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ABSTRACT Brushes are critical components in power generation equipment. The interruptions in brush
operation because they have failed in their service can cause financial losses avoidable by proper maintenance
planning. Therefore, this article aims to offer a methodology for estimating the reliability parameter of
brushes used in hydroelectric generators through machine learning concepts and through a statistical
distribution compatible with complex phenomena. The method uses six selection patterns by graphical
plotting of lifetimes and brush lengths to recognize problems of recording wear information. Then, the
information is separated into three data sets according to the failure mode. The brushes reliability prediction
uses an artificial neural network with assisted learning to predict a cumulative distribution function based on
the operating time extracted from the equipment’s hour meter. The method compares the statistical models
g-Weibull, Weibull, g-exponential, and exponential with the prediction function. Three measures of goodness
of fit were calculated, the logarithm of likelihood, coefficient of determination, and mean squared error.
Most of the values found point to an advantage in the use of artificial neural networks over the use of the
g-Weibull distribution. The method compares density and failure rate functions. The application of artificial
neural networks in reliability analysis can have a significant impact on reducing maintenance costs, as it
leads to results closer to reality. This article presents artificial neural networks for the first time compared to

a distribution based on non-extensive statistical mechanics in the context of hydroelectric brushes.

INDEX TERMS Artificial neural network, brushes, g-Weibull, reliability, statistical distribution.

I. INTRODUCTION

ONE of the main devices designed to transfer current between
stationary and moving parts of machines and electrical equip-
ment is the electrical sliding contact. Heating of the parts
in contact, sparks, and arcs are common in the transmis-
sion of electric current by sliding contact. The mechanical
vibration of the sliding contacts and the wear lead to an
unbalanced distribution of the electric current between the
contacts (brushes), overcurrents and thermal overloads result
in decreased reliability of the contact device with the brushes
[1]. Excessive brush wear is a problem in many hydroelectric
plants. Cleaning and replacing brushes leads to increased
maintenance costs [2].
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Sliding electrical contacts are present in some critical
engine and generator components. Electric brushes are gen-
erally used in these contacts to conduct current between the
stationary part and the moving part of the motor. Mechanical
and electrical wear are the main factors influencing on brush
wear. Temperature, material properties, sliding speed, con-
tact force, and interfacial and environmental conditions also
influence brush wear. The mechanical wear of the brushes
is proportional to the brush spring pressure and the sliding
speed, and the electrical wear of the brushes is associated with
the current drop and contact voltage [3].

Brush wear can cause malfunctions in generators and DC
electric motors. The effects of polarity and current density on
the wear rate of electric brushes are well delineated since [4].
The relationship between drop in contact voltage and friction
wear for sliding electrical contacts in DC motors when high
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currents flow into the brush was discussed by [5], specifically,
how to avoid burning the brush when the high current flows
for the brush.

The prediction of the service life of DC motors through
brush wear can be made from the understanding of fric-
tion and wear due to the mechanical and electrical contact
between a brush and a commutator. The operating volt-
age showed a negligible influence on the wear behavior
while the electric current and the temperature have a high
contribution [6].

Wear of copper-graphite brushes in small brush-type DC
motors was analyzed in [3]. Variable electrical current condi-
tions were obtained by changing the brush spring pressure
and sliding speed. The results were resistance to electrical
contact, voltage drop, increased brush surface temperature,
and so on. The brush wear has been greatly altered by the
electric current, which indicates that the high current itself
not only produces more heating but also causes an increase
in voltage drop.

According to [7], temperature and pressure significantly
affect the wear performance of copper-graphite composite
brushes. An accelerated wear test was performed to assess life
characteristics. The probability of failure up to the specified
time according to the lognormal distribution, reliability, and
analysis of life characteristics were calculated from time
to failure data using the temperature-nonthermal-accelerated
life-stress model. Flaws obtained in the accelerated wear test
were extrapolated to the condition of normal use.

The brushes supply current to the rotor windings in turbo-
generators. Individual brushes and brush groups are installed
on removable cassettes. Pressure control on the slip ring is
necessary to regulate the brush operation. Otherwise, after
some time, there will be an overload on some brushes and
the unloaded condition on the others. This can increase brush
wear, overheat, and damage the contact pairs and the entire
cassette [1]. Several brushes are connected in parallel to
obtain the current required for operation. Even so, the current
can be distributed unevenly between the brushes. This can
lead to an overload of some brushes and also to uneven
wear [2].

In microscopic terms, the structure of the surfaces involved
is important to understand the performance of the sliding
contacts. The surface structures were analyzed by confocal
microscopy, with special emphasis on the components of the
anisotropic structure. The anisotropy factor can be linked to
the type of microscopic surface, as well as electrical noise in
a sliding system model [8].

A new type of electrical contact material is metal fiber.
Generally, the metal fiber brush is made up of many metal
fibers aligned along the length direction. Each metal fiber
can be treated as a small independent brush [9] and this
suggests the phenomenon of scale invariance that is common
in complex situations.

The two interactions of competition and cooperation
between brushes together ([1], [2]), the influence of the
surface structure involved in wear [8], and the apparent scale
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invariance mentioned in [9] seem to suggest that there is a
complex behavior in the brush wear.

Complex systems are made up of components that work
with numerous interdependence or subordination relation-
ships, presenting a difficult understanding. In these systems,
chaos theory does not apply, nor does it presuppose the
occurrence of Emergency, which is a phenomenon or process
of forming complex patterns based on a multiplicity of simple
interactions as occurs in social (social networks), biological
systems (animal colonies) and physical (climate).

Complex systems usually have long-range spatial inter-
actions, or long-term memory, or cooperation/competition
effects, as seen in [10].

Failure of a component may have many (recent or not)
multiple and interacting causes, some of them acting on a
cooperative and others on a conflictive basis, so it is not
surprising that complex behavior may appear. If this happens,
power-law-like expressions are expected to substitute expo-
nential in the statistical description [11].

Figure 1 shows the methodology of this article. The input
data from the maintenance sector make up a matrix of brush
lengths and time. These values are submitted to a consistency
test and, if approved, will compose the three scenarios, all
failures, wear failures, and non-wear failures. The rest of the
input data is isolated from the analysis. A second pattern
recognition test checks whether the replacement was per-
formed for wear or not. Subsequently, the method performs
in each scenario, three sets of modeling, Artificial Neural
Networks, g-Weibull, and a package with three widely used
models (Weibull, g-exponential, and exponential). The last
step performs the comparison of the five models through log-
likelihood, mean squared error, coefficient of determination,
and Akaike information criterion (AIC) and decides on the
acceptance of artificial neural network modeling.

