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ABSTRACT Advances in the Internet of Things (IoT) and aviation sector have resulted in the emergence
of smart airports. Services and systems powered by the IoT enable smart airports to have enhanced
robustness, efficiency and control, governed by real-time monitoring and analytics. Smart sensors control the
environmental conditions inside the airport, automate passenger-related actions and support airport security.
However, these augmentations and automation introduce security threats to network systems of smart
airports. Cyber-attackers demonstrated the susceptibility of IoT systems and networks toAdvanced Persistent
Threats (APT), due to hardware constraints, software flaws or IoT misconfigurations. With the increasing
complexity of attacks, it is imperative to safeguard IoT networks of smart airports and ensure reliability
of services, as cyber-attacks can have tremendous consequences such as disrupting networks, cancelling
travel, or stealing sensitive information. There is a need to adopt and develop new Artificial Intelligence
(AI)-enabled cyber-defence techniques for smart airports, which will address the challenges brought about
by the incorporation of IoT systems to the airport business processes, and the constantly evolving nature of
contemporary cyber-attacks. In this study, we present a holistic review of existing smart airport applications
and services enabled by IoT sensors and systems. Additionally, we investigate several types of cyber defence
tools including AI and data mining techniques, and analyse their strengths and weaknesses in the context of
smart airports. Furthermore, we provide a classification of smart airport sub-systems based on their purpose
and criticality and address cyber threats that can affect the security of smart airport’s networks.

INDEX TERMS Cyber security, artificial intelligence, smart airport, Industry 4.0, Internet of Things (IoT).

I. INTRODUCTION
Promising enhanced efficiency due to its modular and inter-
operable design, the Internet of Things (IoT) has shown
tremendous growth, with projections estimating 75 billion
devices by 2030 [1], establishing itself as a reliable set of
technologies with vast applications. IoT is an umbrella term
that covers diverse collections of interconnected devices that
have been outfitted with processors and networking hard-
ware, enabling the remote access of their services and data
[2]–[4]. The IoT owes its success to the constant miniatur-
isation of hardware and the rapid development of the Inter-
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net, which made possible the design and implementation of
small sensors and actuators that can be utilised remotely.
Typically, IoT systems consist of three parts: IoT devices,
network elements, and sensing data. Network elements con-
nect IoT devices via utilising diverse network protocols with
the cloud backend, where sensing data are gathered for anal-
ysis and from which users can issue commands to their
devices [5], [6]

By recognising the benefits in efficiency and productivity
that the IoT offers, several sectors have reinvented them-
selves. The incorporation of smart things in their business
plans has resulted in augmenting and developing services,
while the constant flow of information generated by the IoT is
harnessed through analytics, and utilised for improvements.
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Examples of such sectors include Industry 4.0, smart cities
and smart airports. Emerging in 2011 in Germany, Industry
4.0, also referred to as ‘‘the fourth industrial revolution’’,
was a radical step in the evolution of industry, that sought
to enhance its efficiency and productivity by harnessing
various new technologies, such as the IoT [7]. The adoption
of Industry 4.0 was made possible due to technologies such
as Industrial Internet of Things (IIoT) and Cyber-Physical
Systems (CPS) that imply one of the main characteristics
of Industry 4.0, which is the merging of the cyber and
physical worlds, enabling remote management of devices.
The benefits of Industry 4.0, have been realised due to the
interconnection of users and devices, the real-time process-
ing and centralized aggregation of data which powers the
optimisation of the production processes costs and improve
services [8]–[10]. Smart airports emerged as a result of
the mass adoption of IoT and Industry 4.0, coupled with
increases in the frequency of commercial flights around
the globe [11]. Contemporary airports have been outfitted
with smart ‘‘things’’ that improve the reliability of services,
minimise human errors in the maintenance of various critical
areas like the runways and assert a high quality of experience
for customers [12]–[14].

However, the incorporation of IoT devices in the indus-
trial sector, with examples such as airports and its critical
infrastructure, imposes cyber risks. Various research studies
[15]–[17] have demonstrated that various IoT devices are not
secured properly against cyber-attacks. This insecurity can
be attributed to a number of reasons, spanning from users
not changing the default credentials necessary to log-in to
the device and configure it, to software design flaws and
hardware restrictions [18], [19]. As a result, the reliability of
services powered by IoT devices in Smart Airports and criti-
cal infrastructure is at risk from cyber-attacks that can tamper
with data, causing sensors to report erroneous information
or make devices and systems entirely unavailable through
denial of service attacks [11], [20]. Besides the degradation to
services that can result from IoT devices being compromised,
another danger is that they can be used as an attack vector to
penetrate otherwise secured networks [21], [22]. This can be
a considerable cyber threat for smart airports, as cyber-attacks
can be launched and target critical systems, resulting in flight
disruptions, tampering with automatic checking devices and
baggage location systems or otherwise degrade the quality of
service and the experience of passengers [23].

The development and configuration of effective security
tools to detect attacks and mitigate them is crucial to protect
IoT networks of smart airports. Many cybersecurity solutions
have been deployed at airport networks that mainly focus
on expert systems, which harness rule-based engines [24].
These systems rely on expert knowledge to identify important
features and generate rules that are used to filter incoming
data. In a dynamic new world where new technologies pro-
duce portable devices that are seamlessly connected to well-
established, on-line systems, cybersecurity solutions need to

be able to be swiftly updated and re-calibrated, so that new
cyber threats can be effectively detected and mitigated.

In this paper, we discuss smart airports and their subsys-
tems. We focus on the cybersecurity aspect of smart airports,
identify cyber threats and further discuss privacy concerns
and the impact of their vulnerabilities. Themain contributions
of this paper are as follows:

• We analyse the various IoT applications found in con-
temporary smart airports, the methods utilised for their
development and their vulnerabilities.

• We propose a network architecture for contemporary
smart airports, focusing on the network architecture of
the installed IoT devices.

• We investigate security and privacy issues present in
contemporary smart airports, with a focus on their net-
works.

• We provide a study of security solutions for smart air-
ports, including vulnerability analysis and risk mitiga-
tion strategies.

The remainder of this paper is organised as follows.
Section II discusses the related studies and surveys related
to smart airports and cybersecuirty. Section III discusses the
evolution of airports to smart airports and the potential smart
IoT systems that enable it. This is followed by explaining
cyber Security techniques used in smart airport networks,
in Section IV. Section V illustrates risk profiling and its
implementation in smart airports. After that, AI-enabled
cyber defences in smart airports are described in Section VI.
In Section VII, the Cyber Security risks of the smart airport
are discussed, along with the challenges in ensuring its secu-
rity. Finally, concluding remarks are given in Section VIII.

II. RELATED WORK
Due to the financial importance of smart airports to their local
and global economies, and with the impact of cyber attacks
on the rise, as they not only affect the security of digital
systems, but also physical systems by compromising smart
things and networks, the subject of smart airport cybersecu-
rity has been the centre of attention for a number of studies
[23], [25]–[33]. Table 1 provides existing works on the study
of cybersecurity in a smart airport context, providing analysis
of their characteristics. The table includes a short description
of the focus of each study, along with their associated advan-
tages and limitations.

Chiappetta et al. [25] focused on the study of critical
infrastructure and provided a review of several critical cyber-
security vulnerabilities found to affect both maritime as-
well-as air travel, including smart airports. The majority of
the work focused on intelligent ports, where cyber-physical
systems are utilised to enhance existing processes such as
cargo loading and access control. Smart airports are viewed
from the perspective of SCADA systems, where three com-
ponents cooperate, remote telemetry units (sensors, actua-
tors), communication and relay information channels and a
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TABLE 1. Review of existing literature for smart airprot cybersecurity measures.

human interface machine that allows a user to monitor and
issue commands to the various scattered devices across a
deployment (smart airport). The various parts of an airport
are separated into three categories, the landside, airside and
terminal parts, with each section governed by different access

controls and security levels and thus requiring different secu-
rity mechanisms. A hybrid security system is introduced,
called the Hybrid Port system, that seamlessly combines
multiple physical and cyber sensors, with their data streams
combined in a manner that supports faster decision making,
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allowing for the detection of a wider range of security events.
This research briefly covers some security issues of airports,
mainly focusing on the policies that govern best practices in
the European continent, lacking a technical analysis of the
various subsystems commonly found in airports.

Suciu et al. [23] provided a brief study of the impact
of terrorist acts and cyber-attacks to the development
of state-of-the-art cybersecurity detection, protection and
countermeasures. In their work, the researchers initially
presented the terrorist attack of September 2011 in USA,
as a primary driving force behind multiple innovations in
the airport security and cybersecurity sectors. A review of
the existing literature in the developed airport cybersecu-
rity countermeasures revealed that several applications are
vulnerable to cyberattacks, and thus sensitive to exploita-
tion which in turn affects their reliability. Although various
research groups have been formed to mitigate the security
weaknesses of existing solutions, reports indicate that further
research is necessary to improve the protection of critical
infrastructure assets such as smart airports, a fact that is
supported by several researchers that have demonstrated
that by harnessing WiFi and malicious applications, critical
systems of airports can be compromised. Examples include
airport ventilation systems, security sensors and aircraft
navigation systems, potentially threatening human life [23],
[33], [34]. The researchers next provide realistic attack sce-
narios against simulated airport infrastructure, their impact
and mitigation strategies. Although this work presents a
realistic view of potential attack scenarios, which can be
used by security experts as a guide to design cybersecurity
countermeasures, it neglects a thorough listing of sensitive
sub-systems, potential attack vectors and their impact on
airport operations. Furthermore, the cyberattack diversity is
limited.

Willemsen et al. [27] provided a study of the security
of airports, with emphasis on combining physical security
and cybersecurity. The authors initially illustrate the impact
of cyber-related applications in a passenger’s journey, by
segmenting it into zones, each of which is characterised by
different security requirements and applications. They then
stress the importance of surveillance systems, in detecting
suspicious behaviour and preventing terrorist attacks, empha-
sising the importance of reliable communication between
various entities in high-risk locations, through which the
behaviour of passengers can be observed. According to the
researchers, an important airport sub-system that is often left
in a legacy state (no tech updates), is the baggage handling
system, which results in existing unpatched flaws rendering
it vulnerable to hackers, malware and other cyber-attacks,
further compromising the security of both the airport and the
aircraft that transports the screened luggage. Several threats
to the security of contemporary airports are identified, with
prime examples being the reliance on cloud-based services
provided through the Internet, lack of cybersecurity aware-
ness of airport employees and use of insecure third parties.
The research concludes by suggesting ways of securing

existing, possibly outdated systems in airports, by individ-
ually securing sub-systems and relying on advanced moni-
toring solutions, while stressing the value of collaboration
between airports and stakeholders.

Lykou et al. [26] researched the state of cybersecurity
readiness of airports and their resilience to cyberattacks
through best practices. Their work combines a literature
review on the cybersecurity of airports, with the results of
an online survey which was addressed to IT employees of
the most active American and European airports. Out of the
34 complete responses they received, 16% of airports were
determined to have minimum incorporation of IoT technol-
ogy, with 55% moderate and only 27% were classified as
‘‘Smart Airports’’. The survey revealed that, according to IT
personnel, the highest risk to the cybersecurity of airports
was lack of security awareness, with Internet connectivity
coming second. The researchers then grouped the existing
good practices into three categories according to area of
application and purpose, namely: technical, operational and
policies & standards. The research concluded that the pro-
cedures that airports follow, in order to secure their assets
from cyberattacks vary, depending on their adoption of new
technologies. Although this work provides a realistic view
of the cybersecurity state of several airports considered to
be ‘‘smart’’, in essence, the research reports and analyses
the responses that were provided by IT personnel of these
airports. Thus, the work does not investigate the existing IoT
and IT applications and their interactions present in smart
airports, along with their corresponding cybersecurity-related
weaknesses.

Lekota et al. [28] conducted research that focused on the
cyber-readiness of the Sub-Saharan aviation sector, seeking
to determine existing policies, best practiced and legacy sys-
tems that might threaten the stability of airports and aircraft
in the region. Initially, the researchers directly compare the
state of cybersecurity readiness in international airports and
Sub-Saharan Africa. The importance of Policies for the cre-
ation of shared incident management is emphasised, with
international efforts being isolated and driven by private
organisations, while progress is slow due to the severity of
cyberthreats being underestimated. In south Africa and the
Sub-Saharan region, cybersecurity for the aviation sector is
not prioritised, with response measures lacking. There is no
central authority for defining policies and cyber-readiness
plans, instead management is handled locally, with the pri-
mary focus still being on physical rather than cyber secu-
rity. The researchers then state the importance of developing
frameworks for improving the cybersecurity of airports and
other critical infrastructure, reviewing several cybersecurity
incident response and best practices standards, grouping their
processes into three classes, Planning, Communication and
Analysis. The study concludes by asserting the importance
of Computer System Incident Response Teams (CSIRT) in
a secure collaborative aviation infrastructure for the orches-
tration of wide-range incident response actions. Furthermore,
they assert the lack of CSIRT in South and Sub-Saharan
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Africa, the establishment of which would help to better shield
airport infrastructure in the region.

