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ABSTRACT In this paper, the interpolating element-free Galerkin method (IEFGM) is introduced to
calculate the magnetic field distribution of a novel permanent magnet bistable electromagnetic clutch
(BPMEC), which is used in the in-wheel motor drive system to flexibly connecting the wheel and motor
to release the mechanical shock and electromagnetic impulsion. Firstly, the fundamental of the IEFGM is
introduced, and a newweight function for magnetic field calculation is proposed. Then the nodes distribution
is discussed, and themagnetic field distribution of the clutch is analyzed. Simulation results show the IEFGM
can impose the boundary conditions directly and fewer nodes are employed, make the calculation efficiency
higher. Finally, some experiments are carried out, the experimental results verified the effectiveness of
the IEFGM in magnetic field calculation. The study results provide references for the application of the
interpolating element-free Galerkin method in the magnetic field calculation.

INDEX TERMS Meshless method, interpolating element-free Galerkin method (IEFGM), magnetic field
calculation, electromagnetic clutch.

I. INTRODUCTION
Because of its simple mathematical structure and great ver-
satility, the finite element method (FEM) is the most widely
used solution method for potential problems [1]. However,
the FEM is difficult in some complicated problems, such
as fracture analysis and moving conductor problems. The
domain of these problems needs remesh at every step during
the simulation, resulting in loss of accuracy. Thus mesh-
less methods that do not require a mesh are developed,
and the most practical of them is the element-free Galerkin
method (EFGM) which was first proposed and developed
by Belytschko et al. in [2]–[5]. In the field of electromag-
netic field calculation, the EFGM has also been applied and
improved [6]–[10].

The discrete equations of the EFGM and the FEM are
the same, and the only difference between the FEM and
the EFGM is the construction methods of the shape func-
tion. Compared with the FEM, the EFGM use moving least-
squares (MLS) approximation to obtain the shape function
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and it only requires a set of nodes and a description of bound-
ary conditions. However, the shape function obtained byMLS
approximation does not satisfy the property of Kronecker
delta function, so the essential boundary conditions cannot
be imposed directly [11], [12]. Therefore, some additional
methods are required to apply the boundary conditions, such
as penalty methods and Lagrange multiplier methods.

Authors of [13] presented an interpolating moving
least-squares (IMLS) method which can obtain the shape
function that satisfied the property of Kronecker delta func-
tion, thus the boundary conditions can be applied directly
as in FEM, and the error estimates of this method are dis-
cussed in [14]. Based on the IMLS method, the interpo-
lating element-free Galerkin method (IEFGM) with higher
computational efficiency is derived [13]. The IEFGM has
been discussed in two-dimensional and three-dimensional
potential problems [13], [15], and also be used to solve
elastoplasticity problems [16], [17]. However, the application
of the IEFGM in specific magnetic field calculations has not
yet been studied.

In this paper, the interpolating element-free Galerkin
method is introduced to calculate the magnetic field
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distribution of a novel permanent magnet bistable electro-
magnetic clutch (BPMEC). The clutch is used in the in-wheel
motor drive system to flexibly connecting the wheel and
motor. The mechanical shock and electromagnetic impulsion
in the drive system can be significantly reduced through
this flexible connection [18]–[21]. As the clutch works in a
self-holding steady state most of the time, the holding force
in steady state is the most important index, thus the magnetic
field analysis needs to be discussed.

This paper developed the magnetic field analysis of
the clutch based on the IEFGM, and the comparison with the
FEMand experimental results verified the effectiveness of the
IEFGM in magnetic field calculations. First, the fundamental
of the MLS and the IMLS method is introduced. Second,
the structure of the electromagnetic clutch is described and
the boundary conditions, as well as discrete equations, are
presented. Then a new weight function is proposed and the
magnetic field distribution is discussed. Finally, experiments
are carried out to validate the effectiveness of the IEFGM.
The study results provide references for the application of the
IEFGM in magnetic field calculation.

II. MLS METHOD
Assume the field function is u(x), where x = (x, y) in two-
dimensional, and the value of n nodes are given by (1):

u(xi) = ui, (i = 1, 2, · · · , n) (1)

the vector form is:
u = [u1, u2, · · · , un]T (2)

Define the trial function as:
uh(x) = pT(x)a(x) (3)

where p(x) is the basis function, a(x) is the coefficients. In 2D,
the basis function is defined as follows.