Il. RELATED WORKS
Artificial neural networks (ANNs) have been considered
promising tools for analyzing reliability data since the
1990s. Identifying the appropriate probability distribution for
describing a data set and estimating parameters were neces-
sary steps in reliability studies. Chi-square tests or suitability
tests were usually part of the distribution identification step
along with the interpretation of the failure data histograms.
These procedures may be inaccurate on small samples. The
graphical approach to a fitting could be analyzed as a pat-
tern recognition problem and parameter estimation would be
a classification problem. Both cases are solved by neural
networks. In [12], a neural network was used to classify
distributions as normal, uniform, exponential, Weibull, and
another neural network was used to calculate the parameters.
Another form of reliability forecasting has gained expres-
siveness in the software area. The existing models were
based on assumptions about development environments, the
nature of the failures, and the probability of individual fail-
ures occurring. Since all of these assumptions must be made
before the project starts and since many projects are unique,
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FIGURE 1. Flowchart of the methodology of the article.

failures could be predicted based on the failures of similar
projects. These models should predict whether reliability has
grown enough to guarantee product launch. Reference [13]
used testing and debugging data to predict the number of
faults at the end of each day through a neural network.

Reference [14] proposed the training of four ANNs to
directly estimate some important measures of reliability anal-
ysis. The mean time to failure (MTTF), the mean time to
repair (MTTR), the unavailability rate, and the estimated
time for scheduled maintenance were calculated. The four
ANNs were powered by a data distributor and received only
specific data for their analysis. The analyzes were carried out
separately.

In the early 2000s, [15] developed a simulation-based
probabilistic neural network model to estimate the prob-
ability of failure of aged pipes vulnerable to corrosion.
The approach consisted of calculating pipeline reliability in
an adaptive connectionist representation instead of using a
simulation-based probabilistic analysis structure. This ANN
model used eight tube parameters as input variables. The
output variable was the probability of failure. The proposed
method is an evolution of the probabilistic neural network
(PNN), originally proposed by [16], is generic and can be
applied to several decision problems related to the mainte-
nance of old engineering systems.

Reference [17] validated the identification of the most sig-
nificant indicators to represent the reliability of a hydropower
plant and also the method to represent the efficiency of the
plant by a physical model. The multi-criteria decision-making
ensemble methods made the selection of the most important
alternative to be considered. Thus, an index represented as a
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weighted function of multiple independent indicators with the
potential to change the plant’s utilization factor represented
its reliability.

The time series modeling technique using ANNSs offers a
promising alternative for predicting failures and reliability.
Neural network modeling via feed-forward Multilayer Per-
ceptron (MLP) can suffer from long computing time. The
radial basis function (RBF) neural network architecture is
considered a viable alternative due to its shorter training time.
In RBF neural network, the neuron’s output decreases as the
input is moved away from its centroid, at a rate determined by
the radius. According to [18], the RBF’s ability to recognize
whether an entry is close to the training set or is in an
untrained region of the entry space gives the RBF a significant
advantage over the MLP structure. Further comparison stud-
ies between feed-forward MLP and RBF architecture demon-
strated that modeling via MLP had a lower error and better
performance than the RBF model for cycle time prediction
under convoluted multivariate data sets and predicting new
product success before market entry [19], [20].

An application of ANNSs, addressing Feed-Forward, Back-
Propagation to make performance predictions of the hydro-
electric plant on the Himreen dam-Diyala lake was developed
by [21]. The method used data obtained during research over
a 10 year period in terms of net turbine head, a flow rate of
water, and power production to predict plant performance.
The correlation coefficient (R) between the predicted and
observed production variables was higher than 0.96.

This article proposes an ANN following the MLP structure
(see Figure 3). Backpropagation is the algorithm used for
training and the network output is a proposed cumulative
distribution function. This allows the calculation of all the
reliability measures necessary for our analyzes, in addition
to the comparison with results obtained from widely used
probability distributions. Two generalizations of statistical
distributions based on non-extensive statistical mechanics
were compared with the ANN model

Ill. RELIABILITY MODELING

Technological advances have produced increasingly compli-
cated systems, with high installation costs and the possibility
of generating large financial losses or environmental damage
if they do not work as designed (see [22]).

Maintenance focused on reliability has become imperative
to keep the system functioning properly and to guarantee the
quality of its products over time.

A set of organized data, with reliable origin and representa-
tive nature, should generate useful information for improving
the system, making it more efficient, more robust, and less
costly.

The consequences of incorrect design or inefficient main-
tenance can negatively affect safety, the environment, or the
cost in many categories of industrial processes [23].

In general, the objective of maintenance is to provide
increased availability, either of the component or the system
as a whole.
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Reliability analysis often uses the Weibull distribution,
which is a simple and powerful empirical model. For more
details see [24]. The probability density function (pdf) at
time ¢, where t < T and T is the time to failure, is given by:

B-1 B
=L (t “’) exp [— (t ’°> } LM
n—to \n—1 n—rt
where B > 0,7 > fo, 1 > to and [;°f(x)dx = 1. The
exponential distribution is a particular case of the Eq.(1) when
B=1

Several generalizations of the Weibull model have been
proposed: linear and nonlinear transformations of time, the
use of multiple distributions, parameters as a function of time,
and stochastic models, among others. In [25] there are several
of these model proposals.

As seen in [26] and [27] there is no clarity as to the
originality of the probability density functions used in reli-
ability. According to [28], the use of the stretched exponen-
tial (Weibull) is registered prior to the article by [24] in a work
by Kohlrausch describing the capacitor discharge.

Almost all proposals for generalizing the Weibull model
have an exponential structure, be it simply exponential,
nested exponentials, or exponentials of various functions.
However, a generalization based on non-extensive statistical
mechanics has been employed because of its flexibility.

The statistical mechanics of simple systems has a
well-established structure through exponential probabil-
ity distributions, for example, Boltzmann weight and
Maxwellian distribution. These exponential distributions are
derived from the Boltzmann-Gibbs-Shannon (BGS) entropy.
The theoretical basis of the statistical description of complex
systems is still the subject of research, however, there is
much evidence that points in the direction of non-extensive
statistical mechanics.

A. STATISTICAL NON-EXTENSIVE MODELING
A generalization of the concept of entropy in terms of a
parameter q was introduced by [29]:

ud q
2pi =1
i

l—gq

where k is a positive constant that provides dimensional
consistency to the expression, the Boltzmann constant, p; is
the probability of occurrence of the i-th microstate and W is
the total number of microstates in the system. This expres-
sion recovers the Boltzmann-Gibbs-Shannon (BGS) entropy,
S =—k lep,-lnpi, when g — 1.

Non-extensive statistical mechanics induced generaliza-
tions in other fields, for example in mathematics. Two func-
tions usually appear at the beginning of the formalism, the
exp,(x) and the Iny(x), called g-exponential and g-logarithm
respectively. Both functions have a control parameter g in
addition to the argument x.

