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ABSTRACT With the advent of convolutional neural networks, research progress in visual saliency
prediction has been impressive. While integrating features at different stages from the backbone network is
important, feature extraction itself is equally relevant. A network may lose representative information during
feature extraction. We address the loss of spatial information and perform a fusion of features extracted from
RGB and depth data for eye-fixation prediction. Specifically, we propose an asymmetric feature extraction
network comprising an edge guidance module (EGM) and a feature integration module (FIM) that processes
RGB-D images. Edge guidance supports the extraction of spatial information, while feature integration
merges features from RGB images and the corresponding depth maps. We obtain the eye-fixation prediction
maps by linearly fusing the features from the backbone network with those optimized using the two modules.
Experimental results on NCTU and NUS, two benchmark datasets for RGB-D saliency prediction, verify the
effectiveness and high-performance of the proposed network compared with similar methods.

INDEX TERMS Convolutional neural network (CNN), human eye-fixation prediction, asymmetric feature

extraction, edge guidance module (EGM), feature integration module (FIM).

I. INTRODUCTION

The attention mechanism in the visual system enables
humans to filter out redundant or irrelevant information from
massive visual data and automatically select the most out-
standing or interesting areas in a visual scene for further pro-
cessing. Without the visual attention mechanism, we would
not be able to process the rich information from scenes we
see every day. The ability to process information mimicking
the visual attention mechanism is known as saliency detection
in computer vision. As a preprocessing step, saliency detec-
tion promotes efficiency in a wide variety of vision-oriented
multimedia applications, such as semantic segmentation
[1]-[5], image quality assessment [6], [7], image and video
compression [8], [9], image retargeting [10], [11], image
classification [12]-[14], and image retrieval [15], [16].
Saliency detection can be divided into eye-fixation prediction
[17]-[20], which predicts the focus of the human gaze,
and salient object detection [21]-[25], which extracts the
most salient objects or regions from a scene. In this study,
we focused on eye fixation.
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Over the past two decades, many methods for eye-fixation
prediction have been proposed. These methods can either be
based on learning using handcrafted features and low-level
cues or adopt deep learning to leverage convolutional neu-
ral networks (CNNs) and high-level semantic features. The
traditional methods often fail to achieve high-performance
image processing by the difficulty of achieving effective
feature extraction. For instance, Harel et al. [26] proposed
a simple model called Graph-Based Visual Saliency (GBVS)
that forms activation maps on certain feature channels and
then highlights conspicuous areas and admits combination
with other maps for normalization. Zhang et al. [27] proposed
the Saliency detection by combining simple priors (SDSP)
network that combines three simple priors: frequency priors,
color priors, and location priors. Qi ef al. [28] proposed a
model based on bandpass filtering to resemble visual per-
ceptual processing. On the other hand, CNNs have bro-
ken the deadlock given their excellent feature extraction
ability that allows independent extraction of effective fea-
tures for different images and extracts high-level seman-
tic information from images. Simonyan and Zisserman [29]
investigated the effect of the CNN depth on accuracy in
a large-scale image recognition setting and proposed a
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very deep CNN to this end. He et al. [30] pointed out
that deeper networks are more difficult to train, and thus
developed a residual learning framework to ease training.
Huang et al. [31] introduced a dense convolutional net-
work that links every pair of layers with a feedforward
connection.

In recent years, several models have been proposed to solve
various problems in eye-fixation prediction. Lang et al. [32]
and Yao and Hang [33] addressed the influence of depth
cues on visual saliency. Cornia et al. [34] proposed a deep
multilevel network for saliency prediction. Jia and Bruce [35]
introduced an expandable multilayer network for saliency
prediction. Kruthiventi et al. [36] devised a fully CNN
for predicting human eye fixation. Yang et al. [37] pro-
posed a dilated inception network for visual saliency pre-
diction. Lv ef al. [38] developed an attention-based fusion
network for human eye-fixation prediction in 3-D images.
Cheng et al. [39] proposed a computational model for stereo-
scopic visual saliency prediction. Some of these methods
are based on RGB single-stream input data, and others are
based on RGB-D dual-stream input data. Considering that
depth maps contain abundant spatial and shape informa-
tion, they complement and are highly correlated with RGB
images. Therefore, compared with RGB input data, RGB-D
data are being increasingly adopted in computer vision
research [28], [40]-[43].