Linear basis: pT(x) = [1, x, y] (4)

Quadratic basis: pT(x) = [1, x, y, x2, xy, y2] (5)

In order to determine the coefficients a(x), a weighted
function is introduced as:

J =
n∑
i=1

w(x− xi)[pT(xi)a(x)− ui]2 (6)

where w(x− xi) is the weight function with compact support
property, the coefficients can be obtained by minimizing J ,
as in (7).

a(x) = A−1(x)B(x)u (7)

where

A(x) =
n∑
i=1

w(x− xi)p(xi)pT(xi) (8)

and

B(x) = [w(x− x1)p(x1), · · · ,w(x− xn)p(xn)] (9)

Substituting (7) into (3), the trail function is derived as:

uh(x) =
n∑
i=1

Ni(x)ui (10)

where Ni(x) is the shape function and

N(x) = [N1(x), · · · ,Nn(x)] = pT (x)A−1(x)B(x) (11)

In theMLS, the shape function does not satisfy the property
of Kronecker delta function as:

Ni(xj) =

{
1, i = j
0, i 6= j

(12)

so the boundary conditions cannot be applied directly.

III. IMLS METHOD
Compared with the MLS, the IMLS method revised the basis
function p(x). p1(x) is normalized as:

b(1)x =
1[

n∑
i=1

w(x− xi)
]1/2 (13)

for j = 2, 3, . . . , m, the functions are generated as follows:

b(j)x (x) = pj(x)−
n∑
i=1

pj(xi)v(x− xi) (14)

where

v(x− xi) =
w(x− xi)
n∑
i=1

w(x− xi)
(15)

Using the new basis functions b(1)x (x), . . . , b(m)x (x), the corre-
sponding trail function is:

uh(x) = vT(x)u+ bT(x)a(x) (16)

where

v(x) = [v(x− x1), v(x− x2), · · · , v(x− xn)]T (17)

b(x) = [b(2)x (x), b(3)x (x), · · · , b(m)x (x)]T (18)

Then according to theMLS approximation, the coefficients
are expressed by (19),

a(x) = A−1x (x)Bx(x)u (19)

where

Ax(x) =
n∑
i=1

w(x− xi)b(xi)bT(xi) (20)

and

Bx(x) = [w(x− x1)b(x1), · · · ,w(x− xn)b(xn)] (21)

Equation (16) can be written as:

uh(x) = N(x)u (22)

where the new shape function is:

N(x) = vT(x)+ bT(x)A−1x (x)Bx(x) (23)

and the partial derivative of the shape function is:

N(x),k = vT(x),k + bT(x),kA−1x (x)Bx(x)

+ bT(x)A−1x (x),kBx(x)+ bT(x)A−1x (x)Bx(x),k
(24)

204764 VOLUME 8, 2020



F. Yang, C. Gu: Magnetic Field Calculation of a Novel Electromagnetic Clutch

FIGURE 1. The structure of BPMEC.

FIGURE 2. The assembly diagram.

where k is x or y, and

A−1x (x),k = −A−1x (x)Ax(x),kA−1x (x) (25)

v(x− xi),k =
w(x− xi),k
n∑
i=1

w(x−xi)
−

−w(x−xi)
n∑
i=1

w(x−xi),k

(
n∑
i=1

w(x−xi))2
(26)

b(j)(x),k = pj(x),k −
n∑
i=1

pj(xi)v(x− xi),k (27)

b(j)(xi),k = −
n∑
i=1

pj(xi)v(x− xi),k (28)

The new trail function satisfied:

uh(xi) = u(xi) (29)

thus by the IMLS method, the boundary conditions can be
applied as convenient as in the FEM.

IV. THE NOVEL ELECTROMAGNETIC CLUTCH
As shown in Fig. 1, the main components of BPMEC are
base, permanentmagnet (PM), coils, slider, and slideway. The
clutch relies on the magnetic force of the slider imposed by
PM to maintain in steady state without energy consumption.
When the clutch needs actuation, applied current to coils
appropriately, the magnetic force imposed on the slider will
change direction and make the slider move to the other side,
then turn off the current, the clutch returns to the steady
state. The clutch has a compact structure to match the limited
available space in the hubs, as illustrated in Fig. 2.

By installing this clutch, the wheel and motor can real-
ize a flexible connection, thus the mechanical shock and

FIGURE 3. The 2D analysis model.

TABLE 1. The main parameters of BPMEC.

electromagnetic impulsion can be released at the starting and
braking process of the electric vehicles.

It can be seen that the clutch structure is symmetric so
that the analysis model can be simplified, as shown in Fig. 3,
the main parameters are shown in table 1.