Non-extensive statistical mechanics introduces general-
izations of the exponential and logarithm functions, using

Sy =k : @)
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a g dimensionless parameter, these functions are called
g-exponential and g-logarithm, defined by [30]:

exp,(3) = {[1 + (=™, if [+ (1 —g)x] >0
0, otherwise,
(3)
and
lnqx=xzq—:]1 x>0,g#1, “4)

where x, g € R. These functions are inverse of each other, that
is, equ(lnq x) = lnq(equ x) = x, and the usual functions
(exp(x) and In(x)) are recovered at the limit ¢ — 1. The
functions still satisfy In,1 = 0 and exp,0 = 1, Vg. For
certain values of the parameters the g-exponential presents a
cross-over between an exponential behavior and a power-law
regime (exp,(—ax) with @ > 0 and ¢ > 1 is asymptoti-
cally a power-law for large x, leading to fat-tailed distribu-
tions). Other properties of these g-functions can be found
in [31]. These generalized functions have been applied in
several areas in addition to statistical mechanics, for example,
in mathematics and statistics. Properties of g-exponential can
be found in [32].

B. q-WEIBULL MODEL

The g-Weibull model is obtained from the three-parameter
Weibull model (Eq. (1)) by replacing the exponential function
with the g-exponential. This model has been applied in sev-
eral areas of knowledge because of its flexibility ([33]-[35]).
In [36] more details about this replacement are shown.
According to this model, 7y is the location or minimum life
parameter, that is, it is a minimum time value such that
failures below this are not expected. The probability density
function of g-Weibull is defined by:

where 8 > 0,n —f) > Oand t — 9 > 0. The factor
(2 — ¢g) and the restriction g < 2 are necessary to guarantee
the normalization of f,(¢). Making the limit ¢ — 1, the
g-Weibull probability density function becomes Weibull. The
g-exponential distribution is a particular case of Eq. 1 when
B = 1. The value n — #y is known as 6, the scale parameter
of the distribution.
The reliability function of g-Weibull is defined as:

Je=2—¢q)

Ry(1) = / fq@hdt'
t
o N\BT
=[1—(1—q><t ’0”
n—1to
)%
t—1o
— - . 6
IR I
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The cumulative function Fy() is the complement of the
reliability function and is defined by:

)24
t—1
Fq(t)zl—{equ |:_(’7—10> :” . (7)

The failure rate function is:

and written as:

hy(t)
_ L NB-L PRV
_e q)ﬁ(t to) [1_(1_q)<t m”
n—1r n—1o n—1 .
Q—qp (t—10\"! t—1\’ !
B n—rto <77—t0> “*Pq _<77—t0> '

©))

Taking into account that the g-logarithm (see Eq. (4)) is the
inverse function of the g-exponential, the Eq. (7) is written as

y=m+awmy=m{—m%jl—ENﬂLx=ma—m,
—q

and b = —ﬂln[ 0 1:|.
2-q)#

Sample data are the time to failure arranged in ascending
order and non-reliability values are estimated using Bernard’s
median rank approximation provided in [37]

R i—03

fi=roa (10)
where n is the sample size, i is the failure order number
ranging from 1 to n. The median rank is the probability
of failure for each experiment when n of these statistically
independent experiments are carried out, the probability of i
or more failures occurring is 50%, that is, it is a solution of
P(X > n) = 0.5 in the variable p within the context of a
variable of binomial distribution X ~ B(n, p).

For each time #; we have

x; = In(t; — 19), an

and
ﬁ=m£4%%a—ﬂﬂ. (12)

The parameter of Eq. (7) are estimated by maximizing the
coefficient of determination R?,

Zwlh
=1- —, (13)
Z [yi — yl

B=>0
0>0

subject to: ~ (14)
10 < lmin

q <2,
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where ¥; In [— ln% [1- Fq(ti)” y; is & , and f,,;, is the
—-q

lowest sampling time.

Equation 13 returns R*> < 1, including negative values.
Note that the parameters of the Weibull distribution can be
determined by maximizing R? with the additional constraint
g = 1. As additional criteria for the quality of fit, the mean

.72
squared error, MSE = > [Fq (t) — F i] /n, the likelihood

=> log [fq (t,-)], and Akaike Information Criterion (AIC)
were calculated. In general, the lower the MSE, the higher the
quality of the adjustment. Lower values of £, indicate better
fittings qualities. The AIC [38] is an index that compares
models with different number of parameters. AIC requires a
bias correction for small number of points [39] . This index

is expressed by AIC = nln (855) 4 2k + K& "where n
is the number of data points (x;, y;), RSS is the residual sum
of squares, and K is the number of parameters of the model.
The best model is supposed to be that one with the lowest
AIC. The value AAIC; =AIC; — min [AIC;] may be used to

compare the models, the best one has AAIC = 0.

IV. MACHINE LEARNING

Artificial intelligence has been a topic of public and pri-
vate interest for decades. Since the 1950s, there was great
hope that classic artificial intelligence techniques based on
logic, knowledge representation, reasoning, and planning
would result in revolutionary software that could, among
other things, understand language, control robots, and pro-
vide expert advice. Although the advances based on such
techniques will be real in the future, many researchers have
begun to doubt these classic approaches, choosing to focus
their efforts on the design of systems based on statistical
techniques and machine learning [40].

Machine learning (ML) and the intelligent systems that
emerged from it, such as search engines, recommendation
platforms, and speech and image recognition software, have
become an indispensable part of modern society. Rooted in
statistics and relying heavily on the efficiency of numerical
algorithms, machine learning techniques take advantage of
the world’s most powerful computing platforms and the avail-
ability of immensely large data sets. Also, as the fruits of
their efforts become so easily accessible to the public through
various modalities - such as the cloud, interest in machine
learning continues to increase dramatically, generating more
social, economic, and scientific impacts. One of the pillars of
machine learning is mathematical optimization, which, in this
context, involves the numerical calculation of parameters for
a system designed to make decisions based on data not yet
seen. That is, based on the data currently available, these
parameters are chosen to be optimal concerning a partic-
ular learning problem. The success of certain optimization
methods for machine learning has inspired a large number
of researchers in various communities to face even more
challenging machine learning problems and to design new
methods that are widely applicable [40].
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Machine learning has a huge variety of possible applica-
tions. Image recognition, automatic image caption genera-
tion, document text analysis, recommendation systems (the
link between users and products) are just a few examples [41].

Using machine learning requires several different skills.
One is the necessary programming skill. The other skills have
to do with the development and implementation of an appro-
priate model [42]. The domain of models requires knowledge
of specific mathematical tools [43].

Several programming languages can be used in machine
learning, each has its advantages and disadvantages over
others (see [44]-[48] for details). Currently, hardware and
technology have evolved in a specialized way to meet the
implementation of learning machines [49], [50].