We propose a CNN based on RGB-D data for eye-fixation
prediction. Directly fusing RGB and depth information is
usually insufficient to complete challenging computer vision
tasks. Zhang et al. [44] proposed a linear fusion strat-
egy to integrate RGB images and depth maps. Likewise,
Wang et al. [45] proposed a visual attention module for their
fusion. Jiang et al. [46] proposed an attention mechanism
to allocate different weights to multilevel RGB and depth
features and obtain fusion features. Moreover, extracting fea-
ture information from a basic network may not be effective
enough. To address this problem, Li et al. [47] manually
produced features from four modes to compensate for the
disadvantages of a CNN. We devised an asymmetric feature
extraction framework to extract representative information
from RGB images and depth maps. As RGB images contain
more information than depth maps, we use different backbone
frames to extract complementary information from these two
types of data. Specifically, we use VGGNet16 as the encoding
network for RGB images and ResNet34 as the encoding net-
work for depth maps. Then, two feature optimization blocks,
the edge guidance module (EGM) and the feature integration
module (FIM), are introduced. We consider the features from
the first two layers as low-level features and those from the
last three layers as high-level features. Low-level features in
shallow layers can retain spatial information to reconstruct
object boundaries, while high-level features in the deep lay-
ers encode semantic information to obtain object descrip-
tions. The EGM complements spatial information from the
backbone network, and the FIM enhances the feature fusion
between RGB and depth data.
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Our contributions can be summarized as follows:

(1) Instead of using the symmetric network, we propose
an asymmetric network that processes RGB images and
depth maps to extract the features using the VGGNet16 and
ResNet34 networks, respectively, as a backbone framework
for feature extraction.

(2) The EGM ensures that features from the RGB image
and depth maps are fully extracted and then combined using
the FIM. By combining a spatial attention mechanism and
cross-modal fusion, the FIM provides a feature map with
detailed characteristics.

(3) The proposed network outperforms state-of-the-art
methods on two benchmark datasets for eye-fixation
prediction.

Il. PROPOSED NETWORK FOR HUMAN EYE-FIXATION
PREDICTION

The proposed network architecture includes four parts,
namely, feature extraction backbone network, FIM, EGM,
and decoder, as shown in Figure 1. The feature extrac-
tion backbone is modified from the VGGNetl6 [29] and
ResNet34 [30] networks. The FIM refines and enhances the
fusion of features from RGB images and depth maps. The
EGM restores spatial information lost during feature extrac-
tion. Finally, the decoder combines the information from each
part and gradually recovers the resolution of the original
image to generate the final prediction map corresponding
to human eye fixation. The four parts are detailed in Sec-
tions II.A-II.D. Then, we introduce the loss function for
network training in Section ILE.

A. BACKBONE NETWORK

VGGNet and ResNet are among the most commonly used
pre-trained backbone networks for human eye-fixation pre-
diction by their unique advantages. Both networks have their
extended versions. VGGNet networks include VGGNetll1,
VGGNetl3, VGGNetl6, and VGGNetl9. We select
VGGNetl6 as the backbone network for RGB feature
extraction. Similarly, ResNet networks include ResNetl8,
ResNet34, ResNet50, ResNet101, and ResNet152. We use
ResNet34 instead of the more common ResNet50 as the back-
bone network for depth feature extraction. As ResNet50 is
deeper than ResNet34, we consider sufficient to extract depth
information using the latter. In fact, for a learning task, once
a network provides accurate results, further deepening the
network provides no clear learning improvement. Instead,
increasing the number of parameters by adding more layers
to a network notably increases the computational burden.

As the VGGNet and ResNet networks were originally
intended for image classification, we adapt their structure
to perform human eye-fixation prediction. For VGGNet16,
we retain the first five convolutional layers (convl_2,
conv2_2, conv3_3, conv4_3, and conv5_3) and remove the
last two fully connected layers. An RGB input image of
size M x N provides a feature map of size 2% X ;—5 after
passing through the five convolutional layers. For ResNet34,
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FIGURE 1. Overview of proposed network.

we retain the residual block of the convolutional layer and
remove the average pooling and the last fully connected
layer. The first 7 x 7 convolution in ResNet34 constitutes
the first layer, and the following pooling layer and three
residual blocks correspond to the second layer. These blocks
are denoted as Convl_1, Conv2_3, Conv3_4, Conv4_6, and
Conv5_3, respectively. Similarly, a depth map of size M x N
provides a feature map of size ’Z‘Z X éVS

