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ABSTRACT Clinical features are the primarymeasures used for risk assessment of cerebrovascular diseases.
However, clinical features, especially angioarchitecture, in digital subtraction angiography require further
interpretation by specialized radiologists. This approach for risk assessment requires multivariable analysis
and is, therefore, challenging when completed manually. In this study, we employed three machine learning
models, namely the random forest, naïve Bayes classifier, and support vector machine, for the detection
of hemorrhagic brain arteriovenous malformations using digital subtraction angiography. Quantitative
measurements from digital subtraction angiographywere used as features, and the chi-squared test, minimum
redundancy maximum relevance, ReliefF, and two-sample t tests were used for feature selection. Bayesian
optimization was conducted to optimize the hyperparameters of the three models. The random forest model
outperformed the other two models. As a human control, three radiologists diagnosed an independent testing
data set. The random forest model had a computation time of less than a second for the whole data set
for classification. Accuracy and the area under the receiver operating characteristic curve were 92.7% and
0.98 for the training data set and 85.7% and 0.97 for the independent testing data set, respectively. Compared
with the mean diagnosis time of approximately half a minute per patient and the highest accuracy of 76.2%
for the three radiologists, the random forest model was faster and more accurate for our data set. These
results suggest that the machine learning model based on hemodynamic features from quantitative digital
subtraction angiography is a promising tool for detecting hemorrhagic brain arteriovenous malformations.

INDEX TERMS Brain arteriovenous malformation, digital subtraction angiography, machine learning,
quantitative analysis, rupture risk, time-density curve.

I. INTRODUCTION
In digital subtraction angiography (DSA), continuous X-ray
acquisition with contrast agent injection in the target vessels
and subtraction of images without contrast are employed to
eliminate all background structures, except for the enhanced
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vasculature. Because it has the highest spatial and temporal
resolution among all clinical imaging modalities, it is con-
sidered the gold standard for the diagnosis of cerebrovas-
cular diseases, such as brain arteriovenous malformations
(BAVMs). A BAVM is an abnormality of the vasculature
occurring when an artery directly connects to a vein without
a buffer capillary. This abnormality leads to a high-flow
shunt and eventually results in the rupture of the vessel,
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causing intracranial hemorrhage with a high risk of death.
This disease is rare but fatal, occurring in 1.42 people
(95% confidence interval 1.3–1.6) and being fatal in 0.70 peo-
ple (95% confidence interval 0.6–0.8) per 100,000 person-
years [1]. The precise diagnosis of hemorrhagic BAVMs is
crucial for treatment planning. Many treatment strategies are
available for BAVMs, including medication, embolization,
microsurgery, and stereotactic radiosurgery. A randomized
trial revealed that medication is superior to any other inter-
vention therapy for an unruptured BAVM [2]. Therefore,
the level of hemorrhagic risk is a critical factor in treatment
decisions.

Relevant clinical features, including clinical presentation
and angioarchitecture [3], are associated with rupture inci-
dence. Although such clinical features are straightforward,
their accurate assessment requires complex computed tomog-
raphy (CT) or magnetic resonance imaging (MRI) protocols,
long scanning time, and experienced radiologists. Besides,
intranidal aneurysms and complexed venous outlets are occa-
sionally beyond the scope of CT and MRI. Furthermore,
the overall clinical features of individual BAVMs are too
complex, with approximately 30 variables, for clinical radiol-
ogists to fully comprehend. Additionally, inconsistent results
have been obtained regarding the relationship between clini-
cal features and rupture risk. For example, one study revealed
the size of the AVM nidus to be associated with intracerebral
hemorrhage [4], whereas another indicated that it is not a
risk factor [5]. The lack of consistency in previous study
results might be caused by differences in the population of the
patient cohort, subjective clinical confounders, or radiologists
with different levels of expertise. Although angioarchitectural
analysis is conventionally used in hemorrhagic risk analysis,
it is occasionally criticized for being too subjective, and
many years of training are required to master the necessary
interpretive skills.

Quantitative DSA (QDSA) is a different approach for
assessing risk levels. QDSA defines the salient features
from the time-density curve (TDC) of a selected region of
interest (ROI) as an objective method for quantifying the
hemodynamics of the cerebrovasculature. QDSA provides a
surrogate hemodynamic marker and has shown promising
results for evaluating the severity of several cerebrovascular
diseases, such as dural arteriovenous fistula, carotid stenosis,
and BAVMs [6]–[8]. A ruptured BAVM leads to hemorrhage
and results in the change of intracranial pressure as well
as the hemodynamic conditions. QDSA features can reflect
the functional discrepancy between unruptured and ruptured
BAVMs. For example, in our previous study [8], we found
that the higher the stasis index (SI; a QDSA feature deter-
mined by the wash-in slope [WI] divided by the absolute
value of the wash-out slope [WO] of the TDC), the higher the
level of stagnant outflow. Compared with clinical features,
the quantification of temporal information is less intuitive;
thus, it has not been commonly used in clinical practice.
Nonetheless, QDSA is clinically easier to assess than clinical
features; thus, it has more potential for clinical application.