Machine learning is about making computer programs
automatically improve with experience. Machine learning is
one of the most successful technical fields today. It lies at the
intersection of computer science and statistics and the core
of artificial intelligence and data science. Recent progress in
machine learning has been driven by the development of new
algorithms and the continued explosion in the availability
of online data and low-cost computing. In virtually all of
science, technology, and commerce you can see the adoption
of data-intensive machine learning methods [41].

The machine learning (ML) approach requires the defi-
nition of a flexible program whose behavior is determined
by several parameters. Then, a data set is used to determine
the best possible set of parameters. These values improve
the performance of our program in relation to some measure
of performance. The program is called a model, once the
parameters have been set. The set of all different programs
(input and output mappings) that can be produced only by
manipulating the parameters is called a model family. And the
program that uses the data set to choose parameters is called
a learning algorithm. It is necessary to define the problem
precisely before addressing the learning algorithm. identify
the exact nature of the inputs and outputs and choose an
appropriate model family [51].

In this case, our model will receive a numeric vector of
times until failure and will output another vector that will
represent probabilities.

If the right model family is chosen, there must be a
parameter setting, so that the model returns a value close
to the probability of failure when it receives a time until
failure.

The training process can take place as follows [52]:

1. Start the program with random parameters

2. Analyze the program outputs by comparing them with
the expected values

3. Adjust the parameters to reduce the outputs closer to the
expected values

4. Repeat steps 2 and 3 until the error is below the desired

Learning can be supervised or unsupervised. The super-
vised learning algorithm is a function that takes as input a
set of input data and output results and generates a function
that is the model learned. One of the simplest supervised
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FIGURE 2. Sigmoid g(x) = 1/ (1 + exp (-X)).

learning tasks is regression. Unsupervised learning is carried
out without comparison with the expected result [51].

A. NEURAL NETWORKS

ANNSs are computational implementations of the neuronal
structure of human brains. The brain contains neurons that
are like organic switches. They can change their output state,
depending on their electrochemical input. The neural network
in the brain is strongly interconnected through neurons. The
output of one neuron can be the input for thousands of other
neurons in these networks. Learning occurs through the repet-
itive activation of certain neural connections. This reinforces
such connections making them more likely to produce the
desired result, given a specified input. This learning involves
feedback - when the desired outcome occurs, the neural con-
nections that cause that outcome are strengthened.

Artificial neural networks try to simplify and mimic brain
behavior. They can be trained in a supervised or unsupervised
manner. In a supervised ANN, the network is trained in
providing samples of corresponding input and output data,
with the intention of having the ANN provide the desired
output for a given input. Learning takes place by adjusting
the weights of ANN connections. Unsupervised learning in
an ANN is an attempt to get ANN to understand a little about
the behavior of the input data even though there are no outputs
provided for comparison.

The biological neuron is simulated in an ANN by an acti-
vation function. A function commonly used in ANN is the
sigmoide g(x) = 1/ (1 4+ exp (—x)), as shown in Figure 2.

Note that there is a similarity between the format of the
activation function and a typical accumulated distribution
function such as that represented by Figure 11. It is worth
remembering that, each node represents only part of the net-
work modeling process and it is not necessary that the ANN
output function behaves the same as the activation function.

The function is activated, that is, it moves from O to 1
when input x is greater than a certain value, in this case, 0.
The analytical formulation of the derivative of the activation
function is important for the ANN training algorithm. This
is a feedback algorithm and is called backpropagation. The
sigmoid function does not change from 0 to 1 instantly as a
step function. This means that the derivative of this function
is continuous.
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FIGURE 4. Sigmoids plotted with different values of weights (w).

ANNSs can be represented as connected layers of nodes.
Each node receives several weighted inputs, applies the acti-
vation function to the sum of these inputs, and generates an
output. Figure 3 represents the ANN arrangement used.

The circles in Figure 3 represent the nodes and are also
called perceptrons. The activation function is located in the
node and takes the x values of inputs weighted by the w val-
ues, adds them up and inserts them in the activation function.
The output of the activation function is shown as # in Figure 3.
The activation function h(12) corresponds to the first function
of the second Hidden Layer and can be written as:

h(12) =8 (x1w1 T xowa + o+ Xy +b(12)) - 19

The weights modify the inclination of the activation func-
tion, as shown in Figure 4. When w > 1 the activation
function becomes steeper, whereas for values w < 1 the slope
becomes smaller.

Although Figure 3 does not show, besides the real number
entries x; and w; withi = 1,2, - - - | n, there is areal bias entry
(b) in each node. The bias values shift the entire curve to the
left if they are negative or to the right, if they are positive (see
Figure 5).

The goal of supervised learning is to reduce the error
between the desired input and output. Ideal for supervised
learning is to provide many known data input and output data
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g(x+b)

FIGURE 5. Sigmoids with different bias values (b).

pairs and vary the weights and bias based on these samples so
that error expression is minimized. This optimization process
is performed with a gradient (derivatives). Backpropagation
is processed in this way.

V. METHOD

The maintenance sectors of a set of hydroelectric plants sent
data in a tabular form containing approximately 7500 rows.
This information concerns two hydroelectric power gener-
ation plants (PCH and UHE). The lengths of the turbine
brushes and the respective hour meter values were noted for
the various brush positions. Each pair of these values define
a point in Figure 6.

The information collection process is not automated and
inconsistent values can be reported. A set of six validation
criteria was established to filter the observed inconsistencies
(See Figure 6).

e Too accelerated wear. The brush length information
shows a decreasing trend with an angle above the maximum
allowed.

e Too slowed wear. The lengths of a brush form a very
small slope.

o Negative operating time. There are negative time inter-
val values. This is probably due to errors in the annotation of
the hour meter.

e The install length is greater than the maximum. The
annotation shows a brush length that exceeds the limit and
would make installation impossible.

e The Install length is less than the minimum. The length
of the newly installed brush is less than the minimum allowed.

e Inconsistent length increase. The annotation shows an
increase in brush length over some time.

Classification is a technique that aims to identify a cluster
for a given data set. In this way, depending on the value of the
target or output attribute, the entire data set can be qualified to
belong to a class. This technique helps to identify the behavior
patterns of the data. This is, in short, a discrimination mech-
anism [53], [54]

The application of filters based on the geometric arrange-
ment of plotted data has been used in learning machines.
These filters allow you to quickly validate the data set.

