′i, 0}, if the overflow has occurred in this step
(the output needs to be changed immediately, not
to delay the timing of the output change);

• {s′i, 0} + dxi, if the transition has occurred (this
condition means that output si was changed in the
update, and xi needs to be reset to 0).

• {s′i, x
′
i} + dxi, if the above conditions are not

matched (the neuron needs to keep its internal state
xi and output si).

4) Update x ′i and s
′
i with xi and si to use them in the next

calculation of the neuron.
5) Output si.

204366 VOLUME 8, 2020



I. Kawashima et al.: FPGA Implementation of Hardware-Oriented CBMs

Here, {a, b} means the bit connection of bit vectors a and b.
In addition, v a refers the bit complementation of a bit a.
The network circuit designed using the conventional

multiply-accumulation has the structure shown in Fig. 10a.
This circuit is composed ofN neuron circuits andN (N−1)/2
synapse circuits, and all neuron circuits are interconnected
through synapse circuits. A synapse circuit that connects
two neurons is composed of registers that store a synaptic
weight and two multiplexers, which express multiplications
siwi and sjwi, as shown in Fig. 10b. A neuron circuit is
shown in Fig. 10c; the neuron circuit included adders to
conduct multiply-accumulation and a multiplier beside a
calculation circuit of dxi/dt . The synapse circuit and the
multiply-accumulation of the neuron circuit are implemented
with LUTs and registers.

The network circuit designed using the proposed method
is configured as shown in Fig. 11a. This circuit consists of N
neuron circuits, N synapse circuits, and a network controller
circuit. A synapse circuit that stores synaptic weights for a
neuron can be represented by a single block RAM of FPGAs,
shown in Fig. 11b. Its input is τ in Fig. 4d, and its output is
a bias or synaptic weight. The multiply-accumulation in the
neuron circuit of the proposed network circuit is expressed as
a DSP block of FPGAs, as shown in Fig. 11c. A DSP block of
Xilinx’s products, such as DSP48E, has a multiplexer and an
arithmetic and logic unit (ALU) that can be used as an accu-
mulator. Inputs of the neuron circuit are the bias or synaptic
weight, the inverted temperature, and control signals. The
control signals are generated in the network controller circuit
using the value of τ and the number of iterations, calculated
as follows:

initialize
Put 0 to the accumulated value by (9).

enable
Put 0 as the input value when the bias is input after
the second iteration because the bias value changes
at the first iteration by (10).

negate
Control whether the synaptic weight is added or sub-
tracted by (11).

D. IMPLEMENTED SYSTEM
An FPGA-implemented CBM is controlled by software in the
host PC in this system, and an FPGA and the host PC are con-
nected by a PCIe interface. A Xillybus [20] IP core is used for
the communication between the PC and the FPGA. Synaptic
weights, biases, initial outputs of neurons, parameters (such
as the frequency of annealing, initial temperature, and number
of iterations), and control signals are input from the host PC.
The FPGA outputs the output of the network and its energy
and the status of the circuit. As shown in Fig. 12, the FPGA-
implemented CBM is composed of a network circuit and the
following circuits:

scheduler
Decide the timing of annealing.

TABLE 1. Implementation Environment of Numerical Simulation.

TABLE 2. Experimental Conditions of Numerical Simulation.

TABLE 3. Maximum Cutting Problems in Biq Mac Library.

controller
Control the calculation in the network.

temperature generator
Calculate temperature values for the network.

In the network circuit, all neuron circuits and synapse circuits
are connected to the host PC via multiplexers and demulti-
plexers and are accessed directly by the PC.

IV. RESULTS
A. NUMERICAL SIMULATION
Numerical simulations were conducted to evaluate the
hardware-oriented algorithm. For the simulations, conven-
tional CBMs (which have algorithms with exponential oper-
ations and floating-point numbers) and the proposed CBMs
(which are implemented with shift operations and fixed-point
numbers) are implemented as software in the environment
shown in Table 1. The Euler method was used to update
the internal states and outputs of the neurons of CBMs.
Subsequently, the parameters shown in Table 2 were used,
and the annealing was conducted every N/128 of time in the
Euler method because CBM is a neural network that runs in
continuous time, as illustrated in (2).