In the clinical setting, it is challenging for radiologists to
assess multiple clinical features and hemodynamic QDSA
features simultaneously. Machine learning is a powerful
approach for managing massive data with high-dimensional
features; it has been used to predict the outcomes of sev-
eral cerebrovascular diseases [9], [10]. To our knowledge,
no researcher has used the temporal features of DSA to build
machine learning models for the assisted diagnosis of hem-
orrhagic BAVMs and compared its performance with that of
clinical radiologists. In this study, we aimed to detect the rup-
tured BAVMs by using QDSA features and machine learning
algorithms. Furthermore, we compared model performance
to the diagnosis by clinical radiologists.

II. STUDY COHORTS AND IMAGING PROTOCOL
This study was approved by the local institutional review
board. Cases of 171 patients with BAVMs between 2011 and
2019 were collected retrospectively and randomly separated
into the training and testing data sets for the analysis. A total
of 150 cases were used in the data set used to train the models,
and a separate data set comprising 21 cases was used for
testing. No significant differences were found in age, gender
ratio, and hemorrhage BAVM percentage between the train-
ing and testing data sets (see Table 1). All BAVM diagnoses
were confirmed usingDSA acquisition. The intracranial hem-
orrhages caused by the BAVMs were further validated using
imaging modalities such as CT andMRI as the gold standard.

TABLE 1. Demographics of participants in the training and testing data
sets.

Images for all cases were collected using the same scanner
(Artis zee, SiemensHealthcare) following a standardized rou-
tine protocol. The anterior-posterior and lateral projections
were simultaneously acquired because of the biplane design
of the scanner. The power injector (Angiomat ILLUMENA,
Liebel-Flarsheim) with a 4-French size catheter was preset
to 1000 psi and located at the C4-6 vertebral body level
for common carotid and vertebral artery injection. In order
for standardization, we choose those placed at the C4 level
with good image quality and without complications after the
examination. At 0.2 s after image acquisition commence-
ment, diluted contrast agent (Omnipaque-350 with the total
volume of 12–14 mL) was injected for 1.5 s to form a
bolus. Two frame rates were used for acquiring DSA images.
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FIGURE 1. Quantitative DSA. ROIs in the anterior-posterior and lateral projection (A, B). Schematic of TDC analysis and hemodynamic parameters (C, D).

One was constant at a rate of 6 frames per second (FPS) to
the end. Another was dynamic at 7.5 FPS for the initial 5 s,
followed by 4 FPS for 3 s, then 3 FPS for 2 s, and finally
2 FPS to the end. The radiographer determined the duration
of acquisition based on adequate visualization of the venous
structure. Overall acquisition times ranged from 5 to 15 s.

III. QUANTITATIVE DSA
Fig. 1 displays the key features of QDSA analysis. Clinical
radiologists delineated the ROI at the nidus of the BAVM for
the time-density analysis (Fig. 1A, B). The TDC denotes the
average grayscale density within the ROI at each time point
(Fig. 1C). It was fitted by the gamma-variate function [11]
with the trust-region-reflective least square algorithm [12] to
reduce random noise and recirculation caused by overlapping
vessels. The form of the fitted function is given as follows:

D (t) = K× (t − t0)α × e−(t−t0)/β ,

where D is the function of grayscale density with respect to
time t , t0 is the appearance time, K is the scaling constant, and
α and β are the arbitrary parameters. D = {d1, d2, . . . , dN }
corresponds to time T = {t1, t2, . . . , tN }, where N is the total
number of temporal points.