203337



IEEE Access

E. M. Assis et al.: ML and g-Weibull Applied to Reliability Analysis in Hydropower Sector

A
< S
25| +
= o + L
Qo * max. initial length
____________ R S
[ ] ° 12 ..A‘-..A.'. A
¢, O Tl A a N
A - | o el
[ ] ’.“ o Tt §/OW A
° * =V
\ o “'-dW
. o --.__@a[
R = D P ELRTERE TR TN
9. min. initial length
.0
"0
A —p
%‘-?’% Operating
qg“-._% time
>
B
e
+ too accelerated wear
A too slowed wear
® negative operating times
+ initial length greater than maximum
o initial length less than minimum
o inconsistent length increase

FIGURE 6. Validation criteria.

o @
=] =]

IS
=)

Positions All - Ring All (58 brushes)

Brush length (mm) - PCHA - 1,2 and 4

30

0 10000 20000 30000 40000
Operating time (h)

FIGURE 7. Brush lengths and operation times of PCH A usine for all
failure modes.

The lengths of the brushes in all positions of units 1, 2,
and 4 of the PCH A plant are plotted in Figure 7. Each series
of values corresponds to a brush. Plotting was performed with
different markers only for better visual comfort.

The values of the last readings of each brush length were
used to infer which failure mode occurred. Brushes that have
been replaced by wear remain in operation until a minimum
length is reached. If the last length reading reached a value
close to this minimum, it is assumed that the replacement
occurred by wear failure mode, otherwise, the failure mode
is characterized as non-wear. Figure 8 shows the readings of
the 58 brushes replaced by wear failure mode.

The time values (abscissa axis) corresponding to the last
readings of each brush shown in Figure 8 are the lifetime for
the reliability analysis. These times until failure are ordered
in ascending order and then each median rank is calculated
according to Eq. (10). Each ordered pair is plotted in Fig. 9.
The curve values were calculated as a supervised learning
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FIGURE 8. Brush lengths and operation times of PCH A usine for wear
failure mode.
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FIGURE 9. Time to failure (circles) and cumulative distribution
function (line) for PCH A usine and wear failure mode.

neural network. All data were used to train the neural network
to allow a comparison with the adjustment of the statistical
distribution. A large number of values were used as ANN
test data. These values are the abscissa of the cumulative
distribution function curves. The adopted method trains ANN
with all the lifetimes. This will allow a direct comparison
between the application of ANN with g-Weibull distribution
fitness. Overfitting disturbances can be visually identified in
the graph if they occur.

Some precautions were added because the model
represents a cumulative distribution function. The function
predicted by the artificial neural network must always be
increasing, this will guarantee non-negative values for its
derivative (probability density function). The function must
also return non-negative values and less than or equal to 1.
Once these conditions are ensured, the values returned by
the artificial neural network can be interpreted as failure
probabilities up to a specified time.

The same time-to-failure values were used to fit a
g-Weibull distribution. This model is represented by a straight
line whenever the variable changes described in the equations
Eq. (11) and Eq. (12) are made. This property is not verified
for the neural network model.

The Figure 10 shows black circles representing the times
until failure, the continuous line representing the adjusted
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FIGURE 10. g-Weibull fitness of the PCH A usine time to failure data
(wear failure mode).
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FIGURE 11. Artificial neural network and g-Weibull cumulative
distribution functions of the PCH A usine (wear failure mode).

model, the distribution parameters, and the value of the deter-
mination coefficient (R?). The coefficient of determination
of the adjusted g-Weibull distribution is R> = 0.9666. This
means that the quality of this fitting is very good.

The coefficient of determination for the artificial neural
network model can be calculated by:

n ~ —~ 2
> [Fi - FANN]
2 =1
Riny=1-—F———>
S

i=1

, (16)

where n is the number of lifetimes, ﬁi is the i-th median
rank value obtained from Eq. (10) and Fany is the value of
cumulative distribution function calculated according to the
machine learning method for the i-th lifetime. The coefficient
of determination for the machine learning model is REWN =
0.9921. This value is higher than that found in the g-Weibull
model. In fact, the curve of the machine learning model is
closer to the sample data as shown in 11.

The likelihood and mean squared error values for the
g-Weibull model are L, = —600.82 and MSE,yy =
0.00131, and for the ANN model they are Lyyy = —598.01 ¢
MSEsnny = 0.00065 (see Table 3). These likelihood values

VOLUME 8, 2020

Fann(f)/ Fy(t)
PCH A -1, 2 and 4 - Positions All - Ring All
o

15000 20000 25000 30000 35000 40000 45000
Operaring time (h)
FIGURE 12. Artificial neural network cumulative distribution functions

values divided by g-Weibull cumulative distribution function of the PCH A
usine (wear failure mode).

are very close and differ by approximately 0.5%, with little
advantage for the ANN model. Although the mean square
error values are small, the ANN model is about 50% smaller
than the g-Weibull model.

In addition to the ¢g-Weibull model, three other statisti-
cal distributions were adjusted, Weibull, exponential, and
g-exponential (Table 1). The likelihood values are all close
with little advantage for the g-exponential model. All models
were calculated by maximizing R?. The g-Weibull model
presents the highest R> among the statistical distributions
(7% higher than the exponential model). The value MSE,w
corresponds to 46% of the second-best fit according to this
criterion. AIC is the only criterion in which the g-Weibull
model is in second place, losing to the g-exponential
model. Note that AIC takes into account the computational
effort required by the model to handle a larger number of
parameters.

The comparative curve of the values of failure probabilities
up to time t of the two models was plotted with the expression
a(t) = Fann(t)/F4(t) (See Figure 12). The results show that
1 < a(t) < 1.4 for times below 19,000h. The values of «(t)
are between 1 and 0.93 when 19, 000h < ¢ < 35, 500h. The
values are slightly increasing from 35,500h reaching 1.04 in
the final times. Note that the biggest differences were found
for the initial time instants.

The time derivative of the failure probability function
Fann(t) is equivalent to the probability density function
(fann (1)) The probability density function of the g-Weibull
model is expressed in Eq. (5). The curves for both functions
present very similar shapes as shown in Figure 13.

The results of fayn(t)/f4(¢) show that the probability den-
sity function of the g-Weibull distribution returns values
greater than the ANN model only within the range of values
from ¢t = 15,300h to ¢+ = 26, 000h. Figure 14 shows that
curve fann(t)/fy(t) assumes values between 0.83 and 1.55
and the minimum being approximately at = 19, 500h

The previous analyzes show proximity between the values
of the functions obtained by the artificial neural network and
by the g-Weibull distribution (see Figure 15). However, the
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TABLE 1. The parameters and goodness of fits measures of the g-Weibull, Weibull, g-exponential, and exponential distributions.