The maximum-cut problem can be solved by CBMs whose
synaptic weights and biases are set as follows:

bi =
∑

dij (13)

wij = −2dij, (14)

VOLUME 8, 2020 204367



I. Kawashima et al.: FPGA Implementation of Hardware-Oriented CBMs

FIGURE 10. Conventional network circuit.

where wij, bi, and dij refer to the weight value between ith
and jth neurons, the bias value of ith neuron of the CBMs,
and the edge weight between ith node and jth node of the
problems, respectively [16]. Temperature, T , is decreased
gradually from the initial value to a sufficiently low value
when running CBMs. Solutions of maximum-cut problems
are obtained as the combination of outputs of neurons in a
CBM network when T becomes sufficiently low.
The computing ability of CBMs implemented with the

proposed method has been measured with the maximum cut
problem. Synaptic weights and biases were set according to
(13). CBMs were run while the temperature decreases from
the initial value to a sufficiently low value. Error rates were
calculated as follows:

Error = 1−
Emin
Eopt

, (15)

where Emin and Eopt are defined as the minimum energy
value acquired from CBMs and the optimized energy value
of problems, respectively. In the numerical simulation, CBMs
were applied ten times for each of the six different max-
cut problems in Biq Mac Library [21], shown in Table 3,
which has 100, 150, 200, 250, and 300 nodes with different

initial values. The average and minimum error rates for each
problem size were calculated.

First, two kinds of CBMs that use 64 bits of floating-point
numbers and 24 bits of fixed-point numbers were applied
to the max-cut problems for verifying the computing ability
of CBMs implemented with fixed-point numbers. Fig. 13a
and 13b show the results. A significant difference was not
identified between the use of floating-point numbers and
fixed-point numbers for any number of nodes of problems,
although some variations depended on the number of nodes.

Second, the computing ability of CBMs implemented with
the shift operation was verified by applying CBMs imple-
mented with the exponential operation and the shift operation
to the max-cut problems. Figs. 14a and 14b show the result.
These figures indicate that the computational ability of CBMs
implemented with the shift operation is slightly inferior to
CBMs implemented with the exponential operation; however,
the difference in computational ability is only a few points.
Consequently, the replacement of the exponential operation
with the shift operation does not significantly impact the
computational ability of CBMs.

Finally, CBMswhose bit widths of fixed-point numbers are
8, 12, 16, 20, and 24 were applied to the max-cut problems
to evaluate the correlation between the computational ability

204368 VOLUME 8, 2020



I. Kawashima et al.: FPGA Implementation of Hardware-Oriented CBMs

FIGURE 11. Proposed network circuit.

FIGURE 12. Implemented system.

of CBMs and the bit width of fixed-point numbers. In the
experiment, 2bit width of fixed-point numbers/2 is used as the step
size of the time of the Euler method because the stem size is
limited by the bit width of the fixed-point numbers. Figs. 15a
and 15b illustrate the results, which demonstrate that the
error rate increases as the bit width decreases. The results
indicate that the error rate could be maintained at approxi-

mately 10% if the bit width of fixed-point numbers is more
than 16 bits.

The results of the numerical simulation revealed that
the hardware-oriented algorithm impacted the comput-
ing ability of CBMs. However, a few points of differ-
ence in the error rate between the original algorithm and
the hardware-oriented algorithm remained. The sufficiently

VOLUME 8, 2020 204369



I. Kawashima et al.: FPGA Implementation of Hardware-Oriented CBMs

FIGURE 13. Error rates of CBM using floating-point numbers and fixed-point numbers.

FIGURE 14. Error rates of CBM using exponential operation and shift operation.

FIGURE 15. Error rates of CBMs using fixed-point numbers with various bit precision.

TABLE 4. Synthesis Environment for Neuron Circuits.

small difference indicates the feasibility of the proposed
hardware-oriented algorithm.

B. LOGICAL SYNTHESIS
The resource utilization of the circuits designed with con-
ventional algorithms and hardware-oriented algorithms were

compared to verify the resource utilization of a neuron circuit.
The neuron circuits of the network, whose number of neurons
are 4, 8, 16, 32, and 64 were designed and synthesized using
logical synthesis. The number of LUTs, FFs, DSPs, and
RAMs used in the designed circuit was measured from the
results of the synthesis. The synthesis environment is shown
in Table 4. The bit width of the synaptic weight, bit width of
the fixed-point number of the neuron circuit, and step size of
the time were set to 16, 16, and 2−8, respectively.

Fig. 16 shows the results. In the neuron circuit that used
the hardware-oriented algorithm, the number of resources
used for LUT and FF is reduced for any number of neurons.
According to the results, the resources can be reduced to

204370 VOLUME 8, 2020



I. Kawashima et al.: FPGA Implementation of Hardware-Oriented CBMs

FIGURE 16. Number of resources used in neuron circuit.