Lykou et al. [29] researched the adoption of cybersecurity
countermeasures and security policies in smart airports, along
with the magnitude of threats that they face, due to the
assimilation of IoT devices in their business processes. The
research was based on both existing literature, as-well-as a
survey which was addressed towards IT personnel of airports,
with the goal being to determine the readiness of airports
in the event of a cybersecurity incident, and the level of
adherence to best practices. It is determined, that although
measures are taken by airports to defend against or otherwise
mitigate isolated hacking incidents, a more collaborative
approach, with the various sub-systems and stakeholders that
coexist in an airport is lacking. By reviewing the literature,
the researchers determined that there is a lack of work,
regarding the cybersecurity of ground control and other smart
airport sub-systems, which needs to be addressed, as the
incorporation of smart things into sometimes outdated sys-
tems introduces new attack surfaces that can be exploited, and
lead to equipment damages, degradation of services and even
loss of life. The authors identified best practices for smart
airports and illustrate the importance of a well organised
response system with seven attack scenarios. They concluded
that the perceived security concern by the majority of the sur-
vey responders was building cybersecurity awareness, while
a framework of trust needs to be defined, that would allow
various stakeholders to collaborate and shield the aviation
industry from next-generation cyberattacks.

Aboti et al. [30] compiled a review of IoT applications
in the commercial aviation sector. The research initially
addresses the rapid development exhibited by the IoT, and the
observed trend of incorporating smart applications in diverse
settings, including the aviation sector. A core issue that is
identified by this work is the lack of security measures in
the IoT, with the most prominent security concerns including
data privacy, service availability, default device administra-
tion credentials and the role of AI in analysing IoT-generated
data. The benefits of incorporating smart devices in airports
is stressed by the presentation of a model describing the
interaction of passengers with the augmented smart facilities
of an airport, often through the use of smartphones, software
applications or wearables. Emphasis is given on smart wear-
able devices and the benefit they provide to both the passen-
gers as-well-as the airlines and their personnel. The benefits
such devices, however, are counterbalanced by the potential
security risks that they introduce. The researchers stress the
need for investigating new attack surfaces introduced by the
IoT, listing some attacks that can exploit the weaknesses of
such devices and cause harm to smart airports or aircraft.
However, the impact of these attacks on airport and aircraft
security is not discussed.

Suciu et al. [31] investigated the cybersecurity weak-
nesses of smart airports, and reviewed new attack vectors
that are made possible as a result of introducing smart
things to airports and aircraft. One trend that has gained

popularity in contemporary airports, and that the researchers
indicate requires further attention, is the Bring Your Own
Device (BYOD) practice, where passengers travel with their
personal smart devices, that they use to connect the Internet
either on the ground, or during flight. This can pose a threat
to mission-critical airport and aircraft systems, as attackers
can exploit the passengers’ devices, utilising them as a spring-
board to bypass security measures and compromise otherwise
unreachable internal networks and devices. The research then
demonstrates several use-cases, where an Airport Operations
Centre (AOC) is analysed in order to determine potential
weaknesses. The scenarios include a spear phishing campaign
that aims to stealthily compromise an airport’s IT infrastruc-
ture and exfiltrate data, and a data spoofing attack aiming to
spread misinformation about the details of flights, causing
disruptions to flights. An architecture for a security system
designed for smart airports is then proposed, consisting of
a classification-like decision engine, that determines if the
incoming data is normal or indicative of an attack. In the
event of an attack, a mitigation module is launched, taking
appropriate action depending on the attack and its severity.
Although the work presents realistic attack scenarios that can
be applied to a smart airport, describing the attack method-
ology, impact and potential mitigation tactics, the work is
presented from a high level of abstraction.

Rajapaksha et al. [32] provided a review of smart applica-
tions in relation to the passenger terminal processes among
other airport subsystems. Initially, the researchers provide a
basis for the concept of smart airports, and their principles.
A thorough analysis of existing IoT applications is provided,
with information about their purpose and their relative loca-
tion within the airport infrastructure. With efficiency as the
main target, smart applications prioritise the augmentation
of experience for both passengers and airport employees.
Further benefits of smart airports are identified, such as
faster response time to crises, more thorough screening pro-
cesses, data collection for analysis and service/operational
augmentations and resource utilisation optimisation. In a
section listing challenges associated with the development
and sustainability of smart airports, the authors provide a
brief overview of the impact that cybersecurity has on smart
airports. They specify that, due to the inability of a con-
siderable percentage of IoT applications found in a smart
airport to cooperate seamlessly, and due to various security
flaws that such devices have been shown to have, new attack
surfaces are introduced that threaten the stability of the smart
airport, aircraft and thus the security of passengers. A need
for cybersecurity incident detection and mitigation methods
is argued, while the importance of formally educating airport
personnel is stressed. The study lists a diverse set of IoT
applications commonly found in most contemporary smart
airports. However, the analysis of the cybersecurity mecha-
nisms of smart airports is limited.

Lehto et al. [33] provided a study of three fields, maritime,
aviation and automotive, from the perspective of cyberse-
curity. Initially, the severity of contemporary cyber-threats
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were discussed, with a focus on Advanced Persistent Threats
(APTs), that are often utilised by well organised hacker
groups or foreign governments, in order to target, manipulate
or outright disable critical infrastructure entities such as elec-
tric power stations, traffic control systems and airports. It is
evident that the sophistication of these types of attacks has
risen, in accordance with the increase of value that is placed
on electronic assets such as personal documents and control
systems in IoT-enabled sites. With regards to the aviation sec-
tor, the authors first stress its importance to the global econ-
omy, as its role is to enable commerce and travel. As such,
any disruptions that the aviation sector may face, could cause
tremendous financial impact, while unchecked security com-
promises can also lead to loss of life. As the sophistication
of both smart airports as-well-as aircraft is elevated, critical
security-related processes are increasingly managed by smart
devices (IoT devices), and increasingly more entities are con-
nected, exchanging sensitive information and thus providing
new attack vectors that can be exploited by remote attack-
ers. Contemporary airports tend to shift towards the smart
airport paradigm, with IoT devices deployed in various sub-
systems, providing augmentation, real-time data collection
and efficient management. Evolving standards in aviation
cybersecurity tend to promote a management system that
incorporates threat and risk management mechanisms that
can function on any level (airprot, aircraft, hanger, etc.).

The researchers reported that further work is necessary,
in order to develop solutions and well-thought standards that
promote cyber-resilience for commercial aviation on a global
scale. Although the presented work provides an informed
perspective on European standards for commercial aviation
cybersecurity, the work is presented from a high-level per-
spective, with only two real-world examples included to sup-
port the necessity of this work. Sub-systems, the associated
cyber-threats, and the impact of a potential compromise of
these systems is not discussed. Although there is signifi-
cant work on studying the levels of cyberattack readiness
in smart airports, there is a lack in assessing their technical
capabilities and security protocols for defending against both
well-established and novel security threats. The introduction
of IoT devices in airports and aircraft, although beneficial
towards enhancing the experience for passengers and aug-
menting efficiency for airport management, introduces new
attack surfaces that can be exploited by hackers, malware
and other threats that operate on the Internet, with conse-
quences varying depending on the severity of the intrusion,
the affected smart airport or aircraft sub-systems and the
resources of the attackers. In this work, we will analyse these
new attack surfaces and exploitation tactics, which have not
been analysed in the existing literature that primarily focused
on addressing commercial and governmental standards or
best practices.

III. EVOLUTION OF AIRPORTS TO SMART AIRPORTS
Airports play an important role in the global econ-
omy, by bringing together people from around the globe,

expanding business prospects, enabling international tourism
and generating revenue from commerce and taxes [35]. The
importance of airports has also been asserted by studies
that have indicated a link between airports and the growth
of regional economies [35], [36], which is understandable,
as ease of access is an important factor for both promot-
ing tourism and establishing collaboration between busi-
nesses situated in geographically remote locations while also
facilitating the swift transport of goods, thus accelerating
trade. On a more local perspective, airports also provide
employment opportunities, first during construction, and
then for various tasks, including management, maintenance
for both the airport itself as-well-as aircraft and for day-
to-day operations. As such, it is understandable that airports
would be gradually modernized, in order to keep up with
the constantly increasing flows of travelers and improve
the quality of service through the application of emerging
technologies.

A. EVOLUTION OF THE AIRPORT
Throughout history, airports have experienced a significant
change to their operations and the services they provide, mov-
ing from simply providing transportation, towards enhanc-
ing the quality of service and ensuring a comfortable and
entertaining experience for passengers. The evolution of air-
ports brought about by the advancements and assimilation
of technology, such as the IoT, can be viewed in three
consecutive stages, Airport 1.0, Airport 2.0 and Airport 3.0
[11], [37]. In the first stage, Airport 1.0, much attention is
given towards ensuring the safe operation of aircraft such
as takeoff, refuelling and landing, with standard services
provided to passengers, related to boarding and disembarking
the aircraft, and minimum amenities. The collaboration of
various services and stakeholders is not prominent in such
airports.

The second stage, the ‘‘agile airport’’ or Airport 2.0,
includes airports that are flexible and can adjust their work-
load according to demand. In these airports, collaboration
through seamless data sharing is prominent, with a sin-
gle network often employed to connect the various parts
of the airport under a single administration system, and
network-enabled systems such as IP-telephony and video
surveillance are present. Compared to Airport 1.0, Airport
2.0 allows for improved efficiency and greater customer expe-
rience. Finally, Airport 3.0 corresponds to what is known as
the ‘‘smart airport’’ and is the natural successor of Airport
2.0. Somewhat owing their existence to Industry 4.0, and
powered by the IoT, airports in this category employ a unified
network of entities, including the airport, aircraft and airlines,
with multiple sensors and actuators deployed throughout the
airport to power services that augment the experience of
passengers, while further enhancing the airport’s operations
through a seamless collaboration of multiple sub-systems and
real-time data sharing and analysis. Powerful technologies
including big data, biometric technology and artificial intelli-
gence are harnessed to power the contemporary smart airport.
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FIGURE 1. Abstract view of a typical IoT network.

However, as is the case with the IoT, smart airports do not
have a solid and commonly accepted definition, as there is a
general lack of common standards for their implementation
and development.

B. SMART AIRPORT DEFINITIONS
As is the case with the IoT, smart airports are an emerging
trend and as such, there exists no commonly accepted defi-
nition for them that encapsulates all their benefits, and char-
acteristics. In Table 2, we list existing definitions, including
their source, advantages and limitations, that can be found in
literature, most produced from a different perspective of the
smart airport such as the business side, the operational side
and the technical side.

Existing definitions have focused on describing a
domain-specific aspect of the smart airport, for example the
business [38], [39], operations [41] or passenger experience
side [39]–[41] of smart airports.We propose a comprehensive
definition to a smart airport, which is a smart airport is any
airport, which has been augmented by the incorporation of
cybersecurity-aware IoT devices, with an aim to improve
efficiency, productivity, security and service. There are no
commonly accepted standards for developing IoT devices [2],
[42], causing them to be heterogeneous both in the technolo-
gies/protocols they utilise, as-well-as in the implementation
methods that different vendors apply.

An abstract view of a typical IoT deployment that shows its
basic components grouped based on their function is shown
in Figure 1. In an IoT system, various sensors connect to
a local bridge/data-aggregation device, which connects the
various sensors/actuators that may utilise diverse wireless
network technologies, to the cloud back-end server. From
there, authorised users can manage their devices and issue
commands, through the use of specialised software such as
smartphone applications or a web interface. Managing the
smart devices that can be found in a smart airport or aircraft in

a unified manner, and ensuring their cybersecurity, is a chal-
lenge. In the next sub-section we will analyse the architecture
of a smart airport, the devices, technologies and protocols that
often constitute the deployed smart things.

C. PROPOSED SMART AIRPORT ARCHITECTURE
The incorporation of IoT devices has greatly altered the
dynamic of traditional airports, and has introduced new sub-
systems made up of sensors and actuators, that are often
interconnected, allowing the system and airport personnel
to swiftly respond to events, often in an automated manner.
A proposed architecture of a smart airport’s interior and
exterior are presented in Figures 2 and 3, highlighting smart
automations that are often combined, in order to provide com-
plex services. Figure 2 illustrates the area where IoT-powered
applications have been deployed, and their corresponding
purpose. Depending on the area of the airport where IoT
applications are deployed, and their core functionality, dif-
ferent network protocols and technologies are utilised. For
instance, the RFID technology is used in the luggage handling
process, where airport personnel either directly (manually),
or indirectly (robotic arms) sort, load or unload the correct
cargo to an aircraft.

Often sensors would use Bluetooth, ZigBee or other such
small to middle range wireless technology to communicate
with aggregator devices that gather incoming data from the
sensors/actuators and connect them to the backend, thus
assuming the role of a network bridge. In contemporary
airports and aircraft, passengers have the option to connect to
the Internet through complementary open WiFi. It is impor-
tant that any devices/services that the airport may host for
internal use, should not be connected to this open WiFi, and
instead use either Ethernet solutions or secondary, secured
WiFi networks. This method helps reduce the attack surface,
as passenger devices can be used as ‘‘trojan horses’’ and
malware can spread to the airport’s network. Some of the
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TABLE 2. Existing definitions of the smart airport.

existing smart airport systems that have been augmented by
the IoT are:
• Automated check-in [41], [43], [44]: Passengers can
avoid long queues and procure their boarding passes by
checking-in prior to their flights through their smart-
phones and completing the process through the Internet
or by accessing smart kiosks found throughout the air-
port. Associated with these methods of checking-in is
also another trend, automated bag drops where, by using
one of the kiosks, passengers print the necessary barcode
stickers, affix them to their own luggage and drop them
off at appointed areas to be further processed by the air-
port’s system. Utilising either kiosks or web-interfaces
implies an Internet connection, and thus several attacks

can be launched against these systems. Thus, malicious
actors can launch attacks, such as MiTM or otherwise
intercept network traffic between kiosks, mobile phones
and backend servers, targeting and stealing sensitive
information such as credit card or passport details, effec-
tively breaching a passengers’ privacy. Furthermore,
a legitimate passenger’s reservation can be invalidated,
and boarding passes falsified, thus enabling unautho-
rized individuals to board a flight instead of the pas-
senger. Other attacks can falsify or spoof information
that is attached to luggage tags, that are printed in
self-service kiosks, altering the identity of a legitimate
owner and their destination, and causing the luggage to
be lost.
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FIGURE 2. Proposed smart airport architecture.