Model B O(h) to(h) q Shape L R? MSE AIC AAIC
q-Weibull 269 1.40x 10T 8,785 135 Unimodal -600.82 0.9666 0.00131 -144.89 35.94
Weibull 153 1.57 x 10* 11,305 1 Increasing  -600.5 09347  0.00243  -129.11  51.72
g-exponential 1 1.32 x 105 13,212 -29 Increasing -599.82 0.9585 0.00808 -180.82 0
exponential 1 1.76 x 10* 13,000 1 Constant  -608.75  0.9050  0.00756  -109.58  71.24
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FIGURE 13. Artificial neural network (solid line, red online) and g-Weibull
probability density (dashed line, blue online) functions of the PCH A
usine (wear failure mode).
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FIGURE 14. The function equivalent of the probability density function

for Artificial neural network model divided by -Weibull probability
density function of the PCH A usine (wear failure mode).

failure rate shows very different results. For times below ¢t =
30, 000h, there is a variation close to the previous analyzes.
But for time values greater than this the curves deviate and
the expression fany (t)/f,(¢) returns values around 3.5 for the
last time values as shown in Figure 16.

Table 2 shows a comparative summary of the fittings made
by the g-Weibull distribution and the artificial neural network
model. The first column shows the index i which is used to
identify the numerical results of the Table 3. The “Operating
time and brush length” column shows a scatter plot of the
brush length values and their time intervals measured by the
hour meter. These values are the result of applying the filters
shown in Figure 6. The third, fifth, and seventh columns
show the graph of the cumulative distribution function, the
probability density function, and the failure rate function
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FIGURE 15. Failure rate values for artificial neural network (solid line, red
online) and g-Weibull (dashed line, blue online) models of the PCH A
usine (wear failure mode).
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FIGURE 16. Failure rate values of artificial neural network model divided
by -Weibull failure rate of the PCH A usine (wear failure mode).

with the ANN model plotted in solid line, red online, and g-
Weibull model plotted in dashed line, blue online. The fourth,
sixth, and eighth columns show the graphs of Fayy (t)/F,(t),
Sann () /f4(1), and hayy (2)/hy(2).

The first three rows of the Table 2 are related to the UHE
plant. The first row refers to all the failure modes involved
(574 cases - see Table 3), the second row only refers to wear
failure mode (39 replacements), that is, only the brushes that
were replaced because they did not have enough length for
correct operation. Row three shows the replacements made
for a reason other than wear (535 cases). Note that 6.8% of
UHE replacements were due to wear, while at PCH units 1,
2, and 4 this proportion is 49% and at unit 3 it is around
37%. The behaviors of the plots of the three analyzes are
similar, except failure rates. The failure rate values for high
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TABLE 2. Comparative summary of ANN and g-Weibull plots.

Operating time Cumulative Probability Failure
i and distribution density fann(t)/fq(t) rate hann(t)/hq(t)
function function function

brush length

Fann(t)/Fq(t)

1. UHE All

2. UHE Wear

3. UHE Other

6. PCH 124 Other| 5. PCH 124 Weai| 4. PCH 124 All

9. PCH 3 Other | 8. PCH 3 Wear | 7. PCH 3 All

times-to-failure are higher in the g-Weibull model when we
analyze the wear failure mode. The behavior is the reverse
for analyzes with all failure modes and also for modes
that exclude wearing. Discontinuity is observed above t =
25, 000h in the probability density and failure rate plots of the
analyzes with all failure modes and non-wear failure modes.
This range of high time values was not observed in the hour
meter readings in the wear failure mode, so the discontinuity
does not seem to have interfered in the divergence of the
behavior models.

The graphical results of the failure modes (all, wear, and
non-wear) of units 1, 2, and 4 of the PCH plant are very
similar (see rows 4, 5, and 6 in Table 2). The only easily
observed difference is that the probability density function of
the g-Weibull model for the other failure modes (non-wear) is
decreasing, whereas for analyzes with all failure modes and
wear failure mode the curves are unimodal.

The equipment of units 1, 2, and 4 of the PCH plant
have similar characteristics, so they were analyzed together.
Unit 3 of this plant has very different characteristics and

VOLUME 8, 2020

operating conditions. There is a concentration of sample
items at the center of the graphs of the accumulated dis-
tribution function. This concentration is more adequately
represented by the ANN, whereas the g-Weibull distribution
cannot bend to approach the sample data. The consequence
of this phenomenon is that the density functions represented
by the ANN are peaked and this is reflected in the failure rate
curves (see rows 7, 8, and 9 of the Table 2).

VI. RESULTS

The Table 3 shows the acronym of the hydroelectric plant,
failure modes, generation units, quantities of sample data,
values of the logarithms of the likelihoods of the neural
network and the g-Weibull distribution, values of the coeffi-
cients of determination (R?) of the two analyzes and the mean
squared error (MSE) values.

The likelihood values calculated by the ANN model
(L£aNN) and by the g-Weibull model (£,w) are very close.
The percentage differences are less than 2%, except for row
8, in which case the difference is 7%. The likelihood values
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TABLE 3. Acronym of the hydroelectric plant, failure modes, generation units, quantities of sample data, values of the logarithms of the likelihoods,
values of the coefficients of determination (R2), mean squared error (MSE) values for nine analyzes.

i Hydroelectric plant  Failure modes Units n LANN Lqw R/2\NN ng MSEAxNN MSEqw
1 UHE B All All 574 -5638.99  -5754.02 0.9981 0.9911 0.00016 0.00030
2 UHE B Wear All 39 -379.87 -377.54  0.9879  0.9807  0.00099 0.00097
3 UHE B Non wear All 535  -5333.12 -5362.78 0.9985 0.9900 0.00013 0.00042
4 PCH A All 1,2,and 4 118 -1232.05 -1256.07 0.9951 0.9630 0.00041 0.00366
5 PCH A Wear 1,2,and 4 58 -598.01 -600.83  0.9921  0.9666  0.00065 0.00131
6 PCH A Non wear 1,2,and 4 60 -634.90 -629.62 09746  0.9777  0.00208 0.00257
7 PCH A All 3 24 -255.51 -253.73  0.9301  0.9039  0.00563 0.00851
8 PCH A Wear 3 9 -98.74 -92.07 0.8312 0.8076  0.01274 0.01813
9 PCH A Non wear 3 15 -161.13 -160.02 09726  0.9268  0.00216 0.00469
TABLE 4. Reliability models, hydroelectric plants, shapes of failure rate, R2 AIC
and count of shapes. KD
qw
s £
i Model Hydroelectric plant ~ Shape  Count ANN -
1 ANN PCH A T 3 % MSE  2om 0
2 ANN PCH A n 2 ANN qw 119%
3 ANN PCH A Nt 1 11% w
4 ANN UHE B T 2 1% qw
5 ANN UHE B N 1 aw P
6 q-Weibull PCH A 7t 2 -
7 q-Weibull PCH A U 2 44.5%
8 q-Weibull PCH A N 2 qE
9 q-Weibull UHE B N 3
10 Weibull PCH A 1 6 FIGURE 17. The percentages of the best models according to the fit
11 Weibull UHE B 1 3 quality criteria. I:eft panel: proportions_ of ANN, g-Weibull ((]W), Weibull
12 - tial PCH A 1 6 (W), g-exponential (qE), and exponential (E) models according to the
g-exponentia T o . . . . . .
13 g-exponential UHE B 1 3 criteria R : (outer ring), £ (intermediate rlng_), and MSE (.lntc_ernal_ disk). The_
14 exponential PCH A B 6 exponential model was not the best a_ccordlng to any criteria. Right panel:
. performance comparison of the g-Weibull (qW), Weibull (W),
15 exponepnal _ [_JHE B - 3 g-exponential (qE), and exponential (E) models according to the AIC
J= decreasing, 1= increasing, — = constant, criterion.