TABLE 5. Synthesis Environment for Network Circuits.

nearly 1/30, and the amount of DSP consumed in the neuron
circuit designed using the conventional algorithm can be
reduced. Note that block RAMs are not used in the designs
of the conventional and the proposed methods.

The resources of the network circuit designed with con-
ventional multiply-accumulate operations and differential
multiply-accumulate operations were compared to validate
the differential multiply-accumulate operation. The network
circuits with 4, 8, 16, 32, and 64 neurons were designed and
synthesized by logical synthesis. The number of LUTs, FFs,
DSPs, and RAMs used in the designed circuit was measured
from the synthesis results. The logical synthesis environment
is shown in Table 5. The neuron circuit was designed using
the hardware-oriented algorithm.

Fig. 17 shows the results for this step. In the network
circuits using differential multiply-accumulate operations,
the increase in the number of resources used for LUTs
and FFs, for the number of neurons, was smaller than in
the network circuits designed using conventional multiply-
accumulate operation. Moreover, in the network circuit with
64 neurons, the number of resources used for LUT and FF
was reduced to approximately 1/8 and approximately 1/70,
respectively. Note that the numbers of DSPs on the conven-

TABLE 6. Synthesis Environment for Network Circuits.

tional network and the proposed network were the same.
Block RAMs were not used in the conventional network.

The proposed network was synthesized for an accelerator
card. The scale of the system, which can be implemented into
an accelerator card, was measured. Fig. 6 shows the synthesis
environment for the card. The experiment’s condition was the
same as in the previous experiment.

The results are shown in Table 7 and Fig. 18. The results
indicate that resource utilization increases polynomially as
the number of neurons increases, and the usage of block
RAMs dominates other hardware resources, such as FF, LUT,
andDSP in the device. As a result of the synthesis, 2, 048 neu-
rons in the network could be implemented in the accelerator
card device.

The results of the logical synthesis show the efficiency
of the hardware-oriented algorithm and the differential
multiply-accumulation. Therefore, these methods reduce the
hardware resource utilization drastically.

C. FPGA IMPLEMENTATION
A CBM circuit was implemented in the environment shown
in Table 8. The implemented circuit is shown in Fig. 12. The

VOLUME 8, 2020 204371



I. Kawashima et al.: FPGA Implementation of Hardware-Oriented CBMs

FIGURE 17. Resources used in the network circuit.

TABLE 7. Resources Used in the Network Circuits.

FIGURE 18. Resources used in the network circuits.

FPGA-implemented CBM was compared with the software-
implemented CBM in terms of calculation ability and speed.

The computing ability of CBMs implemented into soft-
ware and hardware was compared for the verification of

TABLE 8. Implementation Environment for CBM Circuits.

TABLE 9. Experimental Conditions for Verification of Computing Power of
CBM.

FPGA-implemented CBM. The CBMs were applied to 100,
150, 200, 250, and 300 nodes of the maximum cut prob-
lems. The average error rate was measured as in numerical
simulations (i.e., applying it ten times for each six differ-
ent max-cut problems in Biq Mac Library). In this exper-
iment, the inverted value of temperature was used instead

204372 VOLUME 8, 2020



I. Kawashima et al.: FPGA Implementation of Hardware-Oriented CBMs

of temperature because the FPGA-implemented CBM needs
to input the inverted value of temperature to the neuron
circuit. In the experiment, annealing was performed every
N/128 time period in the Euler method, using the values
shown in Table 9. To align the conditions, the same synap-
tic weights and initial outputs of neurons as in the FPGA-
implemented CBM were input to the software-implemented
CBM.Note that the software-implemented CBMdoes not use
the hardware-oriented algorithm to compare the calculation
abilities of the original CBM and the FPGA-implemented
CBM.

Fig. 19b shows the experimental results. The error rates
of FPGA-implemented CBMs are found to be slightly higher
than those of software-implemented CBMs. However, it was
revealed that the change in error rate due to hardware imple-
mentation was less than two points. Moreover, the time
change of the energy function of the software and FPGA-
implemented CBM when applied to the problem ‘‘ising3.0-
100_5555’’ is as shown in Fig. 19a and Fig. 19c, respectively.
The time on the horizontal axis represents the Euler method’s
elapsed time, and a broken line indicates the optimum value
of the applied problem. These figures indicate that the energy
functions of all CBMs change similarly. As time passes,
the value of the energy function approaches the optimum
value as the temperature decreases.