B. EGM

Spatial information is lost as the number of pooling opera-
tions increases. Although some methods use attention mecha-
nisms to prevent this problem [48]-[52], we consider that the
loss of spatial characteristics cannot be completely avoided
when a network implements more than four pooling oper-
ations. Zhang and Pang [53] noted that edge information
can provide useful fine-grained constraints to guide feature
extraction during segmentation, and only low-level features
can retain detailed edge information. Edge information not
only plays an important role in segmentation, but it is also
indispensable for human eye-fixation prediction. Edge fea-
tures provide information on the position, size, and shape of
salient objects. Therefore, we implement the proposed EGM
at the top of the first two layers to learn an edge attention
representation during early encoding and retain local edge
features.

EGM architecture is shown in Figure 2. Block1-Block4 are
called edge guidance blocks and comprise 1 x 1 and 3 x 3
convolutions. The outputs from layers conv2_2 and
conv2_3 are first upsampled to the same resolution of layers
convl_2 and convl_1 and then fed into the edge guidance
blocks. The feature after splicing, F'y, is given by

Frgb =f3x3(fl><l(fr1))) 'f3><3(fl><l(U(fr2))))v (1)
Faepn = f3x3(1x1(a,)) - f3x3(ix1(U(a,)),  (2)
F = rgh * Fdepth’ 3)
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where - represents concatenation, U represents upsampling
with a scale factor of 2, f,, and fg, (i 1, 2, 3) denote the
feature maps from the first two layers in the RGB and depth
networks, respectively, and f] x| and f3x3 denote convolutions
with kernels 1 x 1 and 3 x 3, respectively. During decoding,
F is fused with the features in the decoding block to enhance
both spatial information and the corresponding human eye-
fixation prediction.
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FIGURE 2. Architecture of proposed EGM.

C. FIM

RGB images convey visual characteristics by color discrimi-
nation, while depth maps represent the geometry of objects.
Thus, properly integrating features from RGB and depth
data is essential for human eye-fixation prediction given
their strong correlation and complementarity. However, depth
information also contains noise and interference, which may
be exacerbated by inappropriate fusion. Chen and Li [54]
proposed a block for the fusion of complementary percep-
tion features. Huang er al. [55] introduced a deep CNN
to gradually fuse features from high- and low-level layers.
Chen et al. [56] performed a fusion of multiscale, multipath,
and multimode features. Likewise, the proposed FIM enables
the fusion of features from RGB images and depth maps.

202767



IEEE Access

W. Liu et al.: Cross-Modal Feature Integration Network for Human Eye-Fixation Prediction in RGB-D Images

reshape

softmax
reshape
RGB feature

mean

softmax

reshape C

Depth feature

| !

FIGURE 3. Architecture of proposed FIM.

The detailed FIM architecture is shown in Figure 3. The
FIM consists of an attention mechanism for mining detailed
spatial information and cross-modal fusion for improving
the scope of the observable information in the feature map.
Let sets A and B denote the features from the attention
mechanism and cross-modal fusion, respectively. They are
computed as

A = soft max(reshape(figp) ® reshape(fuepn)), — (4)

B = soft max(f) x| (Mean(A) - Max(A))), (@)
C= res}lape(frgb ®fdepth) : (frgb @fdepth)s (6)
F,=B-C, @)
where F; (i = 2, 3, 4) represents the feature maps from

the last three layers in the backbone networks of RGB and
depth data, ® denotes multiplication, @ denotes addition,
Mean and Max represent the arithmetic mean and maximum
value of their arguments, respectively, figb represents the
features extracted from the RGB image, and fgep Tepresents
the features extracted from the depth map. A new feature
map is thus obtained by fusing the features obtained from
the attention mechanism and cross-modal fusion. This map
contains improved salient object features, spatial information,
and the final map reflecting human eye-fixation prediction.

D. DECODING NETWORK

The encoding process, provides salient object features from
RGB-D data, and the EGM and FIM refine and comple-
ment the extracted features. Generating the final prediction
map requires a decoder network to handle the obtained fea-
tures. Decoder networks are mostly constructed by super-
position and deconvolution. Although deconvolution helps
to map rough feature maps onto dense feature maps, it is
computation-intensive and may introduce uneven patterns in
some non-dense feature maps. As the proposed network con-
siders the importance of spatial information, we use bilinear
interpolation upsampling for the decoder network.