Eight hemodynamic parameters (Fig. 1D) were quantified
from the fitted TDC: peak density (PD), bolus arrival time
(BAT), time to peak (TTP), WI, WO, SI, full width at half
maximum (FWHM), and area under the curve (AUCTDC).
They were defined as follows:

PD = max (D (t))
BAT = ta, (D(ta) = 20)
TTP = argmax (D (t))

WI = max
(
dD
dt

)
WO = min

(
dD
dt

)
SI =WI/ |WO|

FWHM = th2 − th1, (th2 > th1)

AUCTDC =

∫ tN

t1
D (t) dt,

PD is the maximum value of the density. BAT is the time
point at which the density reaches D(ta), which is the arrival

density and is set at 20 arbitrary units. The argmax operator
refers to the argument of the maximum in a function, and
TTP is the argument, which is the time point at which the
maximum value of the fitted function occurs. WI and WO
are the increasing and decreasing slopes of the fitted TDC,
respectively. FWHM is the duration between the time points
at the densitiesD(th1) andD(th2), which are the densities with
values that are half of the PD value. AUCTDC is the integral
of the fitted function, which is the area under the TDC. SI
is calculated by the division of WI by the absolute value of
WO [8]. There were two projections with 8 parameters each;
thus, the total number of QDSA features was 16 for each
participant in the study.

As described in the imaging protocol section, two frame
rate types were used: one was constant and the other was
dynamic. The original TDC conducted using a constant rate
was resampled using a dynamic one; then, curve fitting was
applied to both curves. The quantitative parameters derived
from the fitted curves using constant and dynamic rates were
the same.

IV. MACHINE LEARNING APPROACHES
Feature selection is a prerequisite to building machine learn-
ing models, and redundant features used in training may
degrade model performance for prediction. Here, the filter
type method [13] was used, and features were all normal-
ized to zero mean and unit variance. Three commonly used
machine learning algorithms, namely random forest, naïve
Bayes, and support vector machine (SVM), were used for
training and testing. The machine learning models have dif-
ferent hyperparameters that are external to the model and
must be determined before model training. Table 2 lists the
hyperparameters that were optimized in our study, and the
following section describes the algorithms and models used.

A. FEATURE SELECTION
Four types of algorithm were used to rank the features: the
chi-squared test, minimum redundancy maximum relevance
(MRMR) algorithm [32], ReliefF [33], and two-sample t test.
Each feature ranking algorithm is described in brief as

follows:
1) Chi-squared test: This test was used to examine the

individual dependency between the QDSA feature and
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TABLE 2. Hyperparameters of machine learning models in this study.

the target variable (i.e., BAVM hemorrhage). If depen-
dency was found between the feature and target vari-
able, the p valuewould be small. The rankingwas based
on the value of − log (p).

2) MRMR: This minimizes the redundancy of a set of
features and maximizes the relevance of the feature set
corresponding to the target variable based on mutual
information so that feature importance is ranked.

3) ReliefF: This algorithm is used to perform scoring
based on the relationship between a random observa-
tion and its nearest neighbors. It iteratively updates the
score by a positive term if a feature is different from
its neighbors with different target variables and by a
negative term if a feature is different from neighbors
with the same target variable.

4) Two-sample t test: This is a statistical test of the dif-
ference in feature means between the target variables.
If the mean of a QDSA feature in one target variable
was different from the other, the p valuewould be small.
− log (p) was applied for feature ranking.

B. RANDOM FOREST
In a random forest [17] the concept of a majority vote is
applied. A random forest combines many decision trees, and
the final classification depends on the class that has the most
votes where a tree gives each vote. Each decision tree is built
using a bootstrap data set, which comprises randomly sam-
pled data with replacement from the training data set, and is
evaluated using out-of-bag data. Two hyperparameters are to
be optimized in the random forest, namely the number of trees
andminimum leaf size. Generally, themore trees there are in a
random forest, the higher is the performance, but performance
decreases beyond a certain point. The minimum leaf size is
the smallest number of observations in a decision tree, and
the model tends to overfit when the leaf size is too large.
The random forest is a classic ensemble learning method with
proven applicability in many settings [19], [30], [31].

C. NAÏVE BAYES
The naïve Bayes classifier [18] is based on Bayes’ theorem,
and it assumes that features are independent and Gaussian
distributed. The classification results for a new data set are
determined by its likelihood of being posteriorly distributed,
which is proportional to the multiplication of the prior and
likelihood in the training data set. The prior of the data is the
distribution of each class, and the likelihood is the distribution

of each predictor. Because the assumption of a Gaussian
distribution may not hold for features, the use of a kernel
estimator in naïve Bayes has been suggested to provide higher
performance than the Gaussian naïve Bayes [19].

D. SVM
The SVM [20] is an algorithm that finds a hyperplane to
separate each class with the maximal margin. It is easy to find
the boundary in linearly separable data distribution; however,
the data is not always ideally distributed. Generally, a kernel
method is applied to map the data to a higher dimension and
make it separable, and the type of the kernel is a hyperparam-
eter. The distance between the data and the hyperplane is the
margin. A hard margin can make a complete separation but is
sensitive to the outlier and the overlapping of classes. On the
other hand, a soft margin allows for misclassifications within
the margin and is more robust in real-world applications. The
box constraint is a penalty term that decides the cost of the
misclassification, and the higher it is, the harder the margin
becomes.