The calculation speed of the software-implemented CBM
and two kinds of FPGA-implemented CBM (i.e., a CBM
with (8) as the multiply-accumulation and a CBM with
(10) as the multiply-accumulation) were compared to eval-
uate the calculation speed of CBMs. The calculation time
of FPGA-implemented CBM and the software-implemented
CBM were measured. The average values of 60 iterations for
each number of neurons were calculated.

Fig. 19d shows the experimental results of this step. The
results show that the calculation speed was significantly
improved by implementing a CBM to an FPGA, and the
differential multiply-accumulation contributed to improving
the calculation speed. The calculation speed was reduced to
at least 1/1, 300, and the calculation speed was reduced to
1/6, 500 in the case of 300 neurons.

Therefore, the results of the FPGA implementation indi-
cate the effectiveness of the FPGA-implemented CBM. The
FPGA-implemented CBM can perform much faster calcula-
tions than the software-implemented CBM.

V. DISCUSSION
A. RESOURCES CONSUMPTION
The results of this study demonstrated that our pro-
posed method reduces resource consumption. By using the
hardware-oriented algorithm, the consumption of LUTs and
FFs was reduced to nearly 1/30, as indicated in Fig. 16.
The results imply that the calculation circuits on the neuron
circuits are simplified using fixed-point numbers and the
shift operations instead of floating-point numbers and the
exponential operation; notably, the utilization of DSPs due to

floating-point numbers’ high bit precision and calculations of
exponential bits is decreased. The multiply-accumulate oper-
ation also contributed to reducing resource consumption; the
consumption of LUT and FF was reduced to approximately
1/8 and 1/70, respectively, in the network circuit with 64
neurons, as shown in Fig. 17. The results indicate that the
increase in LUTs and registers in proportion to the square
number of neurons in the network is replacedwith the number
of DSPs and RAMs in proportion to the number of neurons
in our proposed approach. The maximum size of the network
synthesized in this study was 2, 048, as shown in Fig. 18.
According to this result, the number of block RAMs in the
FPGA limits the size of the network due to the dominating
utilization of RAMs. It may be possible to further increase
the size of the network by reducing the bit precision and
assigning multiple weight values in the same column of a
RAM. Moreover, reduced LUT consumption indicates that
more complicated neural networks can be implemented with
differential multiply-accumulation.

B. CALCULATION SPEED
Fig. 20a demonstrates the calculation efficiency of the FPGA-
implemented CBM (differential multiply-accumulation)
compared with the software-implemented CBM. The results
show that the calculation time of software implementation
was reduced almost linearly with the number of neurons.
The FPGA implementation with the differential multiply-
accumulation could improve the calculation speed by at least
1, 300 times. In the case of 300 neurons, the calculation speed
was 6, 500 times faster.
Fig. 20b demonstrates the calculation efficiency of

FPGA-implemented CBMs (non-differential multiply-
accumulation) and FPGA-implemented CBMs (differential
multiply-accumulation). The figure indicates that the calcu-
lation time improves as the number of neurons in the network
increases.

The calculation of the FPGA-implemented CBM com-
prises a multiply-accumulation part and neuron updat-
ing part. The differential multiply-accumulation reduces
the calculation time of the multiply-accumulation part. In
the non-differential multiply-accumulation, the multiply-
accumulation part requires an increased calculation time
that is proportional to the number of neurons. On the con-
trary, the differential multiply-accumulation calculation time
depends on the number of neurons that change the output in
the time step. Fig. 2 shows that one neuron changes its output
twice (i.e., 0 to 1 and 1 to 0) in one period of the output of neu-
rons if the input of the neuron does not change. The period can
be roughly considered as 1 = (α+β) on average regardless of
the duration of the period depends on the input of the neuron.
Hence, it could be considered that 2N/nt of output changes
occur in a time step on average when the period is divided into
nt time steps, where N refers to the number of neurons in the
network (nt = 212 = 4, 096 in Fig. 20b). It indicates that the
differential-multiply accumulation requires 2N/nt iterations
for a single update of the network; meanwhile, the non-

VOLUME 8, 2020 204373



I. Kawashima et al.: FPGA Implementation of Hardware-Oriented CBMs

FIGURE 19. Results of the FPGA implementation.

FIGURE 20. Efficiency of the calculation time.

differential multiply-accumulation requires N iterations for
every update of the network.