As shown in Figure 1, we implement five decoding blocks,
D-Block; (i = 1,...,5). Each decoding block performs
bilinear interpolation with a scale factor of 2, a 1 x 1 con-
volution, and a 3 x 3 convolution. Bilinear interpolation
gradually restores the image resolution, and the convolutions
integrate the features. The features from each mode (i.e., RGB
and depth modes) are gradually fused during each decoding
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phase, and the edge information obtained from the EGM is
integrated during the final decoding phase.

E. LOSS FUNCTION

We use the correlation coefficient (CC) and mean squared
error in the loss function between the ground truth and
eye-fixation prediction maps. The CC ranges from —1 to 1
and reflects the linear relation between two distributions.
As shown in Figure 1, the proposed network provides five
outputs with different scales. We calculate the ground truth
of each output using the loss function. Then, we obtain the
final loss by averaging the values obtained from the five loss
functions as follows:

o(P,G)

5 m
_ls L —GIP+1 - ————
LOSS—S(];(M;:”P G+ = <o
®)

where o(-) represent the standard deviation of the input,
||P — G||? denotes the square error, M is the number of pixels
per image, k denotes the number of loss function, which
corresponds to the number of outputs we have, i indexes the
ith pixel, index m ranges from 1 to M, o(P, G) denotes the
covariance of P and G, and P and G represent the prediction
and ground-truth maps, respectively.

Ill. EXPERIMENTS AND RESULTS

In this section, we report the implementation details of the
proposed network, datasets and indicators for evaluation,
ablation study, and experimental results.

A. IMPLEMENTATION DETAILS

We implemented and trained the proposed network on the
PyTorch 1.1.0 environment running on a computer equipped
with a NVIDIA TITAN Xp GPU with 12 GB of memory.
We used the first five layers of the pre-trained VGGNet16 as
the encoder network for RGB images, and the first five
layers of the pre-trained ResNet34 as the encoder network
for depth maps. The initial image input size of the model
was 224 x 224. The proposed network was trained in an
end-to-end scheme with a total of five outputs with cor-
responding image sizes of 14 x 14, 28 x 28, 56 x 56,
112 x 112, and 224 x 224. The final output was used as
the final saliency prediction map, and the four intermediate
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TABLE 1. Performance of proposed network with and without EGM and FIM. -EGM represents the removal of EGM. -FIM represents the removal of FIM.
-EGM & FIM represents the removal of EGM and FIM. -pyramid supervision represents the model without pyramid supervision. -All module represents the

model without pyramid supervision, and the removal of EGM and FIM.

Datasets Criteria -EGM -FIM -EGM & FIM  -Pyramid supervision — -All module  Proposed
CcC 0.8179 0.8165 0.8099 0.8280 0.7947 0.8321
NCTU KLDiv 0.4079 0.3298 0.3149 0.2974 0.3290 0.2832
AUC 0.8735 0.8781 0.8748 0.8804 0.8690 0.8777
NSS 1.9113 1.8998 1.8861 1.9269 1.8451 1.9433
CcC 0.5369 0.5289 0.5356 0.5352 0.5283 0.5498
KLDiv 1.4061 1.2791 1.1763 1.2208 1.1808 1.2251
U AUC 0.8507 0.8650 0.8611 0.8384 0.8385 0.8532
NSS 2.2297 2.0974 2.1377 22183 2.1462 2.2877

outputs were considered during the training of the multiscale
supervised network to improve the prediction performance.
To speed up convergence and improve efficiency for training,
the regions in each image were normalized with the mean
value from the RGB channel being the center before the
initial weight was input into the network. The initial learning
rate was 1 x 1074, and the batch size was one. When our
network performed well in the training set but poorly in the
verification set, we terminated training in advance, because
this behavior indicates overfitting. In this case, if training
proceeds, the network performance cannot be improved, and
the generalization ability may be undermined.