E. BAYESIAN OPTIMIZATION
A fundamental method for adjusting the hyperparameters
involves testing every possible combination to find the one
with the highest performance, but this is time consuming.
The aim of Bayesian optimization [14] is to optimize the loss
function composited using different hyperparameters. It is
based on the Gaussian process and assumes a multivariate
normal distribution of the loss function at every point of the
hyperparameters. Standard deviation, which represents the
uncertainty of the loss value at a certain point, decreases once
that point is known. An acquisition function is applied to
decide the next point of the hyperparameters by accounting
for the mean and standard deviation of the estimated loss
function, and the estimated loss eventually approaches the
true loss. The estimated minimum loss was obtained through
an acceptable number of iterations, that is, 100 loops in our
experiment. Compared with the trial of every possible com-
bination of the hyperparameters, Bayesian optimization was
an efficient approach for the optimization of the hyperparam-
eters [14]. Additionally, we applied 5-fold cross-validation
for the training data set to prevent the model from overfit-
ting. The whole training data set was trained again using the
optimal hyperparameters to achieve the final model for the
classification of the training and testing data sets.

V. EXPERIMENTAL SETUP AND WORKFLOW
The experiment was performed on a personal computer
with intel CPU Core-i7 9700 and 64 gigabytes of RAM.
The computer programming language MATLAB v. R2019b
(MathWorks, Inc.) was used to perform time-density analysis
and the model learning process. The Statistics and Machine
Learning Toolbox and Optimization Toolbox in MATLAB
were utilized to fit the TDC, rank the features, build the
machine learning models, and optimize the model hyperpa-
rameters.
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FIGURE 2. Experimental workflow with the steps of feature extraction, feature selection, training machine learning models, and
performance evaluation.

Fig. 2 depicts the overall workflow of the experiment.
First, an experienced clinical radiologist delineated the nidus
of the BAVM and then conducted a semiautomatic TDC
analysis using in-house software developed under MATLAB
with a graphical user interface [8]. Second, the four fea-
ture selection algorithms were performed on QDSA fea-
tures to rank the features for machine learning. Machine
learning models were trained using the ranked features,
and the hyperparameters of each model were optimized
using Bayesian optimization through 5-fold cross-validation.
The classification of both the training and testing data sets
were generated for evaluation. Accuracy, sensitivity, speci-
ficity, area under the receiver operating characteristic curve
(AUCROC), and computation time were obtained to eval-
uate model performance. Because the optimal model was
assumed to have the ability to obtain the highest value
and lowest deviation between the training and testing data
sets, we chose the models based on the following criteria:
the highest average performance of the training and test-
ing data sets subtracted by the difference between them.
To provide a comparison, three experienced radiologists diag-
nosed the same DSA testing images based on their visual
inspection and empirical knowledge, as they do in clinical
practice.

VI. RESULTS
A. STATISTICS AND FEATURE RANKING
The mean and standard deviation of QDSA values corre-
sponding to the BAVM hemorrhage and the feature ranking
are presented in Table 3. Of 16 hemodynamic parameters,
9 and 13 parameters exhibited significant differences in the
chi-squared test and two-sample t test, respectively. The
MRMR and ReliefF are not statistical tests; thus, no signifi-
cant p value is available.
The mean PD was higher in the nonhemorrhage group,

and the difference was statistically significant for both

TABLE 3. QDSA results in the training data set.

anterior-posterior and lateral projections in both statistical
tests. Themean BATwas earlier in the nonhemorrhage group,
and this was statistically significant for both projections
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in the t test. An earlier mean TTP was observed for the
anterior-posterior projection, but the difference was not sta-
tistically significant. The mean inflow and outflow gradi-
ents, WI and WO, respectively, were significantly steeper
in the nonhemorrhage group. A higher mean SI (the ratio
of WI and the absolute value of WO) was observed in the
hemorrhage group, and the difference was statistically sig-
nificant for both projections in both statistical tests. The
mean FWHM was narrower in the nonhemorrhage group,
but the difference was only significant for the lateral pro-
jection in the t test. A smaller mean AUCTDC was observed
in the hemorrhage group, and the difference was statis-
tically significant for both projections in both statistical
tests.