C. RELATED WORK
CBMs are equivalent to Ising models; therefore, CBMs are
also adaptable to combinatorial optimization problems.Many
studies were related to Ising models [25], [26] and their
hardware implementations [27]–[29] in recent years because
many problems in our society can be expressed as combina-
torial optimization problems. Table 10 compares the results
of our implementation and related studies. The table shows
that the number of edges in our study and the bit preci-
sion of edges is improved compared with other studies. The
increased number of edges and bit precision implies fewer

limitations on the mapping of combinatorial optimization
problems; for instance, the traveling salesman problem (TSP)
requires the square number of nodes to be equal to the number
of cities in the network, and a sufficient amount of precision is
required to express the constraints and the distance between
cities in the problem. Note that the number of edges inside
parentheses is calculated in this study, as shown in 11 (an
edge between two nodes in graphs on the table is assumed to
be bidirectional, and the grid of the lattice graph is assumed
to be connected like a torus).

Implementations use three kinds of topologies: the com-
plete graph, chimera graph [14], and lattice graph, as shown
in Fig. 21. In a complete graph, every pair of nodes is con-
nected by an edge; therefore, the complete graph includes

204374 VOLUME 8, 2020



I. Kawashima et al.: FPGA Implementation of Hardware-Oriented CBMs

TABLE 10. Comparison with Related Studies.

FIGURE 21. Graph topologies.

TABLE 11. Graph Topologies.

other types of graphs, such as the chimera graph and lattice
graph. The lattice graph is a graph whose nodes are arranged
on intersections of a grid, and the nodes are connected to the
adjacent four nodes. The chimera graph has four nodes of
complete graphs as its subgraph, the subgraphs are arranged
as the king’s graph [30], and the nodes are connected to the
adjacent eleven nodes. Table 11 indicates that the number of
edges depending on the number of nodes in the complete
graph is more than in the other graph topologies. However,
the lattice graph and the chimera graph are often implemented
into hardware because their connectivities are limited to the
adjacent nodes; therefore, these topologies are easily accom-
modated into hardware that have a two-dimensional structure.
In particular, the chimera graph can increase the number of
connectivities for each node by limiting the connectivities to
the adjacent nodes. The problem of increasing the number of
edges needs to be solved to implement the complete graph
topology into hardware. In our work, block RAMs in FPGAs
were used to address this problem as well as a study by
Yamamoto [23] that used static random access memories
SRAMs. Nevertheless, it is still possible to represent a com-
plete graph with chimera graphs by a minor embedding [31];
however, the number of edges needs to bemore than the target
complete graph, to represent the complete target graph by
combining nodes of the original graph.

CBMs do not require random numbers in their calcula-
tion, whereas the Ising model needs to use random numbers
so that it is not tricked into local optima. Random number
generators require significant hardware resources; in the case
of Yamamoto [23], random number generators consumed 11
percent of hardware resources in the implemented circuit.

Yoshimura [14] proposed random pulse sharing to reduce the
hardware resource utilization of random number generators;
then, a random number generator was shared among multiple
calculation units not updated at the same calculation step,
nearby. However, hardware resources are still consumed by
random number generators in these implementations [22],
[24]. In contrast, Gyoten proposed shift-register-based spin
flipper (SRSF) [15], [32]: an implementation method that
enables implementation circuits of the Ising model to elim-
inate random number generators. In our work, random num-
bers generators are eradicated by the deterministic algorithm
of CBMs.

To increase the number of combinatorial optimization
problems that can be mapped to the network, a massive
number of connectivities need to be stored in hardware such
as an FPGA. Moreover, the bit precision requires to be
sufficiently big to express the problems. Block RAMs in
FPGAs may be used to achieve this owing to their over-
powering capacity, compared to LUTs. However, values of
connectivities stored in RAMs need to be accessed one by
one, when referenced by the address signal. Our implemen-
tation addressed this limitation by using the time-division
of the multiply-accumulation and suppressed the increasing
calculation time by the differential multiply-accumulation.
Additionally, the time-division enabled us to use DSPs on
the multiply-accumulation. There is a similarity between this
study and related research. Yamamoto [24], [33] proposed
a time-division multiplexing architecture (TDM), which
divided the network logically (called ‘‘phase’’) and updated
spins phase by phase, then values of connectivities could be
stored in RAMs and accessed one by one. However, the cal-
culation time increased as the number of phases increased
because of the time-division of the calculation. Yamamoto
[23] could address the difficulty by the delta-driven simul-
taneous spin update (DDSS) that calculates updates inputs
of spins by the difference from the prior inputs, as in our
implementation.