U=u-shaped, and N=unimodal

of rows 2, 6, 7, 8, and 9 are lower for the ANN model.
In the other rows, the model with lower likelihood values is
g-Weibull. The results of the two models are balanced.

In general, the values of the coefficients of determination
for the ANN model (RiNN) are slightly higher than the values
of the g-Weibull model (R‘ZIW ). Although the difference is
small (below 5%), this is a trend observed along almost all
the rows of the Table 3. The coefficient of determination of
the g-Weibull fitting (R;W) of the PCH A plant for times
until failure of the non-wear failure mode (row 6) is the only
one greater than the coefficient calculated with an artificial
neural network (only 0.32%). The mean squared error of
the artificial neural network (MSEaNN) is smaller than that
calculated with the g-Weibull distribution in most cases, only
for the UHE B plant in the wear failure mode the reverse
occurs (row 2).

The ANN model presents a higher value of R> for 89%
of the analyzed cases, in only 11% of the cases (one out
of nine), the g-Weibull model presents a better performance
(see Figure 17). The quality analysis according to likelihood
points to the g-Weibull model as better in 22% of cases (two
occurrences) and the ANN model in 33% of cases (three
occurrences). All of these five cases would point to ANN if
the criterion was the highest value of RZ. According to the
likelihood criterion (L), the g-exponential model was the best
in the remaining four cases (45%). The MSE criterion points

203342

to ANN as the best model in 89% of cases and g-Weibull
in 11%. The proportions are the same as those found when
the criterion is higher R?. It is worth remembering that the
parameters of the statistical distributions were calculated with
the maximization of R? and that the values R? of the Weibull,
g-exponential, and exponential models are smaller than those
found by the g-Weibull distribution in all nine cases. This is
expected because g-Weibull is a generalization that encom-
passes the others. However, it is interesting to compare it with
the most widely used statistical distributions. All results are
summarized in Appendix A (Table 5).

The AIC criterion was used to compare the performance
of statistical distributions. The g-Weibull and g-exponential
models showed the same level of performance (44.5%) while
the Weibull model was better in 11% of the cases.

The shape of the failure rate function is crucial for mainte-
nance scheduling, especially preventive and corrective main-
tenance. The way in which the failure rate grows over time
directly influences the scheduling of preventive maintenance
time intervals and consequently the total costs to keep the
systems running.

According to Table 4, the ANN model can identify three
failure rate shapes in PCH analysis and two in UHE plants.
The g-Weibull model is also capable of perceiving three
formats in PCH, but only one in UHE plants. The Weibull
and g-exponential models only detected a single type of
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TABLE 5. Parameters, failure rate shapes, and values of the measures of goodness of fit of the ANN, g-Weibull, Weibull, g-exponential, and exponential

models.

i Plant  Unit F;]g‘ér: Model B 0 to q Shape c R2 MSE  AAIC
1 UHEB Al All ANN - - - - T 55,639  0.9981 0.00016 B
2 UHEB Al All qWw 2 1.18 x 104 93 1.04 n -5,754  0.9911  0.00030 0
3 UHEB Al All W 1.83  1.13 x 104 221 1 0 -5,758  0.9769  0.00192 532
4 UHEB Al All qE 1 2.14 x 1010 736 -964,337 0 -5,575  0.9306  0.00475 869
5 UHEB Al All E 1 1.45 x 10% 747 1 - -5,904  0.8367 0.01089 1,652
6 UHEB Al Wear ANN - - - - N 2380 0.9879  0.00099 -
7 UHEB Al Wear qW 219  6.95x 103 6,249 1.24 N 2378 0.9807  0.00097 6
8 UHEB Al Wear W 1.8 8.29x10% 6,644 1 + 2377 09783 0.00118 0
9 UHEB Al Wear qE 1 1.49 x 105 7,297 935 0 2354 09442 0.00411 17
10 UHEB Al Wear E 1 8.68 x 103 7,378 1 - 2383 0.8865  0.00682 62
11 UHEB All  Nonwear ANN - - - - + 25,333 0.9985  0.00013 -
12 UHEB Alll  Nonwear qW 2 1.11 x 10% 92 1.08 N 55,363 0.9900  0.00042 0
13 UHEB All Non wear W 1.77  1.16 x 104 235 1 + 25,362 0.9868  0.00042 117
14 UHEB All Non wear qE 1 3.53 x 104 742 -0.03 + 25421 09063 0.00571 1,014
15 UHEB All Non wear E 1 1.41 x 104 746 1 - 25,490  0.8459  0.00985 1,429
16 PCHA 124 All ANN - - - - + 41,232 0.9951  0.00041 -
17 PCHA 124 All qWw 1.69  3.2x10% 16 0.74 1 -1,256  0.9630  0.00366 42
18 PCHA 124 All W 202 264 x10%  -1,188 1 + -1,255  0.9610  0.00322 61
19 PCHA 124 All qE 1 1.02 x 1010 1,547  -237,139 + -1,248  0.9610  0.00780 0
20 PCHA 124 All E 1 2.74 x 10* 1,730 1 - 21,291  0.8456  0.01587 222
21 PCHA 124 Wear ANN - - - - 4 2598 0.9921  0.00065 -
22 PCHA 124 Wear qwW 2.69 1.4 x 10% 8,785 1.35 n -601  0.9666  0.00131 36
23 PCHA 124 Wear W 1,53 1.57 x 10* 11,305 1 0 -601 09347  0.00243 52
24 PCHA 124 Wear qE 1 1.32 x 105 13,212 29 1 -600  0.9585  0.00808 0
25 PCHA 124 Wear E 1 1.76 x 10* 13,001 1 - -609  0.9050  0.00756 71
26 PCHA 124 Nonwear ANN - - - - N, -635 09746  0.00208 -
27 PCHA 124 Nonwear qW 097 1.23 x 10° 1,381 -2.07 U -630 09777  0.00257 4
28 PCHA 124 Non wear w 149  2.00 x 104 153 1 + -636 09502  0.00413 75
29 PCHA 124 Non wear qE 1 1.68 x 10° 1,266 -3.64 + -628 09776  0.00215 0
30 PCHA 124 Non wear E 1 1.96 x 104 1,584 1 - -642 09260  0.0068 97
31 PCHA 3 All ANN - - - - N 2256 09301  0.00563 -
32 PCHA 3 All qW 1.2 1.18 x 106 1 -57.71 + 2254 0.9039  0.00851 0
33 PCHA 3 All W 2 2.85 x 10*  -2,993 1 + 2256 0.8955  0.00856 12
34 PCHA 3 All qE 1 3.47 x 1010 596 782,995 + =257 0.8873  0.01325 1
35 PCHA 3 All E 1 2.72 x 10* 1,304 1 - 2262 0.7839  0.01979 27
36 PCH A 3 Wear ANN - - - - N -99 0.8312  0.01274 -
37 PCHA 3 Wear qW 422 1.83 x 10% 1 1.47 N -92 0.8076  0.01813 1
38 PCHA 3 Wear W 221 196 x 104 5211 1 + -92 0.7992  0.01918 5
39 PCHA 3 Wear qE 1 8.19 x 105 9,339  -305.93 1 -92 0.7923  0.02073 0
40 PCHA 3 Wear E 1 1.58 x 10* 10,155 1 - -94 0.7478  0.02232 2
41 PCH A 3 Non wear  ANN - - - - 0 -161 09726  0.00216 -
42  PCH A 3 Non wear qW 099  5.52 x 10° 1 -11.43 u 2160 0.9268  0.00469 0
43 PCH A 3 Non wear w 17 2.82x10%  -3240 1 0 2162 09193 0.00545 6
44 PCH A 3 Non wear qE 1 1.11 x 10° 94 -1 0 -162 09178  0.00741 0
45 PCH A 3 Non wear E 1 2.56 x 10* 677 1 - -164  0.8547  0.01206 11