FIGURE 3. Proposed smart airport architecture interior.

• eGates [45]–[48]: Prior to boarding an aircraft, passen-
gers have to undergo a border control process. Tradition-
ally, this process involved an office manually inspect-
ing a passenger’s passport and verifying their identity.

In contemporary smart airports, instead of relying on
such manual processes, an automated gate, called elec-
tronic Gate (eGate), is utilised. In Australia, eGates
are called SmartGates. eGates function by scanning the

209810 VOLUME 8, 2020



N. Koroniotis et al.: Holistic Review of Cybersecurity and Reliability Perspectives in Smart Airports

microprocessor found in the ePassports, through the use
of RF-enabled contactless smart card technology [49].
An eGate’s check relies primarily on acquiring biometric
data from a passenger, for example facial recognition
or a fingerprint check, and matching the obtained infor-
mation to the data stored in the ePassport. Additionally,
eGates maintain connections to biometric databases, for
further ID verification of passengers, and to border and
immigration servers, where the identity of passengers
is cross-referenced against blacklists, to flag dangerous
individuals. Although these systems were developed to
speed-up the border control process, potential attacks
can undermine their efficiency and credibility. Attackers
can attempt to compromise eGates, by either gaining
access to an airport’s intranet, or by physically tam-
pering with the gates’ hardware. Potential attacks may
result in stealing sensitive passenger information (held
in the ePassport) thus resulting in privacy violations.
Attackers can also launch a DoS by disabling the system
or a MiTM attack which can allow dangerous travelers
from entering a country or flagging innocent passengers
and preventing them from crossing the border.

• Luggage tracking and handling [41], [44], [48], [50],
[51]: One issue that contemporary airports have faced
as a result of increased passenger flows and human error
is luggage misplacement and mishandling. One solution
to this problem that has gained some traction in recent
years is the application of RFID technology for tagging
and tracking luggage. The RFID tag stores information
about the passenger and their luggage, along with a
unique ID created during check-in. During a flight, at the
source, middle and destination airports, the RFID tags
of luggage are scanned, with that information shared
between airports, allowing passengers to view their
luggage location through smartphone applications and
online platforms. This application of RFID tagging was
implemented, to reduce the number of lost luggage due
to mishandling, and to promote efficiency. Another IoT
application that is utilised in luggage handling is the
incorporation of robotic arms for loading and unload-
ing luggage. These automated systems are tasked with
sorting, conveying and loading the checked-in luggage,
prioritizing the efficient utilisation of space and handling
heavy loads which would otherwise need to be han-
dled manually, while security scanning is applied to the
luggage, to scan for harmful and prohibited materials.
The system is controlled by a centralized software-based
system, where collected information about the system
performance and the luggage can be accessed through a
web-based interface or a hand-heled device. However,
security incidents can affect or disrupt the workflow
of luggage handling systems. Attackers can target the
network and control system, resulting in a DoS attack by
shutting down the conveyor belts, or re-direct luggage to
incorrect destinations. Additionally, the screening sys-
tem can be targeted, either to cause an excessive false

alarm rate, which would result in delays, or forcing a
false negative rate, which would result in potentially
dangerous and prohibited items to be loaded onto an
aircraft.

• Physical airport security [52]–[54]: As part of the
physical security measures that are maintained in an
airport, certain areas are to be accessed by authorized
personnel only. To enforce these necessary restrictions,
airports, similarly to other organisations, utilise what are
known as electronic gates in conjunction with CCTV
and motion sensors. Installing CCTV, IP cameras, ther-
mal cameras and motion sensors allows for the mon-
itoring of the airport’s interior, with particular focus
placed on high-risk areas. Restriction of physical access
is enabled through the use of key-cards enabled by
RFID, Near Field Communication (NFC) technology,
smartphone apps, smart cards or the use of alphanu-
meric codes and electronic locks. These measures can
also be applied at the airport’s perimeter, to prevent
unauthorised access of the runway and aircraft hangers.
These IoT-based security applications that monitor the
perimeter of an airport and detect unauthorised entry to
high-risk areas, rely on networked systems that can be
accessed either from the airport’s intranet or from the
Internet. Thus, attackers can launch a number of diverse
attacks to affect the functionality of the security sys-
tems. Perimeter sensors can be compromised by gaining
access to the the airport’s intranet and either be deacti-
vated, thus allowing unauthorised access to the runway
and hangers, or cause excessive false alarms, which
can be used as a distraction in more elaborate physi-
cal intrusions. IP cameras and other network-enabled
IoT sensors can also be compromised, leading to DoS
attacks through deactivation, spoofing attacks, video
loop attacks and bypassing electronic locks.

• Janitorial optimisation [55]: Through the use of sen-
sors, that count the number of people that tread through
an area, and combining this information with flight
arrival schedules, smart airports are able to predict when
large flows of passengers will arrive and at which part
of the ariport they are more concentrated. One exam-
ple of such an application, is the use of sensors to
count the number of people that utilise the restrooms.
Such existing systems are pre-programmed to count
up to a particular threshold, after which the counter is
reset and janitorial staff that are stationed nearby are
automatically informed through IoT wearable devices
which restroom they need to be cleaned and sanitised.
This application further optimises the airport operations,
specifically those operations related to the janitorial
staff, as they are instantly informed about when and
where their services are required. Furthermore, addi-
tional IoT sensors and actuators have been outfitted
to airport restrooms, allowing for automatic flushing,
contactless faucets and hand driers and environmental
humidity and temperature control. Additionally, sensors
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can detect and inform janitorial staff of damages to
restroom equipment and the various smart sensors,
enabling swifter repairs and thus a better experience
for passengers. However, smart restroom systems can
be targeted by cyber-attackers. Attacks that target smart
restroom systems can result in false activations of
devices, causing toilets and faucets to unnecessarily
waste water, hand dryers to turn on and waist electricity
or even disable the functions of these devices, in a form
of DoS attack. Furthermore, attackers can tamper with
the sensors and counters that inform the janitorial staff
when their services are required, wasting their time and
thus affecting the optimisation of the system. In addition,
if these smart devices are not secured properly, and due
to the fact that passengers can spend time in the restroom
without arousing suspicion, they can compromise the
smart devices, and use them to spread malware infec-
tions to other IoT devices in smart airprot.

• Runway structural integrity monitoring [12], [14]:
It is imperative to ensure that the runway is free of
obstructions and to swiftly detect and repair any struc-
tural damages, as they may cause accidents during
landing and takeoff. Traditionally, airports ensured the
integrity of their runways by relying on visual inspec-
tions conducted by airport personnel. Such inspections
were susceptible to human error which prompted the
need for an automated, dynamic and reliable inspection
process. For this purpose, contemporary smart airports
have thus resorted to the use of automated equipment,
such as heat sensors embedded in the runway and
terrain-bound drones that utilise light-based detection
technology. Several network protocols can be in effect
in such applications, such as RFID chips for tarmac heat
measurements [12], or ZigBee, Bluetooth and LoRA for
the communication between the automated drones and a
command and control platform. Attacks that target these
structural integrity monitoring systems can have dire
consequences. Drones can be employed by attackers,
to come into close proximity to the monitoring rovers
and utilise wireless protocols to connect and thus com-
promise them. Disabling the devices will delay the rou-
tine inspections that are regularly scheduled, however,
more serious attacks can be launched, such as MiTM
and data spoofing. By spoofing the data that the rover
records, attackers can force the personnel responsible
for maintaining the structural integrity of the runway,
to perform unnecessary checks, thus wasting manpower.
One, more considerable effects of such an attack would
be to force the monitoring rover to falsely report that the
runway is intact, when in actuality, its structural integrity
is compromised or its covered with debris. Thus, com-
promising the runway structural integrity monitoring
rovers can lead to aircraft sustaining damage during
landing and takeoff, or even cause severe accidents.

• Smart lighting [56]: One other important application of
the IoT in smart cities, smart homes and smart airports

are the smart lighting systems. Through such systems,
the lights on entire sections of the airport are controlled
through a web-based platform or a smartphone applica-
tion, and their status monitored, instantly informing the
airport staff in the event of a malfunction. Furthermore,
IoT-based systems have been developed that connect
runway lighting to the control tower, alerting about hard-
ware failures. This application is crucial to maintaining
operational integrity, as runway lights are utilised during
landing by aircraft. However, it has been shown that
attacks can be launched that target smart lighting sys-
tems with a variety of consequences. First, due to hard-
ware constraints and weaknesses in security protocols,
it is possible to gain access to a smart lightbulb, force
it to download a malware and execute it, by utilising
mechanics meant for close-range firmware update [15].
This results in themalware utilising the smart lightbulb’s
network capabilities to spread to nearby lightbulbs and
other devices, either bricking the devices or bringing
them under an attacker’s control. Furthermore, attackers
can potentially force the devices to spend excessive
amounts of electric power, disable them or block any
signals that the lights transmit to the legitimate users
about their status, delaying repairs and affecting the
airport’s efficiency, productivity and QoS towards pas-
sengers. In addition, tampering with the runway lights is
a considerable threat to flight operations.

• Airport asset tracking [57]: Contemporary airports are
comprised of multiple sections, each designed to handle
a specific task. In these airport sections, often specialised
assets (tools) are employed, for example baggage trollies
are used for transporting passengers’ luggage from the
parking lot to the belt conveyors or the baggage drop-off
zone. Other examples include ground support equipment
that are utilised prior to takeoff or after an aircraft has
landed, assisting in loading and unloading luggage, refu-
eling the aircraft and assistingwith general maintenance.
Thus, the ability to swiftly locate these assets, organize
them and make them available for re-use is imperative
for the continued efficient operations of an airport.
As such, sensors based on RFID, Zigbee, Bluetooth and
other such lightweight network protocols are attached to
these assets, the signal of which is gathered by a sensor
bridge and transmitted to a server, through which admin-
istrative personnel are able to locate it (by overlapping
positional data with digital maps). Such sensors can be
attached assets used to service aircraft, in order to track
their location, the frequency with which they are utilised
and moved around the airport, with the intended out-
come being to maximise and optimize their utilization,
in order to shorten aircraft turnaround time. Attacking
these systems can cause a decline of service quality,
especially related to aircraft maintenance. By disabling
the IoT-based trackers or spoofing the position that they
are transmitting (within airport grounds), assets can
become entirely unavailable or require time and effort
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to be located. This can cause flights to be delayed and
a reduction to the efficiency and optimisation of asset
deployment.

• Air quality and environmental conditions tracking
[58], [59]: A priority for airports, is to ensure the safety
of both passengers and airport personnel. For the multi-
tude of threats that exist, a contemporary smart airport
needs to includemonitoring andmitigationmechanisms.
The degradation of environmental conditions is one such
threat that needs to be handled. To that effect, IoT-based
sensors have been developed, that monitor the air qual-
ity (radiation, toxicity,. . . ), detect fire and smoke and
measure. Aside from the security applications (to avoid
chemical attacks,. . . ), these sensors can be coupled with
air conditioners, to automatically adjust the temperature
in different areas of the airport and enhance passenger
experience. Furthermore, environmental sensors that are
deployed on the outside of an airport can be configured
to provide regular weather-condition reports, which is
an important source of information for control tow-
ers, as weather conditions may have serious impact to
flights. Network bridges can be used in such applications
to coordinate different sensor types that utilise diverse
network protocols. Attacks that target these systems can
have a number of consequences, ranging from disruption
of airport services to potential life-threatening scenarios.
By hacking into environmental condition monitoring
sensors, attackers can alter their recording and cause
them to incorrectly report hazardous conditions, which
in turn can result in halting all processes, and forcing
everyone to evacuate the airport as per security proto-
cols and regulations. This can cause unnecessary panic,
flights can be delayed and the reputation of the airport
can be affected. Alternatively, the attackers can cause
these sensors to display excessive false negative rates,
which can function as one aspect of a physical attack
intending to compromise the health of passengers and
airport personnel.