The comparison showsCBMs’ superiority because random
numbers are not required in the hardware implementation.
Moreover, our implementation’s advantage is also revealed:
the differential multiply-accumulation enables the utilization
of block RAMs and DSPs in FPGAs. This advantage pro-
duced an FPGA implementation of the largest complete-
graph network and the biggest bit precision compared with
other studies.

VI. CONCLUSION
In this study, a CBM was implemented in an FPGA
using the proposed hardware implementation methods

VOLUME 8, 2020 204375



I. Kawashima et al.: FPGA Implementation of Hardware-Oriented CBMs

(i.e., the hardware-oriented algorithms and the differential
multiply-accumulation). The results of the numerical simu-
lations indicated that the hardware-oriented algorithms were
feasible. The results of the logical synthesis revealed that our
proposal drastically reduced the consumption of hardware
resources. Moreover, the results of the FPGA implementa-
tion show that the FPGA-implemented CBM can be applied
to combinatorial optimization problems (such as the max-
cut problems) and complete computations quicker than the
software implementation.

The comparison of our study and previous research indi-
cates the superiority of our implementation. The non-linear
and chaotic dynamics of CBMs reduced hardware resource
utilization. The network in our implementation has more
edges than any other related implementation, which indicates
that our implementation has fewer limitations in the mapping
of combinatorial optimization problems.

The FPGA-implemented CBM proposed in this study
could be applied tomore practical combinatorial optimization
problems in our future work. Additionally, the scale of the
implementation could be expanded by improving the FPGA
implementation of the differential-multiply accumulation.

ACKNOWLEDGMENT
The authors would like to thank Masatoshi Yamaguchi, Seiji
Uenohara, and Hideyuki Suzuki for having a discussion and
giving advice on this work. They would also like to thank
Editage (www.editage.com) for English language editing.

REFERENCES
[1] G. E. Hinton, ‘‘Learning and relearning in Boltzmann machines,’’ Parallel

Distrib. Process., vol. 1, pp. 282–317, Jan. 1986.
[2] M. Welling and G. E. Hinton, ‘‘A new learning algorithm for mean field

Boltzmann machines,’’ in Proc. Int. Conf. Artif. Neural Netw. Cham,
Switzerland: Springer, 2002, pp. 351–357.

[3] R. Salakhutdinov and G. E. Hinton, ‘‘Deep Boltzmann machines,’’ in Proc.
Artif. Intell. Statist. (AISTATS), 2009, pp. 448–455.

[4] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, ‘‘A survey of
deep neural network architectures and their applications,’’ Neurocomput-
ing, vol. 234, pp. 11–26, Apr. 2017.

[5] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, ‘‘Enriching word
vectors with subword information,’’ Trans. Assoc. for Comput. Linguistics,
vol. 5, pp. 135–146, Dec. 2017.

[6] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, ‘‘Modeling
temporal dependencies in high-dimensional sequences: Application
to polyphonic music generation and transcription,’’ 2012,
arXiv:1206.6392. Accessed: Nov. 2, 2020. [Online]. Available:
http://arxiv.org/abs/1206.6392

[7] N. Srivastava and R. R. Salakhutdinov, ‘‘Multimodal learning with deep
Boltzmann machines,’’ in Proc. Adv. Neural Inf. Process. Syst., 2012,
pp. 2222–2230.

[8] H. Nishimori, Statistical Physics of Spin Glasses and Information Pro-
cessing: An Introduction, no. 111. Oxford, U.K.: Oxford Univ. Press,
2001.

[9] A. Douglass, A. D. King, and J. Raymond, ‘‘Constructing SAT filters with
a quantum annealer,’’ in Proc. Int. Conf. Theory Appl. Satisfiability Test.
Berlin, Germany: Springer, 2015, pp. 104–120.

[10] D. de Falco and D. Tamascelli, ‘‘An introduction to quantum
annealing,’’ RAIRO-Theor. Inform. Appl., vol. 45, no. 1, pp. 99–116,
2011.

[11] S. Bravyi and M. Hastings, ‘‘On complexity of the quantum
ising model,’’ Commun. Math. Phys., vol. 349, no. 1, pp. 1–45,
Jan. 2017.