B. DATASETS

To effectively evaluate the performance of the proposed net-
work, we conducted tests on NUS and NCTU, two benchmark
datasets for human eye-fixation prediction. The NCTU and
NUS datasets, provided by The National Jiaotong University
and the National University of Singapore, contain 475 and
600 images captured from different scenes, respectively.
These datasets have been extensively used to evaluate human
eye-fixation prediction. Likewise, we used these datasets for
comparison of the proposed network with other methods.
From the 600 images in the NUS dataset, 420 were used for
training, 60 for verification, and 120 for testing. From the
475 images in the NCTU dataset, 332 were used for training,
48 for verification, and 95 for testing.

C. EVALUATION MEASURES OF EYE-FIXATION
PREDICTION
Several evaluation measures can be used for eye-fixation
prediction, such as the normalized scanpath saliency (NSS),
linear CC, information gain, area under the curve, earth
mover’s distance, similarity, Kullback—Leibler divergence
(KLD), and receiver operating characteristic curve. From
them, we selected four representative evaluation measures for
evaluation: NSS, linear CC, area under the receiver operating
characteristic curve (AUC), and KLD.

Let G and P represent the ground-truth and prediction
maps, respectively. The NSS reflects the mean score assigned
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by the unit normalized saliency map, Py, at human eye
fixations. It was introduced by Peters and Itti [57] for saliency
map evaluation and is defined as

1 & _
NSS = v ;PN(I), 9)

where N is the number of human eye fixations.

The linear CC measures the relationship between G and P,
where scores of —1 or 1 indicate perfect linear relation
between maps. The linear CC is given by

CcC = ﬂ. (10)
o(G)xo(P)

The AUC is widely used to evaluate maps estimated by
saliency models. Two image locations are used to determine
the AUC: a positive set of actual human fixations (i.e., fixa-
tion distribution) and negative set of points randomly sampled
from the image (i.e., non-fixation distribution).

The KLD is based on information-theoretic measures to
evaluate the information loss when a distribution is used to
represent another approximate distribution. It corresponds
to the probability interpretation of the eye-fixation prediction
and the density map of the ground truth:

N
KLDiv =" Gjlog 5’ (1)
i=1 i

D. ABLATION STUDY

The EGM provides edge information, and the FIM refines
features and restores lost spatial information to improve the
final saliency prediction map. To verify the effectiveness of
these modules, we conducted an ablation study using the
NCTU and NUS datasets. The results before and after remov-
ing the EGM and FIM are listed in Table 1 and shown in Fig.4.
Furthermore, we also conducted an ablation study to show
that the pyramid supervision training scheme effectively
improves the proposed network performance. In conclusion,
the proposed network (pyramid supervision) with EGM and
FIM outperforms the variant without these modules.
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RGB Ground-truth  Depth -EGM

FIGURE 4. Examples of performance of proposed network with and without EGM and FIM.

TABLE 2. The effectiveness of asymmetric network.

-FIM

-EGM & FIM -Pyramid -All module Proposed

Datasets  Criteria  Model A Model B Model C Model D Proposed
CC 0.8040 0.8156 0.8189 0.8267 0.8321
KLDiv 0.3120 0.3009 0.3027 0.3166 0.2832
NCTU AUC 0.8728 0.8773 0.8753 0.8813 0.8777
NSS 1.8688 1.9008 1.8994 1.9207 1.9433
CC 0.5356 0.5323 0.5326 0.5330 0.5498
KLDiv 1.3012 1.3237 1.1083 1.3250 1.2251
NUS AUC 0.8518 0.8350 0.8521 0.8412 0.8532
NSS 2.2017 2.2279 2.1150 2.2143 2.2877

Result

FIGURE 5. The visualization of the output of each module (Models A, B, and C, Proposed).

We observed that the current CNNs for the eye-fixation
prediction are limited because CNNs used for the eye-fixation
prediction are essentially a symmetric dual-stream input
encoder structure. Although this same encoder structure
improves the accuracy of the results, it also imposes a
bottleneck on the eye-fixation prediction. To verify the effec-
tiveness of asymmetric network in the proposed model,
we performed another ablation experiment. For this anal-
ysis, three variations of the model were constructed.
We devised three performance comparison models, namely,
A, B, C and D. In Model A, we keep the pipeline unchanged
while only replacing the ResNet34 with VGGNetl6 (two
streams of VGGNet, symmetric network). In Model B,
we keep the pipeline unchanged while only replacing the
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VGGNetl16 with ResNet34 (two streams of ResNet34, sym-
metric network). In Model C, we use ResNet34 as the
encoding network for RGB images and VGGNetl6 as the
encoding network for depth maps. In Model D, we use
VGGNetl6 as the encoding network for RGB images and
ResNet50 as the encoding network for depth maps. Table 2
summarizes the performances of models A, B, C, and our
model. Figure 5 shows the features (visualization of the
output of each module) generated by symmetric networks
(models A and B) and the features captured by the asymmet-
ric architectures (model C and Proposed model). The results
of models A and B show that using the two asymmetric
streams to extract features from RGB and depth information
can improve the performance. The results of model C and the
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TABLE 3. Performance of proposed and state-of-the-art methods on NCTU and NUS datasets.