B. MODEL PERFORMANCE
The models’ output was the probability of rupture and set
at 0.5 to calculate accuracy, sensitivity, and specificity. The
highest value and lowest deviation between the training and
testing data sets were the criteria for selecting the optimal
model. Moreover, the models with the least features were
preferred if their performance was the same. The hyperpa-
rameter values were different for every model with different
numbers of features. Table 4 lists the hyperparameters of
the chosen machine learning models, and Table 5 presents
their performance before and after feature selection. All
models had higher performance after feature selection than
before it.

TABLE 4. Hyperparameters and feature ranking algorithm of the chosen
models after Bayesian optimization.

Before feature selection (all 16 features involved in train-
ing), accuracy of the training data set was the highest 81.3%
for the random forest and the lowest 74.7% for the SVM.
The accuracy of the testing data set was the highest 85.7%
for the random forest, and the lowest 76.2% for the naïve
Bayes classifier and SVM. The sensitivity of the training

TABLE 5. Performance of the models for training and testing data sets.

data set was the highest 76.5% for the random forest and
the lowest 64.7% for the SVM. For the testing data set,
sensitivity was the highest 88.9% for the random forest and
the lowest 55.6% for the naïve Bayes classifier. The speci-
ficity of the training data set was the highest 85.4% for the
random forest and the lowest 82.9% for the naïve Bayes
and SVM models. For the testing data set, the specificity
was the highest 91.7% for the naïve Bayes classifier and the
lowest 83.3% for the random forest and SVM. For the train-
ing data set, the highest AUCROC was 0.93 for the random
forest and the lowest one was 0.84 for the SVM. For the
testing data set, the highest AUCROC was 0.89 for the random
forest, and the lowest one was 0.84 for the naïve Bayes
classifier.

After feature selection, the highest performance of the
random forest and naïve Bayes models was obtained using
the top six features and the top eight features ranked by
ReliefF, respectively. In the SVM, the highest performance
was obtained using the top seven features ranked by the t test.
The optimal model among the three machine learning algo-
rithms was the random forest, and its accuracy, sensitivity,
specificity, and AUCROC were 92.7%, 91.2%, 93.9%, and
0.98 for the training data set, respectively. For the testing data
set, they were 85.7%, 100%, 75.0%, and 0.97, respectively.
For the training data set, the accuracy, sensitivity, specificity,
and AUCROC of the naïve Bayes model were 81.3%, 76.5%,
85.4%, and 0.91, respectively. For the testing data set, they
were 81.0%, 66.7%, 91.7%, and 0.86, respectively. The SVM
model had accuracy, sensitivity, specificity, and AUCROC
of 83.3%, 83.8%, 82.9%, and 0.91, respectively. For the
testing data set, they were 81.0%, 88.9%, 75.0%, and 0.96,
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respectively. After feature selection, all the models had fewer
features, and their performance was improved. The computa-
tion time of themachine learningmodels for the whole testing
data set was less than 1 s.

C. DIAGNOSIS BY RADIOLOGISTS
Three radiologists (one neuroradiologist with 15 years of
experience, one neuroradiology fellow, and one resident with
4 years of training) diagnosed all cases in the testing data set
based on DSA images. Table 6 describes their performance
in terms of accuracy, sensitivity, specificity, and AUCROC.
The average accuracy was 66.7%, with a minimum value
of 52.4% and a maximum value of 76.2%. The fellow had
the highest performance, with sensitivity of 66.7% and speci-
ficity of 91.7%. Their mean diagnosis times ranged from 17 to
33 s, with an overall mean of 28 s. An AUCROC of 0.78 was
obtained from the average of the three diagnoses.

TABLE 6. Radiologists’ performance for the testing data set.

VII. DISCUSSION
A. SUPERIOR PERFORMANCE BY THE PROPOSED MODEL
In this study, we used QDSA, which provides temporal
hemodynamic information, to train machine learning models
to detect hemorrhagic BAVMs. Of our models, the random
forest model had the highest performance, with accurate
detections of 92.7% and 85.7% and AUCROC values of 0.98
and 0.97 for the training and testing data sets, respec-
tively. The sensitivity and specificity of the random for-
est model were 91.2% and 93.9% for the training data set
and 100% and 75.0% for the testing data set. Fig. 3 dis-
plays the receiver operating characteristic curves for the
random forest model for the training and testing data sets
as well as the mean diagnostic results by radiologists for
the testing data set, with AUCROC values of 0.98, 0.97,
and 0.78, respectively. The results showed that the ran-
dom forest model trained with hemodynamic features from
QDSA analysis was superior to the diagnoses of radiolo-
gists and could help clinical radiologists with complex risk
assessment.