By design, IoT sensors and actuators are intended to be
distributed in remote areas of a building, complex or city,
and at the same time, maintain communication through a
sensor bridge or a router with their cloud backend infras-
tructure, through which users can monitor their status and
issue commands. The hardware constraints, and deployment
location affect the effectiveness of protocols and technologies
to be used in smart airports. Several network and communi-
cation protocols power the aforementioned IoT smart airport
applications.
• RFID [44], [60], [61]: The first instance of Radio
Frequency Identification (RFID) technology appeared
in 1945, and was intended as a spying tool developed
by the Soviet Union [62]. RFID is a technology that
has seen much use in short-range wireless communi-
cation systems. RFID application are typically com-
prised of three main components, a reader, a tag, and
an application component that manages the collected

data, often utilising a backend database. The reader
transmits electromagnetic signals of specific frequency
depending on the application of the system. The tags
can either be active, where a small battery is used
to power a constrained processing unit inside the tag
with some storage capacity, or passive, where the chip
utilises ambient electromagnetic energy to power itself
and transmit data back to the reader, with very con-
strained storage capacity. Communication frequencies
vary from 125 kHz to over 10 GHz, with several fre-
quency ranges defined within these limits [62], [63].
The distance range of RFID applications, depends on
the utilised frequency range, with Low Frequency (LF
RFID) operating in the frequency range 125-150 kHz
having an effective distance range of less than 10 cm
and the Ultra High Frequency (UHF RFID) operat-
ing in the range 433-928 MHz with an effective dis-
tance range of up to 20 m. RFID technology has been
linked with the IoT, as it provides a low-cost, power-
efficient, wireless method of communication, with exist-
ing applications primarily focusing in asset, animal and
people status tracking in industry, agriculture, health-
care and the aviation sectors, access control container
tracking in maritime sector, health monitoring, toll tags
and no-contact payments [62].Some systems have been
developed, where active RFID chips have been outfitted
with limited sensors that collect environmental data such
as humidity and temperature.
From a cybersecurity perspective, the RFID technology
introduces some risks to IoT applications. To begin
with, RFID chips have very constrained processing
and storage resources, and as such introducing secu-
rity mechanisms over RFID chips is difficult. Sev-
eral types of attacks can target RFID systems, seeking
to compromise the three principles of cybersecurity,
the Confidentiality, Integrity and Availability (CIA) of
the system [64]. Attacks targeting the Confidentiality
of RFID systems include cloning, where RFID data is
duplicated to a blank chip, eavesdropping, where an
attacker reads data from a tag due to a lack of encryption
in RFID tags. Attacks targeting the Integrity of RFID
systems, include replay attacks, where attackers dupli-
cates valid requests/responses from either the reader or
a tag allowing them to mimic either device, spoofing
attacks, where attackers attempt to interact with the
RFID system by using false/forged data. An attack
targeting the Availability of RFID systems, includes the
deactivation attack, where an attacker disables an RFID
tag by issuing specially crafted commands that force the
tag to delete its data. Thus, developing power-efficient
security mechanisms for RFID systems is crucial, how-
ever, existing proposed solutions are either expensive,
inapplicable due to resource requirements, or vulnerable
to attacks [65].

• Bluetooth [66], [67]: Invented in 1994 as a novel
wireless technology, Bluetooth was initially designed
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to replace RS-232 data cables. Bluetooth solutions
utilise Ultra High Frequency (UHF) radio waves and
are designed to function between 2.4 and 2.58 GHz,
exchanging data in the form of packets, with each packet
transmitted on one of the 79 channels that the proto-
col defines, each of which has a bandwidth of 1MHz
[68]. Bluetooth is a short-range wireless communica-
tion protocol that has been used in various pre-IoT
applications over the years (wireless keyboards, mouse,
headsets,. . . ). To enable various services to function
over Bluetooth, several specifications, called ‘‘profiles’’
have been developed [69]. Each profile defines several
parameters before any communication takes place, and
indicates what actions are supported for a particular task.
Over the years, different versions of Bluetooth emerged,
with versions differing in their topology, throughput,
power consumption and range. The first version of
Bluetooth (Bluetooth classic) relied on a topology where
multiple servant devices connected to a master device,
with the configuration often called piconet and follow-
ing a star topology. This topology, however had several
drawbacks, such as a lack of resilience, as by disabling
the master node, the entire network is disabled, limited
range and connectivity, as the devices are connected in
a 1-to-1 format (master,servant). With the emergence
of the IoT, a new version of this protocol was pro-
moted, the Bluetooth Low Energy (BLE). BLE, unlike
Bluetooth classic, utilises 40 channels with a bandwidth
of 2 MHz [68]. The original version of BLE supported
only a star topology, however later versions (4.1 and
above) introduced mechanics to simulate mesh topolo-
gies, which are commonly found in IoT applications,
and preferred since they allow for a device to commu-
nicate with multiple other local devices (one to many
communication) [70], [71]. Depending on the version
and location where it is found, Bluetooth’s effective
range varies. In indoor settings, its range is less than
10 m, while in open areas it has been reported that it
can reach 100 m, which is ideal for both close-range
IoT applicaitons for smart buildings and long-range
open-field solutions. Transmission speeds vary from
1 to 3 Mbps.
From a cybersecurity perspective, Bluetooth has faced
several security threats throughout its many versions.
The expected outcome of the security threats that target
Bluetooth varies, from information stealing to device
takeover, affecting either one of the three principles
of cybersecurity (CIA) [72]. An attacker targeting the
Confidentiality of Bluetooth systems can eavesdrop
during the paring process, and attempt to generate the
keys that two devices employ to encrypt their com-
munication and to authenticate one another, through
brute forcing. An attacker targeting both the Confiden-
tiality and Integrity of Bluetooth systems can employ
Man-in-the-Middle (MITM) attacks, where the attacker
intercepts the communication between two devices and

modifies it in order to appear as if it is coming from
either of the authenticated ends. Similar to a MITM
attack, a relay attack uses two impersonator devices
to two legitimate Bluetooth devices, retransmitting the
incoming traffic of one of the legitimate devices to the
other, effectively breaching confidentiality. Denial of
Service (DoS) attacks are one possibility for attack-
ers to affect the Availability of Bluetooth systems,
with some prominent examples being the Big NAK
(Negative Acknowledgement) attack where the attacker
initiates data exchange and then requests constant re-
transmissions, effectively locking the target in a constant
loop of re-transmissions, and the battery exhaustion
attack, where the attacker forces the target’s processor
to increase its power consumption and thus depletes
the target devices power capacity, an attack that is
very effective against IoT devices and their reduced
resources. The BLE version of Bluetooth, which is found
in IoT applications, has also displayed weaknesses to
such attacks [73].

• LoRAWAN [74]: The Long Range Wide Area Net-
work (LoRaWAN) protocol is a Network layer protocol,
which bases its functionality on spectrum modulation
techniques. LoRaWAN is a type of Low Power Wide
Area Network (LPWAN) technology, that achieves very
long range compared to other similar protocols (Blue-
tooth, RFID, ZigBee) with low transmission speeds.
LoRaWAN uses a star topology where multiple sensors
connect to a gateway that aggregates the collected data
and transmits it to a cloud backend [75]. To increase a
LoRaWAN-based system’s range and enhance its ver-
satility, a star-of-stars topology is often implemented,
multiple intermediary gateways receiving incoming data
from sensors, and bridging LoRaWAN-powered devices
to the cloud backend. The star-of-stars topology, along
with the low transmission speeds, and the use of base
stations to forward node data streams, promotes a longer
battery life in the IoT sensors that utilise this network
protocol, while maintaining a simple network architec-
ture. On the physical layer, LoRaWAN utilises the LoRa
protocol, maintained by Semtech and which functions
in sub-gigahertz frequency ranges (under 1GHz), and
enables effective, low-power transmissions with a range
that exceeds 10 Km. The maximum transmission band-
width of this protocol is 50kbps, however it depends on
LoRa’s spreading factor, with increases in the spread-
ing factor resulting in increases in effective range and
decreases in data rate speeds. The maximum supported
message payload size is 243 bytes [76].
LoRaWAN employs an end-to-end encryption, using
AES and a 128bit encryption key. Three classes are
defined for LoRaWAN, each differentiating the way
which nodes communicate with the base station, namely
Class A, B and C [77]. Class A communication is asyn-
chronous, with nodes transmitting data independently at
random times. Class B defines specific time periods of
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fixed length, where the cloud server transmits messages
to the nodes, enabling synchronization and allowing
the cloud server to wake the nodes at certain intervals.
In Class C, the nodes are in constant communication
with the gateway and thus the cloud server. Between
the three classes of LoRaWAN, Class C can only be
implemented by IoT devices that do not have limited
power capacities, with Class A being the best choice
for extending battery life, however, Class C enables
bidirectional communication while Class A does not.
LoRaWAN is employed in IoT applications that are
not designed for real-time sensing and do not require
constant communication between the nodes and the
cloud backend. Examples of such applications include
smart farming, livestock tracking, smart parking, envi-
ronmental and building sensors [78], [79].
From a cybersecurity perspective, LoRaWAN has some
cybersecurity weaknesses and threats that target it on
multiple levels [80]. By gaining physical access to
sensor nodes, attackers can extract cryptographic keys
used on the application and network layers, as these keys
are stored locally inside the nodes and are transferred
from the microcontroller unit to the LoRa radio module
in plaintext format. Attackers can launch a type of
denial-of-service attack, by utilising hardware that has
LoRa connection capabilities and transmitting a flood
of messages, effectively jamming LoRa communica-
tions in a chosen frequency. Another effective attacks
against LoRaWAN systems is the replay attack, where
an attacker monitors traffic in a particular channel and
frequency, collects data that devices use to authenticate
(part of a handshake process) and attempts to fool a
server or device by retransmitting the same data and
thus authenticate as a legitimate entity. An extension of
the jamming and replay attacks is the wormhole attack,
where an attacker utilises both a collector and a jammer
device to capture legitimate LoRaWAN traffic and jams
the traffic from reaching the gateway, thus being able
to retransmit the legitimate traffic at a later time as the
protocol does not specify time of transmission features.
Finally, this protocol is susceptible to power-draining
attacks, as forcing retransitions can lead to extra power
consumption [81].

• ZigBee [15], [82]: ZigBee is a protocol used for
short-range low-power IoT applications, often found in
smart home, healthcare and other systems that require
Machine to Machine (M2M) communication. It utilises
a frequency of 2.4 GHz, similar to Bluetooth, with an
effective transmission range between 10 and 100 meters
and often requiring line of sight. Unlike Bluetooth,
ZigBee supports star as-well-as tree and mesh net-
work topologies, the latter allowing all devices in a
local network to communicate with each other, and
thus removing the single point of failure that can be
targeted to disable the network. By using this mesh
topology, and intermediate nodes as relay points, ZigBee

networks can increase their effective range past the
100 m limit. To be ideal for IoT devices with lim-
ited power capacity, ZigBee utilises low data rates,
at 250 kbps, however a good portion of that transmission
capacity is used for other functionalities (mesh protocol,
transmission cryptographic security and acknowledge-
ments) [83], [84]. To secure communications and for
authentication purposes, ZigBee uses AES-128bit simi-
lar to LoRaWAN.
The devices, or nodes, that make up a ZigBee net-
work are categorized in three groups, ZigBee Network
Coordinator, ZigBee Router and ZigBee End device
[83], [85]. A ZigBee Network Coordinator (ZC), is an
essential entity which initiates the formation of a ZigBee
networks, forms the root of the network and also carries
out routing after the network has been established. ZCs
decide if a new ZigBee device is allowed to join or leave
an existing network securely, a process which relies on
the Trust Center that these devices maintain. After a
ZC has initiated the establishment of a network, ZigBee
Routers (ZRs) and Zigbee End devices (ZEDs) join the
network. Aside from the ZC, ZRs manage routing inside
a ZigBee network, thus they are functioning constantly
(increased power consumption), connecting the coordi-
nator to routers and routers to end devices. The ZEDs are
devices that have limited power capacity, and can only
transmit data to a ZR, relying on it and the ZC to rout
the transmitted traffic to the intended recipient inside
the network. Depending on the power supply of devices
and their purpose, they may assume any one of the three
aforementioned roles in the network.
From a cybersecurity perspective, ZigBee has been
shown to have some weaknesses that allow attackers to
exploit it [15], [86]–[88]. Several DoS attacks have been
reported, where attackers force ZEDs to be constantly
active and responding to maliciously-crafted messages,
thus depleting their limited power capacities. Another
attack, called ghost-in-the-ZigBee works in a similar
way, by forcing a node to perform security operations
as a result of receiving a forged message. Additional
attacks that have been seen to affect ZigBee networks,
include Sinkhole attacks, where an adversary attacks the
integrity of the routing process by drawing messages
away from their intended destination, and Wormhole
attacks, that rely on recording legitimate traffic on one
area of the network, and retransmitting it at another
area. Further attacks have been demonstrated against
particular versions of ZigBee, such as ZigBee Light
Link. One particular attack against smart lightbulbs
that function as part of a ZigBee network exploited the
Touchlink’s proximity check and the over the air (OTA)
feature of the device, to install custom firmware that
functioned as a worm, spreading to other lightbulbs in
close proximity and infecting entire buildings. Addition-
ally, as in LoRaWAN, signal jamming attacks can be
launched, effectively causing a DoS.
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• MQTT [89]–[91]: The Message Queuing Telemetry
Transport (MQTT) Protocol is a light-weight com-
munication protocol, often utilised in systems with
constrained resources. The protocol functions in a
publish-subscribe mode, where clients subscribe to a
topic housed in anMQTTbroker, and publish data which
can be read by all subscribed clients. The format in
which the data is publish depends on the sender, however
in IoT it tends to be a semi-structured format such as
XML or JSON.

• PROFINET [92]: The Process Field Net (PROFINET)
is a communication standard that works over Industrial
Ethernet and is utilised to connect controllers with
devices and collect data in an industrial environment.
It supports transmissions at regular intervals, in ?real-
time? and utilises data structures such asXML for device
communication and device monitoring. It leverages
three communication channels, a standard TCP/IP chan-
nel for configuration and not-regular asset accessing,
a Real Time channel for alarms and regular device com-
munication, and an Isochronous channel for high-speed
communication.