Datasets  Criteria GBVS ~ Fang Qi MLnet DVA DeepFix  iSEEL  EML-Net  Proposed
cC 0.533  0.542  0.595 0.696 0.6834  0.7974 0.7578 0.7556 0.8321
KLDiv  0.619 0.674 0.616 0.900 1.1045 1.3083 0.3985 0.3886 0.2832
ety AUC 0.789  0.806  0.816 0.835 0.8023 0.8650 0.8315 0.8818 0.8777
NSS 1.184 1264 1373 1.588 1.5546 1.8575 1.7187 2.0666 1.9433
CcC 0396 0333 0371 0.446 0.4549 0.4322 0.5195 0.4857 0.5498
KLDiv  1.374 1.560  1.505 1.780 2.4349 1.8138 1.2479 2.2353 1.2251
e AUC 0.824  0.795 0.806 0.766 0.7236 0.7699 0.8273 0.8149 0.8532
NSS 1.441 1209 1357 1.821 1.7962 1.6608 2.1250 1.9419 2.2877

RGB  Ground-truth GBVS Fang

DVA iSEEL  EML-Net

DeepFix

Proposed

FIGURE 6. Examples of saliency maps obtained using the proposed network and other methods.

proposed method show that using VGGNet16 as the encoding
network for RGB images and ResNet34 as the encoding
network for depth maps can obtain better results.

E. PERFORMANCE EVALUATION

To demonstrate the performance of the proposed network
to predict human eye fixation, its results were compared
with those from eight state-of-the-art methods, includ-
ing three traditional methods (GBVS [26], Qi [28], and
Fang [58]), and five CNN-based methods (MLNet [34],
EMLNet [35], DeepFix [36], DVA [59], and iSEEL [60]).
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The quantitative evaluation results are listed in Table 3. Our
model does not obtain a big gain in performance especially
on the AUC and NSS for the NTU dataset. This can be
explained considering that the AUC is primarily based on
true positives without significantly penalizing false positives.
Although some methods may be effective on some evalu-
ation measures, the proposed method is competitive with
the best performing methods. In general, the proposed net-
work achieves remarkable advantages over the comparison
methods. To further illustrate the effectiveness of the pro-
posed network, Figure 6 shows eye-fixation prediction maps
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obtained from our network and the comparison CNN-based
methods.

Figure 7 shows some failure cases generated by the pro-
posed network in complex scenes. The EGM complements
spatial features by acquiring edge information, and the FIM
fuses features using the attention mechanism and cross-modal
fusion. However, when edge information is not salient and
the features are difficult to recognize, the prediction may
substantially differ from the real eye fixation results. In future
work, we will address these problems to further improve the
proposed network.

RGB  Ground-turth

Depth EML-Net ISEEL Proposed

FIGURE 7. Examples of failure cases of proposed network and two
state-of-the-art methods on images from NCTU dataset.

IV. CONCLUSION

We address two problems in human eye-fixation prediction
using RGB-D data. One is the loss of spatial information
during feature extraction, and the other is the proper use
of the complementarity and correlation to fuse RGB and
depth data. We propose an asymmetric network to solve
these problems. The FIM refines input features and mines
depth information from RGB and depth data after simple
fusion. In addition, the EGM extracts the rich edge infor-
mation in shallow network layers to complement the spa-
tial information for improved decoding. As the RGB and
depth modes contain different characteristics, we gradually
perform a layered fusion during decoding to effectively pre-
serve these characteristics and improve the eye-fixation pre-
dictions. Experimental results demonstrate that the proposed
network contributes to the human eye-fixation prediction and
can outperform existing state-of-the-art methods.
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