[12] T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate, T. Honjo,
A. Marandi, P. L. Mcmahon, T. Umeki, K. Enbutsu, O. Tadanaga,
H. Takenouchi, K. Aihara, K.-I. Kawarabayashi, K. Inoue, S. Utsunomiya,
and H. Takesue, ‘‘A coherent ising machine for 2000-node optimization
problems,’’ Science, vol. 354, no. 6312, pp. 603–606, Nov. 2016.

[13] M. Yamaoka, ‘‘An ising computing to solve combinatorial optimization
problems,’’ in Proc. 5th Berkeley Symp. Energy Efficient Electron. Syst.
Steep Transistors Workshop (E3S), Oct. 2017, pp. 1–3.

[14] C. Yoshimura, M. Hayashi, T. Okuyama, and M. Yamaoka, ‘‘Implementa-
tion and evaluation of FPGA-based annealing processor for ising model by
use of resource sharing,’’ Int. J. Netw. Comput., vol. 7, no. 2, pp. 154–172,
2017.

[15] H. Gyoten, M. Hiromoto, and T. Sato, ‘‘Area efficient annealing processor
for isingmodel without randomnumber generator,’’ IEICETrans. Inf. Syst.,
vol. 101, no. 2, pp. 314–323, 2018.

[16] H. Suzuki, J.-I. Imura, Y. Horio, and K. Aihara, ‘‘Chaotic Boltzmann
machines,’’ Sci. Rep., vol. 3, no. 1, p. 1610, Dec. 2013.

[17] M. Yamaguchi, Y. Katori, D. Kamimura, H. Tamukoh, and T. Morie,
‘‘A chaotic Boltzmann machine working as a reservoir and its analog
VLSI implementation,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2019, pp. 1–7.

[18] M. Yamaguchi, H. Tamukoh, H. Suzuki, and T. Morie, ‘‘A CMOS chaotic
Boltzmann machine circuit and three-neuron network operation,’’ in Proc.
Int. Joint Conf. Neural Netw. (IJCNN), May 2017, pp. 1218–1224.

[19] J. E. Volder, ‘‘The CORDIC trigonometric computing technique,’’ IRE
Trans. Electron. Comput., vol. EC-8, no. 3, pp. 330–334, Sep. 1959.

[20] E. Billauer. (2017). Xillybus Product Brief. Nov. 2, 2020. [Online]. Avail-
able: http://xillybus.com/downloads/xillybus_product_brief.pdf

[21] A. Wiegele, ‘‘Biq Mac Library–A collection of Max-Cut and quadratic
0-1 programming instances of medium size,’’ Dept. Math., Alpen-Adria-
Universität, Klagenfurt, Austria, Tech. Rep., 2007. Accessed: Nov. 2, 2020.
[Online]. Available: http://biqmac.uni-klu.ac.at/biqmaclib.pdf

[22] S. Tsukamoto, M. Takatsu, S. Matsubara, and H. Tamura, ‘‘An accelera-
tor architecture for combinatorial optimization problems,’’ FUJITSU Sci.
Tech. J, vol. 53, no. 5, pp. 8–13, 2017.

[23] K. Yamamoto, K. Ando, N. Mertig, T. Takemoto, M. Yamaoka,
H. Teramoto, A. Sakai, S. Takamaeda-Yamazaki, and M. Motomura,
‘‘STATICA: A 512-Spin 0.25M-weight full-digital annealing processor
with a near-memory all-spin-updates-at-once architecture for combinato-
rial optimization with complete spin-spin interactions,’’ in IEEE ISSCC
Dig. Tech. Papers, Feb. 2020, pp. 138–140.

[24] K. Yamamoto, W. Huang, S. Takamaeda-Yamazaki, M. Ikebe, T. Asai, and
M. Motomura, ‘‘A time-division multiplexing ising machine on FPGAs,’’
in Proc. 8th Int. Symp. Highly Efficient Accel. Reconfigurable Tech-
nol. (HEART), 2017, pp. 1–6.

[25] S. Kanamaru, D. Oku, M. Tawada, S. Tanaka, M. Hayashi, M. Yamaoka,
M. Yanagisawa, and N. Togawa, ‘‘Efficient isingmodel mapping to solving
slot placement problem,’’ in Proc. IEEE Int. Conf. Consum. Electron.
(ICCE), Jan. 2019, pp. 1–6.

[26] K. Terada, D. Oku, S. Kanamaru, S. Tanaka, M. Hayashi, M. Yamaoka,
M. Yanagisawa, and N. Togawa, ‘‘An ising model mapping to solve rectan-
gle packing problem,’’ in Proc. Int. Symp. VLSI Design, Autom. Test (VLSI-
DAT), Apr. 2018, pp. 1–4.