• XMPP [93]: The Extensible Messaging and Presence
Protocol (XMPP) is an open communication protocol
based on XML, that can be used in a publish-subscribe
mode, similar to MQTT. It has been utilised in a diverse
range of applications, including chatting, audio or video
calls and middleware communication. The protocol is
designed to be extensible, flexible and decentralised.

The suitability of one of these wireless protocols for an IoT
setting, depends mostly on the application in question. IoT
systems that do not require regular transmissions from their
sensors/actuators and prioritise battery life while requiring a
large effective range can employ LoRaWAN. With regards to
robustness, ZigBee would be the better choice for a wireless
protocol in an IoT setting, due to its support of multiple
topologies, and the versatility of its nodes. The RFID protocol
is mostly suited to asset tracking and applications that require
close-range contact. The Bluetooth protocol can be employed
in small to mid-range applications, like building Personal
Area Networks (PANs) or small-scale sensor networks. Gen-
erally, due to the field of application being the IoT, with such
devices often prioritising extended battery life rather than
processing power and memory stores, the wireless network
protocols that enable it on a local level will not incorpo-
rate powerful cryptographic algorithms and excessive secu-
rity protocols, as by including such mechanisms, a device’s
battery life would be diminished. Table 3 depicts several
smart airport IoT applications, and the network protocols they
utilise for device-to-bridge communication.

D. SECURITY AND SAFETY HEALTH SYSTEMS IN
SMART AIRPORTS
One of the key aspects of contemporary airports, is to func-
tion as a hub for recreational, touristic and business travel

FIGURE 4. Thermal cameras used for human temperature screenings.

while also connecting remote geographic areas for com-
merce. As such, airports are a place of high mobility, with
passengers from all around the globe arriving and interacting
with local airport personnel, often on a physical level, for
example during the security screening process, which can
facilitate the transmission of viruses and affect public health.
The COVID-19 pandemic has made apparent the need to
introduce biometric sensors at specific areas where crowd
interaction, and thus the probability of transmission, is high
such as airports. As such, contemporary smart airports have
been encouraged to consider the development of Security
and Safety Health Systems, in order to detect and stop the
transmission of the virus, both globally by passengers, as-
well-as locally by the airport personnel.

Such screening Biometric IoT sensors have already been
implemented in several airports around the world, and unlike
previous biometric systems that were used primarily for the
secure validation of passengers’ credentials, they are now
focusing on recording detecting data features that can be
used to distinguish between healthy and infected passengers.
Thermal cameras have been the primary type of biometric
IoT sensor that has been chosen by many airports for such
detection scenarios [100], [101], as they enable the rapid
detection of passengers with high fever without slowing down
the screening process, avoiding physical contact which can
further spread viruses or requiring more intrusive measures
that the passengers may object to. An example of such a
camera with thermal capabilities can be seen in Figure 4.

Cybersecurity weaknesses could expose these cameras to
attacks by hackers, causing increased false positive rates, that
can affect airport processes and cause delays, or in a more
severe scenario, cause false negative rates to increase, effec-
tively allowing detectable cases of the virus to spread, causing
a bio-cyber-attack. As such, the cybersecurity of thermal
cameras needs to be examined, and potential flaws detected,
in order to protect these systems from cyberattackers.
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TABLE 3. Common smart airport applications and corresponding protocols.

TABLE 4. Classes of smart airport devices and services.

E. A CATEGORISATION OF AIRPORT SUBSYSTEMS
From a technological perspective, a smart airport is a network
of interconnected smart devices, each specialised in perform-
ing a specific task, while the data collected by sensors that
are deployed in the airport are often used to power secondary
services that enhance the experience of travelers. These smart
devices that lie at the core of a smart airport can be logically
categorized based on their deployment task and purpose into
the following distinct classes: 1) Operational-maintenance,
2) Operational-efficiency, 3) Operational-management, and
4) Services-augmentation. In Table 4, the four classes
and examples of devices that belong to these classes
are given.

Operational-maintenance refers to devices that are tasked
with supporting the maintenance procedures of the airport.
Such devices can monitor the state of various areas of the
airport, such as the runway, and raise an alarm if some sort of
malfunction is detected. An example of such a device would
be a runway health scanner, a device which automates the
detection of damages or foreign objects in a runway instead of
relying on manual inspection [12], [14] thus enhancing reli-
ability while minimizing human error. Other devices that are
classified in this category, include smart sensors like smoke

and fire detectors [106], which are network enabled sensors
that are connected to a centralized platform where alarms
can be viewed and dangerous incidents better managed. More
related to security, IoT-based systems have been proposed for
securing the perimeter of an airport, detecting and preventing
unauthorized entry [107].

The Operational-efficiency group includes devices and
subsystems that promote efficiency in the day-to-day pro-
cesses of the airport. For example, self-check-in systems
[108] are one such subsystem that has become an integral
part of most contemporary airports. By accessing dedicated
kiosks or by using their smart phones, passengers are able to
check-in, drop off their luggage and receive their boarding
passes easier and quicker than waiting in line for manual
check-in, saving time in the process. The use of biometrics
in eGates [45], [46] is another subsystem that promotes effi-
ciency. It eliminates the need for airport personnel to manu-
ally check a passengers identity, thus automating the passport
control process by utilising the passenger’s biometric data
that is kept in the passport’s chip, reducing the processing
time.

Operational-management devices are tasked with support-
ing management of areas and other secondary services in the
airport. By using these devices, it becomes possible to track
the location and status of resources of an airport, thus limit-
ing unnecessary replacement expenses and maximizing their
usability. For example, RFID Transmitters for the detection
of luggage trolleys [109] in parking lots or inside the airport
is such an application, as often travelers will not return the
trolleys they used to its proper location. Further applications
include, the video surveillance systems [110] and electron-
ically controlled doors [111] that monitor the passengers in
order to swiftly detect suspicious behavior and controlling
access to certain restricted and possibly high-risk areas of the
airport.

Services-augmentation refers to smart things and applica-
tions that enhance the traveler’s experience in the airport or
during a flight. An example of such a subsystem is indoor
airport navigation [112], [113] through the use of smartphone
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applications and technologies like WiFi, Bluetooth and Zig-
Bee, which enables passengers to easily navigate the inte-
rior of an airport, often incorporating translation capabilities
to the applications to help passengers that may not speak
the local language. Another application is the smart airport
parking lot car tracking service [13], which enables users to
remotely view the position of their car inside the parking lot
of an airport.

IV. CYBER SECURITY MECHANISMS EMPLOYED IN
SMART AIRPORT NETWORKS
In a smart airport, multiple devices are interconnected, form-
ing various and often technologically diverse networks that
coexist throughout multiple buildings, in order to build the
services that qualify an airport as being ‘‘Smart’’. Addition-
ally, such airports maintain at least one Internet connection
for various operational and scheduling purposes. However,
these networks can be targeted by cyber-attackers, who wish
to identify aweakness, exploit, gain access to an airports inner
systems and cause damage. Such security weaknesses can
manifest either due to hardware misconfiguration, software
bugs or inherent network protocol weaknesses. It is important
for smart airport network managers to deploy tools that can
detect such weaknesses, active campaign attacks or success-
ful intrusions, in order to detect them swiftly and effectively
combat or mitigate them, ensuring the integrity of the services
provided by the airport and the safety of both passengers and
personnel.

Firewalls [114]: are typically placed on the edge of a
network and monitor inbound and outbound traffic for known
patterns of attack, blocking traffic from hosts that exhibit
attack-like patterns. A firewall utilises pre-defined rules that
describe attack patterns, blocking any host that displays such
behaviour, and allowing all other traffic.

Intrusion management systems: are deployed in a network
to detect, assess, respond, and prevent intrusions. The most
common intrusion-related systems are as follows:

• Intrusion Detection System (IDS) [115], [116]: are
tasked with detecting the unauthorised access of assets
in a protected network. It can be either a dedicated
hardware device, or a software, and depending on
the locations where it is deployed, it can either be
a Network-based IDS (NIDS) or a Host-based IDS
(HIDS). The two primary types of IDS depending on the
detection method are Signature-based IDS, where an up-
to-date database of attack signatures is maintained and
utilised for attack detection, and Anomaly-based, where
the normal activity of legitimate devices is learned and
any deviation is detected as an attack.

• Intrusion Intention (IIS) System and Intrusion Pre-
diction System (IPS) [115], [117], [118]: are supporting
systems to IDSs and to security experts. The task of an
Intrusion Intention System is to identify the goal of an
attack by assessing the value of the protected networked
assets, while an Intrusion Prediction System assesses

historical events (attacks) that have targeted the network,
in an attempt to estimate the predict future attacks.

• Intrusion Prevention System (IPS) and Intrusion
Response System (IRS) [115], [119], [120]: function
as secondary measures that are invoked, after an IDS
has detected an attack. The task of an Intrusion Pre-
vention System is to proactively monitor a network and
attempt to counter attacks before they occur, based on
pre-defined profiles, by dropping malicious traffic and
blocking the attacker’s source IP. An Intrusion Response
System on the other hand, is a reactive measure that is
invoked after an attack (intrusion) has been detected,
employing either an expert-system rule-based approach
or an adaptive feed-back approach to guide the system’s
mitigating actions.

Risk assessment [121]: are generally employed proactively
by organisations, to assess their assets, identify any associated
risks, determine the possibility of and circumstances under
which an asset may be affected by a risk and the impact of
such an event to the organisation. Cybersecurity risk assess-
ment tools are applied to digital devices (hardware, software,
PCs, laptops) and data, to detect the existence, likelihood,
severity, and impact of risks to organisations, their opera-
tions, assets and to individuals. These tools often provide
a high-level view of the cybersecurity state of an organi-
sation, in the form of a report, where assets are identified,
a scaled value indicates the severity of the risk and a short
description addresses the ways this risk may be exploited.
The functionality of existing cybersecurity risk assessment
tools varies, depending on the sophistication of the tool.
Some tools simply assist users in performing a risk assess-
ment of an organisation, guiding them through the following
steps: identify importance of assets, identify threats, identify
asset vulnerabilities and impact, analyse existing preventive
controls, assess the probability of an incident to occur and
determine the threat level of the risk. Other automated tools
monitor networks, computers, servers and other connected
devices to detect known vulnerabilities. Yet other automated
tools, known as breach and attack simulation software, are
employed to continuously attack a company’s infrastruc-
ture, attempting to breach its security using well-established
methods and provide insights about potential vulnerabilities,
the associated attack surfaces and the resulting risks.

Threat intelligence [122]: also known as cyber-threat intel-
ligence, is data collected through tools that organisations
employ to identify past, present, and future threats that target
important assets that the organisation owns and utilises.
The main purpose of cyber-threat intelligence is to provide
organisations with insights into cyber threats and how they
may be exploited, as a way of enhancing cyber-defences and
designing prevention and mitigation strategies. These tools
remain up to date, by acquiring unformatted data related to
security breaches, zero-day threats and other exploits from
a variety of sources. The data is then processed and anal-
ysed, with the results then either forwarded to other security
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solutions such as IPS or parsed into reports that can be used by
experts to better understand and patch the weaknesses of an
organisations systems. Threat intelligence seeks to determine
certain factors about a potential security incident, such as the
identity of the attacker(s), their technical capabilities, their
target and the potential attack vectors that they may apply.
Threat intelligence is comprised of two main components,
threat intelligence feeds and threat intelligence platforms
(TIP). Threat intelligence feeds are real-time flows of data
that represent information about ongoing cyber threats, such
as malware hashes, known compromised IP addresses and
potentially compromised domains. Threat intelligence plat-
forms are connected to threat intelligence feeds, enabling
organisations to collect data, transform it from its original for-
mat, correlate it and gain insights on prolonged cyber-attack
campaigns, integrate it to the organisations existing security
tools and further analyse it, in the process converting data into
information and knowledge through contextualisation. Threat
intelligence is designed to be a cyclical repeating process,
as threats are constantly appearing and evolving.

Vulnerability analysis [123]: is an important step in
risk assessment and a standalone continuous process that
helps protect systems from potential future intrusions and
exploitations. Vulnerability analysis tools critically and sys-
tematically assess an organisation’s Information Technology
infrastructure in order to detect known weaknesses in soft-
ware, misconfigurations in hardware and generally ascertain
to what extent these vulnerabilities can be exploited, while
assigning a severity level to it. Vulnerability analysis tools
can be connected to Threat Intelligence platforms, to receive
updated information about existing security threats, improv-
ing their effectiveness. This process produces a number of
results. To begin with, it detects vulnerabilities in the code
of software, configuration of servers and devices or network
protocols. Second, it provides the source of the vulnerability,
its potential impact and suggested remediation methods.
Furthermore, the detected vulnerabilities are sorted based on
their importance, so that they are addressed based on their
severity. Vulnerability analysis can be performed through the
use of automated tools, that usually rely on well-maintained
databases of known vulnerabilities and signature-based
scanning.

Contemporary cyber-threats that exist, utilise and prop-
agate through the Internet, render the adoption of one or
more of the aforementioned security measures a necessity for
ensuring the security of an airport’s network. Smart airports
that have incorporated IoT devices in their networks face an
even greater threat, as new attack surfaces are introduced due
to the vulnerability that the IoT has exhibited over the years.
In a survey conducted by Lykou et al. [29] during 2018, and
addressed to the IT personnel of airports around the world,
it was discovered that the prompt incorporation of IoT devices
in the smart airports networks does not coincide with a dili-
gent consideration of the security flaws and weaknesses that
these devices introduce. It was shown that the most popular

security measure that was applied was a firewall, however
what mechanisms these firewalls utilised was not discussed.