B. RISK ASSESSMENT WITH CLINICAL FEATURES
Clinical features are currently the primary measures used
for hemorrhagic risk assessment, and such features have
been well investigated. Guidelines concerning the clinical
features of BAVMs are available and provide a standard

FIGURE 3. Receiver operating characteristic curve of the random forest
model for the training and testing data sets, and the average of diagnoses
by radiologists.

for researchers and trials [3]. The Spetzler-Martin grade,
based on the eloquent area, nidus size, and deep location,
has been used for the risk assessment of BAVM-related
brain surgery [21]. Nevertheless, this grading system is
not intended for hemorrhagic risk assessment. One study
revealed that input flow pressure and venous outflow restric-
tion are meaningful predictors of hemorrhagic BAVMs [22].
A meta-analysis showed that the deep location of the BAVM,
a small number of drainage veins, flow-related aneurysms,
and venous ectasia are all independent factors related to hem-
orrhage risk [5]. Many researchers have obtained the same
results in terms of the relationship between venous angioar-
chitecture and the risk of BAVM hemorrhage [4], [5], [23].
Nonetheless, despite the proven relationship between clinical
features and hemorrhagic risk, a precise evaluation of the
angioarchitecture requires a clinical radiologist with years of
experience, and such an evaluation takes considerable inter-
pretation time. Other modalities with 3-dimensional spatial
information are also required under certain circumstances.
In a clinical emergency, this is not an ideal approach for
hemorrhagic risk assessment.

C. STUDIES REGARDING QUANTITATIVE DSA
In contrast to clinical features, QDSA can be conducted
immediately by defining vascular ROIs directly on DSA
images. The quantitative parameters of TDC objectively
reflect the hemodynamics of the cerebrovasculature. The dif-
ference in hemodynamics is important, and a study demon-
strated the difference within various brain vessels through
an independent component analysis to separate the artery,
capillary, and vein using TDC [24]. Similarly, normal and
abnormal brain vessels have different hemodynamic proper-
ties. A relative TTP was prolonged in a patient with the steno-
occlusive arterial disease before stent placement compared
with a normal control [25]. BAT, TTP, WO, FWHM, and
AUCTDC were reduced in patients with carotid stenosis after
stenting [7], indicating increased flow through the carotid
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artery after treatment. Additionally, TTP has been used to
estimate the cerebral circulation time for the detection of
vasospasms in patients with subarachnoid hemorrhages [26].
A double peak sign of the TDC was observed in dural arte-
riovenous fistula and is used for the evaluation of venous
drainage function [6].

Regarding BAVMs, a previous study found that the TTP
of the feeding artery was lower in patients with hemor-
rhages than in patients with seizures, and TTP was used to
assess hemorrhagic risk in BAVMs by QDSA [27]. Another
study revealed that the mean transit time and the ratio of
the mean transit time of the draining to the feeding ves-
sels showed statistical differences between hemorrhagic and
nonhemorrhagic BAVMs [34]. A recent study also found a
prolonged mean transit time in restricted venous drainage
and a prolonged cerebral circulation time in BAVMs with
hemorrhage [35]. Additionally, in a previous study, we intro-
duced the SI and found that it was associated with supraten-
torial BAVM rupture at the most dominant drainage vein [8].
In that research, we also demonstrated that BAT, TTP, SI,
and FWHM at the cavernous internal carotid artery as well
as PD, BAT, SI, and FWHM at the drainage vein all differed
significantly between patients with and without hemorrhage.
In the present study, instead of measuring the feeding artery
and drainage vein, we directly assessed the nidus of the
BAVM. We found that almost all QDSA features (except
for TTP for both anterior-posterior and lateral projections as
well as FWHM for the anterior-posterior projection) were
significantly different between patients with and without
hemorrhage. On average, PD, WI, and AUCTDC were higher
in nonhemorrhagic patients, and BAT, WO, SI, and FWHM
were lower in nonhemorrhagic patients. This phenomenon
was related to more stagnant outflow in the hemorrhagic
BAVM [8], [35]. All of the aforementioned findings thus
support the efficacy of QDSA for assessing cerebrovascular
diseases.