[27] C. Yoshimura, M. Hayashi, T. Takemoto, and M. Yamaoka, ‘‘CMOS
annealing machine: A domain-specific architecture for combinatorial opti-
mization problem,’’ in Proc. 25th Asia South Pacific Design Autom. Conf.
(ASP-DAC), Jan. 2020, pp. 673–678.

[28] T. Takemoto, M. Hayashi, C. Yoshimura, and M. Yamaoka, ‘‘A 2×30k-
spinmulti-chip scalable CMOS annealing processor based on a processing-
in-memory approach for solving large-scale combinatorial optimization
problems,’’ IEEE J. Solid-State Circuits, vol. 55, no. 1, pp. 145–156,
Jan. 2020.

[29] M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, and
H. Mizuno, ‘‘A 20k-spin ising chip to solve combinatorial optimization
problems with CMOS annealing,’’ IEEE J. Solid-State Circuits, vol. 51,
no. 1, pp. 303–309, Jan. 2016.

[30] G. J. Chang, ‘‘Algorithmic aspects of domination in graphs,’’ in Hand-
book of Combinatorial Optimization. Boston, MA, USA: Springer, 1998,
pp. 1811–1877.

[31] M. Juenger, E. Lobe, P. Mutzel, G. Reinelt, F. Rendl, G. Rinaldi, and
T. Stollenwerk, ‘‘Performance of a quantum annealer for ising ground state
computations on chimera graphs,’’ 2019, arXiv:1904.11965. Accessed:
Nov. 2, 2020. [Online]. Available: http://arxiv.org/abs/1904.11965

204376 VOLUME 8, 2020



I. Kawashima et al.: FPGA Implementation of Hardware-Oriented CBMs

[32] H. Gyoten, M. Hiromoto, and T. Sato, ‘‘Enhancing the solution quality of
hardware ising-model solver via parallel tempering,’’ in Proc. Int. Conf.
Computer-Aided Design, Nov. 2018, pp. 1–8.

[33] K. Yamamoto, M. Ikebe, T. Asai, M. Motomura, and
S. Takamaeda-Yamazaki, ‘‘FPGA-based annealing processor with
time-division multiplexing,’’ IEICE Trans. Inf. Syst., vol. 102, no. 12,
pp. 2295–2305, 2019.

ICHIRO KAWASHIMA (Student Member, IEEE)
received the B.Eng. and M.Eng. degrees from the
Kyushu Institute of Technology, in 2016 and 2018,
respectively, where he is currently pursuing the
Ph.D. degree with the Graduate School of Life
Science and Systems Engineering Department. He
is a Student Member of IEICE.

TAKASHI MORIE (Member, IEEE) received
the B.S. and M.S. degrees in physics from
Osaka University, Osaka, Japan, in 1979 and
1981, respectively, and the Dr.Eng. degree from
Hokkaido University, Sapporo, Japan, in 1996.
From 1981 to 1997, he was a Research Staff Mem-
ber with Nippon Telegraph and Telephone Cor-
poration (NTT). From 1997 to 2002, he was an
Associate Professor of the Department of Electri-
cal Engineering, Hiroshima University, Higashihi-

roshima, Japan. Since 2002, he has been a Professor of the Graduate School
of Life Science and Systems Engineering, Kyushu Institute of Technology,
Kitakyushu, Japan. His research interests include the VLSI implementation
of neural networks and new functional nanodevices.

HAKARU TAMUKOH (Member, IEEE) received
the B.Eng. degree from Miyazaki University,
Japan, in 2001, and the M.Eng. and Ph.D. degrees
from the Kyushu Institute of Technology, Japan,
in 2003 and 2006, respectively. FromApril 2006 to
September 2007, he was a Postdoctoral Research
Fellow of the 21st Century Center of Excellence
Program, Kyushu Institute of Technology. From
October 2007 to January 2013, he was an Assistant
Professor with the TokyoUniversity of Agriculture

and Technology. He is currently an Associate Professor with the Graduate
School of Life Science and Systems Engineering, Kyushu Institute of Tech-
nology. His research interests include hardware/software complex systems,
digital hardware design, neural networks, soft computing, and home service
robots. He is a member of IEICE, SOFT, JNNS, JSAI, and RSJ.

VOLUME 8, 2020 204377