The researchers attribute the inconsistency in the level
of sophistication and the security measures chosen by con-
temporary smart airports to the lack of commonly accepted
security policies and standards. Additionally, a study by
Cui et al. [124] published in 2018 showed that existing
IDS/IPS solutions for smart systems have several challenges.
To begin with, existing IPS systems exhibited large false
negative rates, thus were ineffective at predicting, detecting
or deterring attacks. Furthermore, the researchers stressed the
need for light-weight IDS/IPS systems, as most IoT devices
that constitute these smart systems, are power-constrained
and incompatible with existing IDS/IPS that are designed
to work continuously and thus require more power to
operate.

V. RISK PROFILING
The term ‘‘risk profile’’ has been broadly used in
multi-disciplinary fields, such as finance, software engi-
neering, supply chain, risk management, cybersecurity and
the IoT. Every domain has its own definition, reflecting
their unique risks and the nature of the environment. For
example, in finance and risk management domains, a risk
profile is defined as an assisting tool employed by advisers
to optimise decision making related to investment risks,
on behalf of their clients, basing the decision on three
parameters, the risk capacity, the tolerance to risk and
meeting the desired investment objectives [125]. Before a
clear definition of a ‘‘risk profile’’ for smart IoT envi-
ronments, focusing specifically on smart airports, can be
given, it is first essential to define what the meaning of
‘‘risk’’ and then proceed to describing the process of risk
management.

From a security perspective, risk is defined as the likeli-
hood of loss, damage, or disruption of assets and the services
that they provide, such as the infrastructure of smart airports
and its IoT networks, which is brought about by cyber threats
that exploiting assets’ vulnerabilities [126]. The difficulty
of defining the term ‘‘risk’’ in the context of cyber security
stems from the uncertainty related to quantifying the impact
of attack surfaces and their associated attack vectors. In order
to provide a satisfactory solution to this uncertainty, it is
imperative to first define the term ‘‘risk management’’ and
then link it to existing security standards, such as the ISO
31000 standard [127] and the 2019 Australian Government
Information Security Manual (ACSC) [128]. A definition
from the ISO standard [127] identifies risk management as
the process of identifying, assessing, mitigating threats and
monitoring, which take the form of cyber threats in the
context of cybersecurity. In the ACSC, due to the increased
frequency of cyber-attacks and their rising impact on business
operations, it is recommended that organisations apply a risk
management framework, to protect their systems, informa-
tion and other assets from cyber threats.
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There are various theoretical risk management frame-
works and strategies that have been proposed in the literature
[128]–[130]. By reviewing the literature, it is observed that
several steps/stages are shared between the existing risk man-
agement frameworks or standards, which are described as
follows:
• Understand the environment and its context (e.g. air-
ports and their assets)- it is significant to scope the
environment that we interact with to define its risks. For
instance, smart airports contain multi-domain networks
and IoT devices, such as explosive sensors, CCTV cam-
eras, smart monitors and weather sensors, controlled by
different operators.

• Identify risk- it is a procedure of discovering vulnera-
bilities, i.e., weaknesses of the network and IoT devices.
This identification could be the first stage of implement-
ing ‘‘risk profiling’’, which depends on collecting data,
aggregating, and labelling them for further analysis.
Artificial Intelligence algorithms could be the technol-
ogy that allows the automation of risk identification in
the era of IoT and its big data.

• Analyse risk- once attack surfaces and their vectors
have been defined using analytics tools, it is impor-
tant to assess the possibility of occurrence of those
attack vectors and examine their consequences on the
environment.

• Evaluate risk- after the cyber threats have been anal-
ysed, they are further assessed to examine their impact
and likelihood of occurrence. Then, a decision-making
process should be considered to take appropriate actions
against those threats based on their effects on the envi-
ronment assets.

• Mitigate risk - after assessing the cyber threats and their
impacts, reactive and proactive security solutions should
be applied such as intrusion detection and prevention
systems along with patching and management tools.

• Monitor risk- is a continual and cyclic process that
should be designed before identifying risk and after
mitigating it. Before risk identification, there should be
security solutions configured in the environment such
as privacy-preserving techniques for protecting sensi-
tive information from disclosure, blockchain technology
for providing trust between communication elements
in an environment. After mitigating risks, monitoring
mechanics track existing and novel attack surfaces and
vectors.

A. RISK PROFILING FOR SMART AIRPORTS
Airports are a vital aspect of society, which need to ensure
the security and reliability of their operations. Contemporary
airports, aside from enabling transportation, are central to
trade and commerce. Therefore, the maintenance of air-
port operations within complex, dynamic and interconnected
environments, which face numerous threats is a considerable
challenge [7], [131]. In this case airport security and business

continuity become significant challenge for the airport
operation. Therefore, reduction of threats and risk manage-
ment are not only critical for airports at the local level, but
also for ensuring border protection and the national security
for any country.

Identifying airport general risk management procedures
are very important for risk and security mitigation as shown
in Figure 5. The exogenous and endogenous factors influence
the airport component, airport risk management strategy,
risk management framework and the airport decision-making
under risk. The results model provides airport compo-
nents which include IoT-based control, integration and
IoT-based communication that are influenced by exogenous
and endogenous factors. In addition, the framework provides
the airport’s risk management strategy that is influenced by
exogenous, endogenous factors and by airport components.
Furthermore, the framework also provides the airport risk
management framework which consists of risk identification,
analysis, evaluation and monitoring.

An example of a generic risk management framework can
be seen in Figure 6, while the framework depicted in Figure 5
provides the airport decision-making under risk polices that
include risk identification and measurement methods. The
International Civil Aviation Organization (ICAO) is respon-
sible of creating safety and security polices and standards
for the aviation industry throughout the world [8], [131],
[132]. ICAO has response rules and polices for real air-
port environments to measure endogenous and exogenous
factors. This could make a standard airport risk manage-
ment strategy and a risk management framework. This
framework describes the relationship between different ele-
ments inside the airport starting from different internal and
external factors affect the operation of the airport, differ-
ent airport components such as IoT communications and
IoT control. Furthermore, it is in compliance with both
ACSC and ICAO policies for airport policies and security
procedures [128], [131], [132].

The security risk profile could be formulated as a com-
bination of risk analysis and evaluation methods that inte-
grate assets, threats and vulnerabilities and can be used
for security factors analysis in endogenous factors. Today,
there are many frameworks that can be used to analyse and
manage risks in IoT environments of smart airport, such as
the Factor Analysis of Information Risk (FAIR) framework
[133], and Enterprise Architecture Management-Information
System Security Risk Management (EAM-ISSRM) [130].
The FAIR is a stochastic approach that measures each factor
against assets and threats, while the EAM-ISSRM is a con-
ceptual model to provide the integration between different
OT and IT services. Most of the existing risk management
frameworks would be utilised to secure IoT architectures and
assets of smart airports against cyber threats. In the next
section, we will address the security risks that smart airport
face, focusing on the network-side of their infrastructure, and
then discuss the associated challenges.
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FIGURE 5. A risk profile decision making framework for smart airports.

VI. AI-BASED CYBER-DEFENCES IN SMART AIRPORTS
Prior to the development and augmentation of the machine
learning field, cybersecurity scanning and audits were (and
in some situations, still are) a manual process, relying on
experts who reviewed every aspect of a system (includ-
ing source code, logs, network ports), in order to identify
security weaknesses and provide mitigations and solutions
[134]–[136]. To eliminate the possibility of human error,
automated security tools were developed, with the majority
relying on expert-derived rules and signature-based scan-
ning which use malware hashes. In recent works however,
researchers have emphasised the value of machine learn-
ing (ML) and artificial intelligence (AI) in the development
of cybersecurity tools [137]–[139]. In this section, we will
discuss how AI can be employed in a cybersecurity setting,
existing applications powered by AI and its strengths com-
pared to signature and rule-based tools.

A. AI-BASED CYBER SECURITY APPLICATIONS
Essentially, AI is the discipline that studies algorithms
that represent logic and solve problems. The main moti-
vation behind AI development is to simulate human-like
intelligence, through the use of mathematics, statistics and
logic. AI spans multiple subdisciplines, including ML and
rule-based expert systems, with each subdiscipline provid-
ing a different methodology to simulate intelligent behavior.
An example of an AI system that preceded ML, would be a
collection of if-then-else statements which are often crafted
by an expert and are called expert systems (or rules engines)
[140]. Expert rule-based systems are static representations of
knowledge, that rely on experts (in the field where the system
will be applied) to hard-code rules for the accomplishment of
some task such as the detection of malicious network traffic
or the processing of taxes.

A subset of AI, ML is a collection of models that are capa-
ble of ‘‘learning’’ dynamically from data and altering their
inner state (values) that represents knowledge, in order to
adapt to new data-based stimuli [140].ML can be trainedwith
supervision, where data has been curated and labeled, without
supervision, where a ML model detects relationships and
builds groups based on similarity, semi-supervised where a
small number of labeled instances are combined with a larger
number of unlabeled data or through reinforcement learning

FIGURE 6. An example of a generic risk management framework.

where the input data is not labeled and the learning process is
formed as a game, where the model is rewarded or penalised
based on its output [141], [142]. Furthermore, ML algo-
rithms are separated, based on their data requirements,
their output and use-cases into classification, clustering and
regression [140], [143].

Classification algorithms rely on labeled data (where the
output is known), to train models that assimilate relationships
between input and output data, with the output being one of
multiple possible and pre-determined classes. Classification
algorithms include probabilistic classifiers such as Naïve
Bayes that relies on the Bayes theorem, tree-based classifi-
cation such as Decision Trees that relies on some measure
of uncertainty (such as entropy) to decide the split condition
in each branch and Artificial Neural Networks, that rely on
multiple units, called neurons, that are organised in groups
called layers, with neurons from one layer connecting to
neurons of the next layer and the connections having weights
the values of which, along with a bias value for each neuron,
are assigned and corrected during training.

Clustering algorithms receive unlabeled data as input, and
attempt to identify previously unknown classes, based on
some measure of distance (such as Euclidean, Manhattan,
Hamming) [144]. Essentially, a clustering algorithm seeks
to detect groupings of similar data, where a datapoint in
one cluster is more similar to other data points of the same
cluster and less similar to those of other clusters. Clustering
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algorithms include Centroid models such as K-means that
uses imaginary centroids to calculate distance with other
datapoints and form clusters and Hierarchical models which
seek to build a hierarchy of clusters by either combining
observations into increasingly larger groups (Agglomerative)
or divide the whole data into increasingly smaller groups
(Divisive). Regression models are similar to classification
models, in that they predict a value based on input, how-
ever, unlike regular classification, where the output is one
of multiple (two or more) pre-defined classes, regression is
tasked with predicting a continuous value [145]. Regression
algorithms include Linear regression, Logistic regression,
LASSO and Support Vector Machines.

Deep Learning (DL) is a subcategory of AI and ML,
and more specifically, a particular subset of ANNs. The
original inspiration for neural networks (NN) comes from
the human brain, and specifically, the neuron cells that are
comprised of multiple inbound connections called synapses
(found on dendrites) and a single outbound connection called
axon [146]. Multiple neurons connect to each other, axons to
synapses, thus forming a complex networkwhere information
is represented, stored and processed by neurons ‘‘firing’’ an
electric current (value equivalent of 1) or remaining dormant
(value equivalent of 0). What differentiates simple NNs from
DL, is the architecture. Specifically, NNs that have a ‘‘deep’’
architecture, that is, that are comprised of numerous neurons
and multiple layers can be considered to fall under the DL
category, although there exists no strict rule for determining
how many layers or neurons a NN needs, in order to be
considered ‘‘deep’’ [147].

Each neuron in a deep NN (DNN), receives some input
from previous layers (or the original input), applies a lin-
ear transformation, multiplying the input with weights and
adding a bias factor, parses this linear transformation through
an activation function and delivers this last output to the
next layer. DNNs are powerful models that usually require
huge datasets (Big Data) to improve the performance of the
model, and a lot of memory and processing resources (usually
depending on the number of connections between neurons)
[148], [149]. Popular DNN models include Recurrent Neu-
ral Networks (RNN) and Long-Short Term Memory RNN
(LSTM/RNN) that utilise memory of previous data input
points to make future predictions, Deep Belief Networks
(DBN), Convolutional Neural Networks that are primarily
employed for image recognition and classification and Deep
Multi-layered Perceptrons (MLP). The relationship of AI,
ML and DL can be seen in Figure 7.

B. CYBER-DEFENCE TOOLS BASED ON AI TECHNIQUES
The automated mechanics that AI, ML and DL offer, have
been applied in a number of fields to great success, one
of which is cybersecurity and, in this case, cyber-defences.
In general, AI and its subcategories can be employed in
cyber-defences, as an automated decision-making engine,
prepared on pre-acquired data that can be either labeled or

unlabeled. In this subsection we will discuss some types of
cyber-defence tools and address their underline mechanics.
• IDS [150]–[154]: Traditionally, IDS were based on AI
models, as an automated and intelligent method was
required to process multiple files and network traffic.
Older IDS implementations, also known as misuse-IDS
employed rules-based engines, similar to firewalls and
anti-virus software, and relied on a database of known
rules or patterns, to detect a threat. Contemporary
research has lead to the development of anomaly-based
IDS that utilise NN and DL. An anomaly-based IDS
is a ML or DL model that has been trained and eval-
uated on data instances that are considered normal,
allowing the model to ‘‘learn’’ to detect the normal
behaviour of the users in a system. Anything that
deviates from this normal behaviour is automatically
flagged as an attack. Previous research has applied sev-
eral models, such as: CNN, DBN, RNN, DNN, SVM,
Naïve Bayes.