D. PREVIOUS MODELS
Most relevant studies have focused on finding predictors of
BAVM hemorrhage from clinical features [4], [5], [8], [23],
[36], [37]. Feghali et al. developed a scoring model termed
R2eD [36] based onmultivariable logistic regression to detect
hemorrhagic BAVMs based on race (nonwhite vs. white),
exclusive deep location, BAVM size (small vs. large), venous
drainage (exclusive deep vs. other), and monoarterial feeding
(1 vs. >1 feeding artery). They used the hold-out method,
in which half of the data was split as the validation data
set to observe if the model was overfitting; the AUCROC
was 0.685. Although clinical features are more intuitive,
variation in hemodynamics can directly alert clinicians to
the risk of a hemorrhagic BAVM. Our previous study intro-
duced the SI [8], which reflects hemodynamic differences
between hemorrhagic and nonhemorrhagic BAVMs, to build
a predictive model using logistic regression, and the AUCROC
was 0.75. Huang et al. combined clinical features with
TTP to build a statistical model using multivariable logistic

regression, and the AUCROC was 0.838 [37]. In that study,
the combination of clinical features with QDSA improved
the predictive model. Table 7 of this article summarizes the
predictors and performance of the predictors from the afore-
mentioned studies. In this study, we used QDSA from BAVM
nidus through machine learning algorithms with proper fea-
ture selection and hyperparameter optimization and found
AUCROC values of 0.98 and 0.97 for the training and testing
data sets, respectively. Our study verified the feasibility and
application of machine learning models for detecting hemor-
rhagic BAVMs using QDSA.

TABLE 7. Comparison with other studies.

E. REDUNDANCE OF CLINICAL FEATURES
The proposed machine learning method can efficiently detect
hemorrhagic BAVMs using QDSA features. Compared with
clinical radiologists, it performed faster and more accurately.
It can assist in diagnosis in clinical settings. Because machine
learning algorithms can effectively manage high-dimensional
features, it is reasonable to hypothesize that the use of QDSA
combined with clinical features may improve detection accu-
racy. However, we found that the inclusion of clinical fea-
tures, namely seizure, headache, focal deficit, supratentorial
location, dilated feeder artery, sprouting angiogenesis, non-
sprouting angiogenesis, single drainage, multiple drainage,
number of drainage veins, venous rerouting, venous ectasia,
exclusive deep veins, and venous sacs, did not result in a clear
improvement in results. The accuracy, sensitivity, specificity,
and AUCROC of the model with clinical features were 71.4%,
55.6%, 83.3%, and 0.91, respectively, for the testing data set.
Given the direct availability of QDSA, it could bemore useful
than clinical features.

F. SUPERIORITY OF THE RANDOM FOREST MODEL
Our experimental result revealed that the random forest
model outperformed the naïve Bayes and support vector
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models. The main limitation of the naïve Bayes model is the
assumption of independence among the predictor features.
Because QDSA features are quantified from the same TDC,
they do not meet the independence assumption. In terms of
SVM, performance is limited when features between classes
have overlapping distributions. Despite the presence of sta-
tistically significant differences in QDSA features between
the nonhemorrhagic and hemorrhagic groups, an overlap was
observed from their mean and standard deviation values.

A random forest model involves the implementation of the
universal concept that two heads are better than one, and
it does not require any assumptions. By combining multi-
ple decision trees, the random forest model can balance the
bias–variance tradeoff associated with most machine learn-
ing methods, and this enhances its performance. Addition-
ally, because resampling bootstrap data sets are used, the
random forest model can robustly manage data sets with
limited sample sizes [30]. Earlier studies have demonstrated
its feasibility and efficacy in practical application [19], [31].
Studies have also shown the superiority of the random for-
est model to other single-learner-based machine learning
models. A study compared the performance of different
classification algorithms applied to asphalt pavement dete-
rioration data and reported that the random forest model
outperformed the naïve Bayes model [19]. Another study
that assessed groundwater potential demonstrated that the
random forest model was superior to kernel-mapped SVM
models [31]. In the present study, the random forest model
was trained using QDSA features and effectively detected
hemorrhagic BAVMs on DSA, thereby improving the rupture
assessment.

G. FEATURE SELECTION AND HYPERPARAMETER
OPTIMIZATION
The purpose of feature selection is to eliminate redun-
dant or irrelevant features such that the model exhibits higher
performance and becomes simpler to train and easier to
interpret. A study showed higher model performance than
other models in the detection of Parkinson disease from
voice signals, and the related researchers used the chi-squared
model to rank features for the removal of noisy features [38].
Another study developed a two-stage model to diagnose heart
failure by using a statistical model based on mutual infor-
mation at the first stage and a neural network at the second
stage, and the performance of this model was higher than
the other 28 prediction models [39]. A feature ranking algo-
rithm named ReliefF [33] was used to predict compressive
strength and concrete composition, and the result revealed
higher correlation and fewer errors than the model without
feature selection using ReliefF [40]. In addition, a ReliefF-
based artificial neural network had 100% cross-validation
accuracy for fault diagnosis in ball bearings [41]. In the
present study, we used the aforementioned algorithms to
rank features and perform selection to find the optimal sub-
set. Higher performance was found after feature selection.
Moreover, the optimal model was the random forest trained

using the top six features ranked using the ReliefF algo-
rithm. Fig. 4 presents the violin plot of the top two and
last two features ranked using ReliefF. The more distinct
distribution between nonhemorrhage and hemorrhage was
observed for the top two features than for the last two
features.