ANN= Artificial neural network, qW=g-Weibull, W=Weibull, qE=g-exponential, and E=exponential.
J= decreasing, 1= increasing, — = constant, U=u-shaped, and N=unimodal.

format and finally, the exponential model is not able to model
increasing failure rates, only constant.

Management decisions based on the behavior of the failure
rate tend to be more assertive when the ANN model is used
because this model can express more failure rate shapes and
get closer to real behavior.

The comparison of the plots of the ANN and g-Weibull
models shows an advantage of ANN modeling. Especially in
situations where the cumulative distribution function needs
more pronounced slopes. The processing speed of an ANN
can also be advantageous. Many languages and programs
have libraries optimized for calculating ANNs. The g-Weibull
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distribution does not have libraries in most programming
languages.

A disadvantage of the ANN model is the need for addi-
tional validations for the model to represent a statistical
distribution. The generated function cannot be decreasing,
assuming values greater than 1 or less than 0. These controls
can generate discontinuities in the accumulated distribution
function. Another disadvantage is the loss of physical inter-
pretation based on the distribution parameters.

The g-Weibull distribution has the advantage of relating the
shape of your curves directly to the values of your parameter
(see [11] for details). In this way, the nature of the modeled
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phenomena can be interpreted by the values of its parameter,
which does not occur in an ANN.

VII. CONCLUSION

Brushes are critical components in power generation equip-
ment. The interruptions in brush operation because they
have failed in their service or for scheduled inspection tasks
can cause financial losses avoidable by proper maintenance
planning.

The data provided by the operation and maintenance sec-
tors were treated using selection tools of machine learning.
The extracted information was classified as valid or rejected
because it appeared to be errors in registration. The valid
information was re-classified to infer which failure mode
caused the brush replacement.

Data from 716 brushes running at two hydroelectric power
plants were used. At UHE B plant, 574 brushes were ana-
lyzed, and at PCH A 142 brushes. The information from the
PCH A plant was divided into two groups. The first group
comprises units 1, 2, and 4. The second group contains data
only for unit 3 because its characteristics are different from
other units.

The combination of reliability analysis tools and the learn-
ing machine is used to create a model of prediction of fail-
ure probability based on an artificial neural network. The
g-Weibull model was used to compare the reliability analysis
quantities. The cumulative distribution function curves, prob-
ability density function, failure rate function, and compara-
tive graphs of the two models for each of these three functions
were plotted.

In addition to comparing ANN’s performance with the
generalized ¢g-Weibull model, comparisons with statistical
distributions commonly used in reliability analysis, Weibull,
exponential, and g-exponential were performed. The predic-
tions of the ANN model are better than the predictions of
models with exponential characteristics (Weibull and expo-
nential) and also superior to models that are asymptotically
power laws (g-Weibull and g-exponential). This is a strong
indication that the use of ANN for predicting reliability in
systems of a complex or non-complex nature can be very
promising.

Three measures of goodness of fit were calculated. The
coefficient of determination, the logarithm of likelihood, and
the mean squared error. Most of the values found point to an
advantage in the use of artificial neural networks over the use
of the g-Weibull distribution.

ANN modeling was the best in 89% of the analyzes in
two of the three criteria (RZ and MSE). The comparison was
performed with the g-Weibull, Weibull, g-exponential, and
exponential models. It is worth remembering that all statis-
tical distributions were calculated by maximizing R>. ANN
is the second-best model according to the likelihood criterion
(L). The reasons for this success seem to be the theoretically
unlimited amount of possible failure rate shapes in ANN
modeling.
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The models based on artificial neural networks required
additional care to meet the requirements of a probabilistic
model. Even so, they were successfully used to model the
cumulative distribution function in all nine cases in which it
was employed.

The modeling of the cumulative distribution function by
ANN allowed the replacement of the statistical model by
the machine learning model without losing the requirements
of a probability distribution and with the advantage of its
probability density function being able to express a better
concentration of values as shown in rows seven, eight and
nine from Table 2.

The use of selection tools in conjunction with artificial
neural networks opens a path for reliability analysis allowing
views of patterns that would hardly be observed in reliability
analyzes not assisted by machine learning methods.

Many programming languages have libraries designed for
modeling by artificial neural networks. The level of maturity
of the codes used in these tools seems to facilitate the imple-
mentation of programs to apply artificial neural networks in
reliability analyzes, allowing rapid code execution.

In summary, this method of applying ANN in reliability
analysis can have a significant impact on reducing main-
tenance costs, as it leads to results closer to reality. The
ANN algorithms have reached a high level of maturity and
are executed with adequate speed. Currently, such computer
programs can run on hardware specially dedicated to machine
learning.

APPENDIX

Parameters, failure rate shapes, and values of the mea-
sures of goodness of fit of the ANN, g-Weibull, Weibull,
g-exponential, and exponential models (See Table 5).
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