• Firewalls and Anti-Malware [155]: Originally, firewalls
and anti-malware software relied on rule-based engines.
Recent developments have lead to firewalls that, at their
core, rely on ANN with one example being FortiWeb
[156] a firewall for web applications. Anti-malware soft-
ware based on NN have also emerged such as Deep
Armor [157], which is a cloud-based service that pro-
tects computers from malware and zero-day exploits,
utilising ML models that are kept up-to-date through
re-training on newer malware instances.

• Threat Intelligence [158]–[161]: The purpose of threat
intelligence is to provide insights into potential security
threats, by processing various and diverse data threads
that networked sensors produce, often in real time.
However, this can not be a manual task for a number of
reasons, such as the possibility of human error, the need
for near real-time processing of vast collections of data,
originating from multiple sources. As such, automated
methods based on both ML and DL models have been
incorporated into threat intelligence platforms, provid-
ing reliable classification of security events, or seeking
to identify new patterns through clustering. The output
of threat intelligence platforms can then be forwarded
into other tools such as IDS/IPS, thus orchestrating
a more robust cyber-defence. Existing research has
utilised DL and ML models, such as LSTM and CNN to
differentiate between known strains of malware [161],
SVM to classify malicious source code obtained from
forums and combine the results with metadata to enrich
the model’s output [158], [159]. Furthermore, a system
based on honeypots of varying levels of interaction and
installed on different platforms (IoT, embedded devices,
PCs, Servers) with a DL model such as CNN applied to
the obtained data to identify the presence of malware.
An example of a real-world cybersecurity platform that
provides threat intelligence and utilises DL models is
Deep Instinct [162].
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FIGURE 7. The relationship of AI, ML and DL.

• Vulnerability Analysis [163]: Vulnerability analysis
is the proactive process of detecting weaknesses and
vulnerabilities in an organisation’s cyber-defences, eval-
uating their significance and assigning some sever-
ity marker, which is used to prioritise fixes for the
more impactful vulnerabilities. This process involves
the thorough investigation of networks, devices and
software that is owned by an organisaiton. To that effect,
automated methods based on ML and DL have been
proposed and employed for the detection and catego-
rization of vulnerabilities, reducing processing times
and minimizing the human error factor which appears
in such complex and repetitive activities. Depending
on the area of application, automated vulnerability
scanner tools, can be considered cloud-based, host-
based, network-based and database-based. Research
has produced vulnerability scanning solutions that scan
source code based on Concatenated CNNs [164], dis-
tributed network-based vulnerability scanners based on
Multi-layer Perceptrons (MLPs) [165], and other vul-
nerability assessment tools based onNaïve Bayes, Fuzzy
Logic, DNN, Regression and Rule-based Engines [166].

• Risk Assessment [167]: Risk assessment refers to the
identification of risks that can potentially harm the

systems of an entity or organization. The impact of
such risks in critical infrastructure environments, such
as smart airports, if left unchecked can range from
loss of service, to severe sabotage and threat to human
life. Existing research has produced both ML and DL
methods to automate the process of detection, enhance
efficiency and reduce false alarm rates, with the latter
resulting in either unnecessary disruptions in the oper-
ations of the airport, or failure to detect risks. A review
by Hegde et al. [167], identified that machine learning
methods are utilised in risk assessment in a number of
fields, one of which was cybersecurity. A risk assess-
ment tool that was trained on a large dastaset containing
instances of past security events and was based on RNN
was developed by Shen et al. [168].

• AI-enabled cognitive security [169]: This field of cyber-
security focuses primarily on the utilisaiton of ML or
DL models for the processing of sensory data, such as
video and sound streams. AI-enabled cognitive security
are employed to assess potential risks related to physical
attacks that may threaten an airport and its infrastructure,
by assessing incoming data for suspicious activities. One
application would be facial recognition, where camera
feeds are constantly parsed by DL models such as RNN,
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LSTM and CNN, focusing on the detection of faces. The
identified faces can then be cross-referenced with law
enforcement databases that maintain images of wanted
terrorists and criminals, informing authorities in the case
of a positive match [169], [170]. Another application
is behaviour and intention analysis, where DL models
are trained to scan video streams and detect irregu-
lar or suspicious movements of individuals, unusual
poses, facial expressions and concealed weaponry [110],
[171]–[174]. Such systems can be deployed in critical
infrastructure like airports, where irregular movement
of a passenger could signify a potential threat.

• Network Forensics [175]–[178]: Usually employed as
a reactive measure, after an attack or breach has been
detected and data has been collected, network forensic
frameworks can be combined with other security mech-
anisms, to speed-up the analysis of network-derived
traces and produce results faster. Several network foren-
sic frameworks have been proposed, that utilise ML or
DL for the detection of illegitimate network flows or
packets. These frameworks can either scan the contents
of packets in what is known as deep packet inspec-
tion (DPI) or focus on the header of packets and other
descriptive data (timing data) which is known as network
flow analysis. Such work, is mostly based on some form
of DNN, where a model such as a deep MLP, or an
RNN/LSTMmodel that includes the benefit of memory,
is trained on some pre-acquired, representative data.

C. WEAKNESSES OF AI-BASED CYBER-DEFENCE
MECHANISMS
The cyber-defence tools that were previously discussed can
be separated into two types, either rules-based expert sys-
tems or ML/DL systems. Each type has its strengths and is
best suited to different applications, however, they also have
weaknesses. To begin with, signature/rules-based systems,
are static representations of knowledge, and can not detect
unknown (zero-day, previously unseen or processed) security
threats [179]. They rely on a database of signatures, which
has to be kept up-to-date by experts. Furthermore, they are
susceptible to malware mutations, as they are unable to detect
them if the binary (and thus the signature/hash) is altered
in any way. Traditional pre-ML rules-based engines required
thousands of rules to be effective [140].

ML and DL models rely heavily on data. That means
that low quality or incorrectly prepared data can have a
negative impact on the model’s performance. Furthermore,
the selection of hyperparameters is an important task, which
can greatly affect the model. No clear rules exist for selecting
the best hyperparameter values for a model in any partic-
ular field of application, with experts often calling it more
of an ‘‘art’’ than a science. Essentially, most often it is
a trial and error process, although existing research has
addressed and proposed methods for automatic hyperparam-
eter selection/tuning [176], [180]. Another threat that can
target ML and DL models is an adversarial attack, during

TABLE 5. Risks associated with compromising devices, according to
smart airport device classes.

which, an attacker prepares a malicious input for a trained
model, aiming to force it to misclassify the fake input, or to
otherwise manipulate the model’s output [181]. Unlike adver-
sarial attacks, that target a trained model, other attacks, called
poisoning attacks [182], [183], can target the training process,
crafting fake data points to affect the resulting model’s pre-
dictive capabilities.

VII. SMART AIRPORT-SECURITY RISKS AND
CHALLENGES
The process of augmenting airports with IoT-powered
automations has substantial benefits from an operational and
efficiency standpoint, improving the QoS for passengers and
increasing financial returns for all the relevant stakeholders.
In a smart airport, IoT devices can be found almost anywhere,
from the restrooms to the runway and the air traffic con-
trol tower, often interacting with each other through bridged
networks. However, the incorporation of IoT devices in the
networks of a smart airport introduces a number of risks that
can be exploited by attackers, to cause disruptions and affect
the normal operations of the airport. These risks, in turn,
introduce challenges for researchers that seek to develop new
cyber-defence methods and tools that can effectively detect
risks, analyse them and provide mitigation steps.

A. CYBER SECURITY RISKS
Although exposing systems to the Internet can promote
interoperability, and enables remote accessing of services,
imposes risks to these systems, due to the malware, botnets,
hackers and other threats that often scan the Internet for
vulnerable devices [184]. Through empirical studies, the IoT
has been shown to be insecure in many instances [2], [185].
Shielding smart things against cyber-attacks is hard due to
hardware constraints [186], as often these devices have lim-
ited computational and power capacities, and thus adding
security mechanisms could deplete the devices resources.

Additionally, the security of IoT devices is hindered due to
design flaws and users often neglecting to change the default
credentials [15], [187]–[189]. As smart airports are outfitted
with ubiquitous smart things comprised of both sensors and
actuators, the possibility that they might not be secured prop-
erly introduces considerable risks. In Table 5 a smart airport
sub-systems and the associated consequences in the event
they are compromised.
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• Operational-maintenance: Compromising devices in the
operational-maintenance sub-system category imposes
a plethora of consequences, depending on the kind of
device that is affected. For example, compromising a
runway health scanner, causing it to produce incorrect
data, may result in an accident for an aircraft, possibly
by damaging a tire during take-off or landing. Another
scenario involves setting off the smart fire and smoke
detectors, causing chaos and delays.

• Operational-efficiency: Compromising operational-
efficiency devices may result in financial loss and
degradation of services. By compromising and disabling
the self check-in and eGates, can result in increased
workload for the manual passport check kiosks.

• Operational-management: Attacking devices in the
operational-management category introduces both
degradation of services, reduction of productivity and
possible unauthorised entry to sensitive or high-risk
areas of the airport. Compromising the RFID locators
of luggage trollies for instance, in effect invalidates the
purpose of the system, as it forces airport personnel to
waist time retrieving and returning the trollies to their
designated position. Furthermore, compromising video
surveillance and electronically controlled doors may
allow unauthorised, malicious individuals to gain access
to restricted areas of the airport and allow them to access
otherwise inaccessible parts of the airport’s network,
further compromising it and even setting up a back-door
system to allow remote access.

• Services-augmentation: Attacking the self-augmentation
devices can further degrade services for passengers,
disabling features that are designed to augment their
experience.

In the following, some important smart airport subsystems are
discussed, along with potential consequences for attacking
and jeopardising their security.

1) THE AIR TRAFFIC CONTROL
Air traffic control (ATC) towers are the command center for
managing flights at each airport, ensuring the safety of com-
mercial and private aircraft flights. ATC towers, among other
things, review weather conditions, receive a flight plan from
the aircraft’s captain and manage ground traffic including
takeoff landing and taxiing [190]. During a flight, an aircraft
will communicate with multiple ATC stations along its rout,
transmitting a signal that carries the flight’s number, altitude,
airspeed and destination. Attackers can affect an aircraft’ s
environmental control system [191], spoofing fire or smoke
alarms and altering the air temperature, causing discomfort
or even emergency landings.

2) DRONES
Drones are another security risk for airports [192]. They can
be outfitted with portable computers and antenna and flown
around an airport, compromising the security of IoT devices

inside the airport, either disabling the devices, making their
functionality irregular or use them as a bridge to propagate
malware and further compromise other subsystems of the
airport [15], [192].

3) E-ENABLED AIRCRAFT
E-enabled aircraft [193] are also at risk, as they incorporate
systems that handle regular communication between the air-
craft and ground control. Such aircraft incorporate systems
such as Electronic Flight Bags, where flight plans, weather
patterns and maps are stored and updated regularly, even
during flight, while contemporary aircraft communication,
addressing and reporting systems (ACARS) which play the
role of the central communication link with ground control
are being designed to work over IP. Further applications
include credit card authorization for on-flight purchases and
damage reports for the aircraft’s subsystems which can be
sent to maintenance crews at the flight’s destination before
it arrives.

4) HEALTH SAFETY SYSTEMS
With the proliferation of COVID-19, the threat of world-scale
pandemics has become apparent. As a result, added measures
of safety and security have been scheduled and implemented
in some airports, to detect any cases of infected passen-
gers and reduce the spread of the virus [100]. The primary
methods used to screen passengers, prior to boarding is the
utilisation of biometric smart sensors, specifically thermal
cameras that are configured to raise alarms if the temperature
of a passenger exceeds a pre-determined threshold. Malicious
actors can target these thermal cameras, that may or may
not be connected to an extended intranet and affect their
functionality in many ways, which is a risk for the airport and
for the public. In one scenario, an attacker could compromise
the thermal cameras, and force them to output false (spoofed)
temperatures or disable them by performing a DoS, which
can be considered a combined bio-cyber-attack. This can
result in extended delays brought about by increasing the
false positives of the system which, in turn, results in the
airport management invoking their secondary measures that
may include retaking the flagged passenger’s temperature.
Alternatively, the attackers could force the cameras to falsely
record all incoming passengers as healthy, thus increasing
the false negative measurements, which in turn can result
in increases in infection cases in the local or foreign com-
munities’ depending on where the compromised camera is
situated.

5) SMART LIGHTS, ENVIRONMENTAL SENSORS AND
SURVEILLANCE SYSTEMS
Smart lights and environmental sensors can also be a source
of risks for smart airports, as indicated by previous research
[15]. Attackers can target these smart devices and launch
DoS attacks by disabling them temporarily or permanently
(bricking). Furthermore, by compromising one such smart
light device, it is possible to propagate malware to other
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devices within range that utilise the same wireless protocol,
which will eventually infect most if not all the smart light
devices, bringing them under the attacker ’s control. Attacks
on the environmental sensors can result in false alarms by
tampering with the fire, smoke and air quality and toxicity
sensors, or resulting in unnecessary evacuations and thus
disrupt operations.