FIGURE 4. The violin plot for the top two (SILAT and FWHMLAT) and last
two (BATAP and BATLAT) QDSA features ranked by the ReliefF algorithm.
Subscript LAT and AP are the abbreviations of lateral and
anterior-posterior projections.

Hyperparameter optimization is another important con-
cern in the development of an efficient machine learn-
ing model. The common scheme for finding appropriate
hyperparameters involves empirical manual tuning. With this
method, the result highly depends on the operator’s expe-
rience, and finding the optimal solution cannot be guaran-
teed every time. Grid search is another method for testing
every combination of hyperparameters and for finding
the globally optimal hyperparameters; however, it is time
consuming and impractical for the current application.
Alternatively, Bayesian optimization [14] and the genetic
algorithm [43] are two efficient methods for hyperparameter
optimization. The genetic algorithm is an efficient approach
inspired by Darwin’s theory of natural evolution. It evaluates
and selects parent candidates with favorable performance
from a given population. Then, the offspring take the prop-
erties from the parent through crossover, and some proper-
ties are altered through mutation to prevent the model from
becoming stuck in a local optimum. The genetic algorithm
has been used in machine learning and achieves satisfac-
tory performance [45], [46]. In this study, we attempted
to use both Bayesian optimization and the genetic algo-
rithm with the same computational costs (100 models) to
optimize the hyperparameters of the random forest with all
QDSA features. The accuracies were 81.3% and 85.7% for
the training and testing data sets, respectively, for Bayesian
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optimization and 78.7% and 81.0%, respectively, for the
genetic algorithm. Because the Bayesian optimization had
performance superior to that of the genetic algorithm for our
data sets, we adopted it in this study. Nevertheless, a previ-
ous study demonstrated that the genetic algorithm could be
more effective than Bayesian optimization [47]. Therefore,
depending on the data set, either the Bayesian optimiza-
tion or genetic algorithm can be considered for hyperparam-
eter optimization when machine learning models are being
developed.

H. STUDY LIMITATIONS
Despite the favorable outcomes, this study has some limita-
tions. First, we did not examine the uncertainties caused by
different protocols and modalities. A previous study reported
the complete mixing of the contrast agent with blood flow
and that it did not separate once mixed [28]. This study
proved that the TDC could represent the real hemodynamics
of blood flow, and it did not show variability under typical
imaging protocols. Second, the selection of ROIs was not the
same every time, and we did not account for intraobserver
and interobserver reliability. Previous studies, however, have
demonstrated the consistency of QDSA by showing its robust
and clinical reproducibility [6]–[8], [24]–[26]. Third, even
though two projections of 2D-DSA were acquired simul-
taneously, it was not possible to fully compensate for the
overlapping of vasculatures. A 4D-DSA technique has been
developed recently, offering both three-dimensional structure
and temporal cerebrovasculature information [29]. This is
a solution to the problem of overlapping vessels and has
the potential to achieve better performance than 2D-DSA in
the application of QDSA. Future studies are warranted on the
external validation and reliability of ROI selection. Finally,
although the proposed model trained by QDSA features has
superior performance, modern angiography machines can
perform ‘‘flat-panel CT’’ to confirm intraoperative bleeding
during angiography in one or two minutes. Our proposed
model may assist radiologists in determining the hemor-
rhage risk before additional radiological examinations such as
flat-panel CT.

VIII. CONCLUSION
In clinical settings, the evaluation of angioarchitecture needs
to be performed by specialized radiologists. This is time
consuming and tends to be subjective. Conversely, QDSA
objectively quantifies the temporal information of the cere-
brovasculature by delineating the nidus of the BAVM on
DSA images without further assessment by clinical radi-
ologists. In this study, the accuracy of detecting hemor-
rhages through machine learning models based on QDSA
features exceeded that of diagnosis by trained radiologists
in the detection of hemorrhagic BAVM. QDSA combined
with the random forest model is thus a promising approach
for the evaluation of hemorrhagic BAVMs and has the
potential to be used for detecting other cerebrovascular
diseases.
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