Surveillance systems include CCTVs, perimeter intrusion
sensors and other such devices that are used to monitor and
restrict access to certain areas of the airport. Security weak-
nesses in these systems can pose significant risk for both the
cybersecurity and the physical security of an airport [29],
[194]. First, cameras can be compromised by attackers, who
can then gain unauthorised remote access to them, and in
turn monitor the movement of airport personnel and extract
security patterns such as the habits of guards, as an initial
reconnaissance stage. Furthermore, attackers can block the
live feed of the cameras, replacing it with false video footage,
to cover illegal actions or unauthorised entry to restricted
areas of the airport. Perimeter intrusion sensors can be simi-
larly affected.

CYBER SECURITY RELIABILITY IMPLICATIONS
An important implication of cyber-attacks that target Smart
Airport infrastructure, is that reliability can be greatly
affected. Critical infrastructure such as Smart Airports relies
on the accurate and consistent orchestration of services from
various systems, including contemporary IoT-powered sys-
tems, to improve efficiency, accelerate production, locate
resources and prioritise actions such as repairs [21]. However,
cyber-attackers can compromise IoT devices, and cause dis-
ruptions to occur, by either manipulating the input/output data
of IoT devices, or by disabling them as a result of DoS attacks
[195]. Thus, to ensure reliability of services, it is imperative
to develop robust cyber-defence methods that ensure the swift
detection of security flaws in critical networks and connected
systems [135].

OPEN GAPS AND FUTURE DIRECTIONS
After the discussion of risks that can affect the ability of a
smart airport to defend their cyber-resources and services,
it is important to address the challenges that experts face
during the development of cyber-defence mechanisms for
smart airports.
• Zero-day vulnerability detection: A key feature that
enables multiple smart airport augmented services,
is the incorporation of IoT devices. Studies have shown
that IoT devices are generally not secured properly,
and attackers regularly expose zero-day vulnerabilities
[196]. The first challenge is to find a method to reliably
detect zero-day vulnerabilities in IoT devices. Vulner-
abilities are characterised as zero-day, if either their
existence was unknown prior to them being exploited
by attackers, or they are known but remain unpatched
[195]. It is important to develop cyber-defence meth-
ods to identify and mitigate zero-day vulnerabilities,

as they can prove to be a stealthy attack vector. One
such methods would be to design a DL-based system
to scan the network-side of IoT infrastructure in smart
airports and perform behavioural assessment. Themodel
can function as an anomaly detection system, which is
first taught the normal behaviour of such devices and
then marks any deviations as an attack. The confirmed
zero-day vulnerabilities detected through this method
can then be compiled into labelled data, and utilised to
train ML/DL models to detect these attacks and propose
mitigation methods.

• Designing of secure network architecture: The con-
cept of the smart airport is relatively new and not
defined by rigid rules and commonly accepted stan-
dards. As such, each airport that is making the transition
from ‘‘mundane’’ and ‘‘agile’’ to ‘‘smart’’, is a unique
case, and needs to decide on its own what IoT-powered
applications it will incorporate into its infrastructure,
which vendor to choose from and in-turn, what hard-
ware will be used and what communication protocols
these devices will employ [197]. Thus, another impor-
tant challenge is to design a secure architecture for the
smart airport, and specifically the various subsystems
that need to be orchestrated harmoniously, to ensure
that services are resilient and remain uninterrupted. One
approach towards designing such a secure architecture,
would be to utilise SDNs to build a network that is
centrally controlled, can be easily programmed and pro-
motes scalability [198], [199]. In addition, the secu-
rity of smart airport networks can be further enhanced
through NFVs, which allow the rapid deployment of
software-versions of traditionally hardware-based net-
work nodes such as firewalls, IDS and load balancers
[200]. Furthermore, AI-based systems can be developed
to automate and augment the management and security
measures of networks. They would operate by providing
recommendations to experts, based on recorded traffic
and the network’s state, with alarms raised in the event
of a security incident.

• Ensure high performance of AI-base cyber-defence
solutions: In one form or another, AI-based measures
have been applied to the field of cybersecurity, with
the most prevalent method being expert rule-based sys-
tems, where carefully crafted rules in the form of ‘‘if
then else’’, are used to scan networks or processes and
detect known patterns of attacks [201], [202]. How-
ever, new methods based on ML and DL are emerging,
where a model is trained on data that is usually pre-
processed, cleaned and tagged. Thus, when developing
ML and DL-based cyber-defence solutions, a challenge
that emerges is to ensure high accuracy with low false
alarm rates (FAR). The problem with low accuracy and
high FAR is twofold. First, a false alarm can cause
secondary security measures to be invoked, negatively
impacting the business processes of an airport, causing
delays, cancelations and evacuations. On the other hand,
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failing to detect a cyber-threat may have other signifi-
cant consequences, causing sensitive information to be
stolen, devices and services to malfunction, flight plans
to be altered, with the potential of threat to life becoming
substantial. To ensure the effectiveness of DL models,
extensive collections of properly curated data need to be
utilised for the training process, and their hyperparam-
eters need to be tuned, potentially through automated
methods, for optimal performance [176], [203].

• Process heterogeneous systems, protocols and data:
One of the main driving forces behind smart airports
and their augmented services are the interconnected
networks of IoT systems. Simple services powered by
IoT systems can be combined and enhanced through
AI, building more complex applications, and enabling
high-level analytics. However, due to a lack of stan-
dardisation in the IoT [189], smart devices with similar
functionality can be implemented by using different
technologies both on a hardware, as-well-as a soft-
ware (firmware) level, as each IoT vendor provides
their own implementation. This diversification extends
to the communication protocols that devices use to
connect to their local IoT gateway, which bridges all
local communication protocols with the Internet and in
turn the cloud backend [204]. It is not uncommon to
see an IoT system where smart devices use different
protocols to communicate with a bridge, a device which
can translate inbound traffic and transmit it to other
devices in the local network or forward it to the backend
server [205]. As such, the heterogeneity in hardware,
and communication protocols, results in a diverse range
of data formats, which poses a challenge for the devel-
opment of cyber-defence systems deployed in these
environments. In order to overcome this challenge for
the purpose of implementing AI-based cyber-defence
solution, network data can be captured on the transport-
layer, as most IoT implementations utilise the Internet
to connect to a cloud backend platform, to store and
process data. After the data has been captured and pre-
processed, powerful DL models can then be trained to
detect security incidents in the network.

• Scan large quantities of data in real-time: A key
characteristic of IoT devices, is that they are intended,
by design, to be constantly active, either awaiting a
request from the user, periodically performing some
task, or recording data from their environment. This
is also true for IoT devices that are deployed in smart
airports, with some examples being smart lightbulbs,
that enable swift and easy management from a smart
device and can inform management of a malfunction,
smart restroom sensors, that enable the efficient utilisa-
tion of janitorial services and smart surveillance systems
with cameras and motion sensors constantly monitor-
ing several areas at once [56], [173]. However, this
means that smart devices generate massive quantities
of data, some of which is temporarily recorded in the

device before it is forwarded to the backend database.
As such, a challenge that arises is that cyber-defence
mechanisms need to be able to rapidly (often real time)
scan the generated data and detect instances of misuse
or cyberattacks. To overcome this challenge, DL models
can be applied to swiftly process data that collected
from IoT sensors. It has been proven, through empirical
studies, that DL models perform well when tasked with
analysing Bid Data, displaying increased performance
and small processing time [206].

• Effective separation of attack and non-attack
instances: Providing a cyber-defence shield for an
organisation such as a smart airport is an important task,
which needs to consider all the potential attack surfaces
and their vectors to be effective. However, attackers have
in their disposal a wide range of attack methods, some
more covert than others [207]. Some attacks can be mis-
taken for normal network traffic under certain circum-
stances, which can pose a challenge for the development
of an effective cyber-defence system. For example, seri-
ous advanced persistent threat (APT) that have been the
cause of several high-profile cyber-attacks in the last few
decades are botnets [208]. Botnets provide a structured
infrastructure for an attacker, separated in the command
and control side from which an attacker can issue com-
mands and receive updates and information from the rest
of the botnet, and an army of infected machines, called
bots, that receive instructions and carry out attacks.
Certain attacks that botnets can launch may be similar
to normal network traffic, for example DDoS attacks
could be mistaken for periods of high demand (and vice
versa), successful data manipulation attacks against IoT
devices can also be undetected as these attacks slightly
shift the data that the device records, within a legitimate
threshold, attempting to manipulate the state of the IoT
system. Additionally, ransomware attacks need to be
considered, as their purpose is to either steal, encrypt
or otherwise make unavailable sensitive and valuable
documents of organisations. Furthermore, as most peo-
ple are increasingly reliant on remote conferencing for
their jobs, video conferencing attacks are emerging,
with one example being Zoom-bombing [209], where
individuals intrude into conferences attempting to dis-
rupt them. With their small processing time, enhanced
pattern detection, robustness and adaptability, DL-based
cyber-defence solutions are ideal for the task of sepa-
rating normal behaviour from attack instance, when the
two are similar in characteristics.

• Passenger owned smart devices as attack vectors:
People these days carry their smartphone, wear smart
watches or health monitoring devices and bring their
handheld gaming consoles wherever they go, as a way to
pass the time and stay connected, with the airport being
no exception. Contemporary airports provide several
complimentary services to passengers, such as freeWiFi
or indoor navigation through augmented reality, which
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they can access through their smart devices. However,
either due to software weaknesses or due to a lack of
cybersecurity awareness, often these devices become
the target of cyberattacks and malware that seek to steal
sensitive information (bank accounts, credit cards, bio-
metric data). As such, smartphones and similar devices
that passengers bring to the airport can function as a
kind of Trojan Horse [210], [211], with malware carried
into the airport and spreading to other systems and
smart devices. Thus, an additional challenge would be
to consider passengers’ smart devices as an extra attack
vector, when building cyber-defence systems for a smart
airport’s infrastructure. To combat this threat, AI-based
IDS and firewalls can be designed and deployed inside
the airport’s network. To be able to detect stealthy
cyber-attacks that can be launched at any time from
passenger-owned devices that connect to the comple-
mentary WiFi, security solutions need to be able to
adapt to new and unknown threats. For this purpose,
DL-based IDS and firewalls can be deployed in and
between publicly accessible airport networks and other
more sensitive networks, to ensure that a potential attack
does not reach any vital systems.

• Effectiveness of rule-based cyber-defence tools: A
considerable portion of the commercially available
cyber-defence tools rely on extensive databases of
expert-derived rules [24], [166]. These databases need
to be constantly updated, through considerable effort
from experts, to keep up with newer cyber-attacks. Such
systems that can be found in smart airports include
inbound and outbound network cyber-defence solutions
such as firewalls and IDS/IPS. Furthermore, by modi-
fying the binaries of malware (mutation, polymorphic
malware) or altering the attack patterns, attackers are
able to circumvent rule-based systems [212]. As such,
it is a challenge to effectively generate rules for new
cyber-threats and develop ways to minimise or elim-
inate the evasiveness of polymorphic malware. Addi-
tionally, another challenge is how to enhance rule-based
cyber-defence systems, in order to effectively detect
zero-day exploits, considering that rule-based solutions
use signatures to detect well-known threats. To address
these challenges, a hybrid strategy can be selected, that
will combine the advantageous near-perfect detection
of known threats of rule-based solutions and combine
it with the robustness and adaptability of DL-based
solutions. Furthermore, the need for expert-derived
knowledge is minimised, as DL solutions require limited
pre-processing to achieve acceptable performance.

In the future, we will design a realistic testbed comprised of
smart devices, coordinators and stations managed by popular
OSs. The motivation for this work, is to generate, pre-process
and enhance a realistic network-based dataset, that will rep-
resent several realistic scenarios where vulnerabilities are
exploited. The dataset will then be utilised to train a deep

learning-based tool that will be able to automatically scan a
local network and detect potential, and previously unknown
vulnerabilities present in the smart sensors/actuators, coordi-
nators and other network-enabled devices that can be found
in smart airports. This work will be adaptable to other smart
environments.

VIII. CONCLUSION
In this paper, we investigated smart airports, their advan-
tages over their mundane and agile counterparts and the
cyber-defence tools that are employed to protect their net-
works. Initially, due to a lack of standardisation, we reviewed
existing definitions of smart airports which led us to pro-
vide our own definition, through which we assert certain
characteristics regarding what a smart airport should look
like. Next, we listed several IoT-powered smart airport sub-
systems, including the technology and protocols that they
utilise, and then provided a classification based on the tasks
they perform and their importance/criticality. Because of to
the ongoing COVID-19 pandemic and the measures that are
considered globally to reduce its spread, we have addressed
the need for smart airports to incorporate biometric sensors
for the detection of infectious cases in both inbound and
outbound passengers. Additionally, we reviewed the current
landscape of cyber-defence tools that are employed to protect
a smart airport’s networks, including rule-based, ML and DL
tools while listing their performance weaknesses. Further-
more, we reviewed the risk profiling process and adapted
it to a smart airport setting, stating that a number of het-
erogeneous sub-systems need to be considered for risks.
Finally, we reviewed several security risks and challenges that
can hinder the performance of a smart airport’s operations
and even threaten lives, which need to be addressed by the
research community.
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