V. IEFGM FOR ELECTROMAGNETIC PROBLEMS
A. DISCRETE EQUATIONS
In the electromagnetic field, The boundary problem of the
magnetic vector potential is:

∂

∂x

(
ν
∂Az(x)
∂x

)
+
∂

∂y

(
ν
∂Az(x)
∂y

)
= −Jz, x ∈ � (30)

Az(x) = A0, x ∈ 01 (31)

ν
∂Az(x)
∂n

= q, x ∈ 02 (32)

The Galerkin weak form of (30)-(32) is:∫
�

νδ(∇Az)T · (∇Az)d�−
∫
�

δAz · Jzd�

−

∫
02

δAz · qd0 = 0 (33)

According to the IMLSmethod, themagnetic vector poten-
tial Az at position x can be expressed as:

Az(x) = N (x)A (34)

Substituting (34) into (33), the discrete equations can be
derived as:

KA = F (35)

where

A = [A1,A2, · · · ,An]T (36)

Kij =
∫
�

ν

(
∂Ni
∂x

∂Nj
∂x
+
∂Ni
∂y

∂Nj
∂y

)
dxdy (37)

Fi =
∫
�

JzNidxdy+
∫
02

qNid0 (38)
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FIGURE 4. The boundary problem model.

Gaussian integration is used to calculate equation (35).
Since the value of nodes is obtained, themagnetic flux density
in the model can be calculated.

B. THE SELECTION OF WEIGHT FUNCTION
In this paper, a modified weight function for the IEFGM is
proposed, as expressed in (39).

w(r) =

 e−(αr)
2

r2
, r ≤ 1

0, r > 1
(39)

where α is an even positive integer, and choose α = 12 in this
paper.

The rectangular region is selected as the domain of influ-
ence, as in (40):

w(x− xi) = w(rx)w(ry) (40)

where

rx =
|x − xi|
dmx

(41)

ry =
|y− yi|
dmy

(42)

and

dmx = dm1x (43)

dmy = dm1y (44)

where dm is a scalar parameter that determines the size of the
influence domain, and 1x, 1y is the node spacing.

VI. MAGNETIC FIELD CALCULATION OF THE BPMEC
A. BOUNDARY CONDITIONS
As shown in Fig. 4, The magnetic field and boundary condi-
tions of the BPMEC is given by:

∂

∂x

(
ν
∂Az
∂x

)
+
∂

∂y

(
ν
∂Az
∂y

)
= 0, x ∈ � (45)

Az = 0, x ∈ 01 (46)

ν
∂Az
∂n
= ±Hc, x ∈ 02 (47)

B. MAGNETIC FIELD DISTRIBUTION
The node distribution on the rectangular model is shown
in Fig. 5, 31× 41 nodes are employed in this calculation, and
the weight function (39) as well as the linear basis function
(4) are used.

Fig. 6 depicts the magnetic field distribution of the clutch
calculated by the interpolating element-freeGalerkinmethod,

FIGURE 5. The node distribution.

FIGURE 6. The magnetic field distribution by IEFGM (31 × 41 nodes).

FIGURE 7. The magnetic field distribution by FEM.

which in excellent agreement with the analysis result by
FEM shown in Fig. 7. Fig. 8 shows the analysis result
where the weight function presented in [13] is used, it can
be seen that the magnetic field distribution is deformation.
Therefore, the new weight function (39) proposed in this
paper is more precise when used in magnetic field calcu-
lation by IEFGM. In addition, the calculation result when
distributed 61 × 81 nodes is illustrated in Fig. 9. It is
observed the magnetic lines of force become smoother, and
the magnetic field distribution is the same as the results
by FEM.

Further analysis indicated that it is required to distribute
61 × 81 nodes to get a precision result when analyzed by
the EFGM, as shown in Fig. 10, and the spent time is 14.8 s.
Meanwhile, when calculated by the IEFGM, we can obtain
sufficiently accurate results by employ 31 × 41 nodes, and
the spent time is 3.2 s. Therefore, the IEFGM has a higher
efficiency than EFGM.

C. MAGNETIC FLUX LEAKAGE
The magnetic flux leakage coefficient reflects the holding
force of the slider in steady state and the usage of the
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FIGURE 8. The magnetic field distribution by IEFGM (using weight
function proposed in [13]).

FIGURE 9. The magnetic field distribution by IEFGM (61 × 81 nodes).

FIGURE 10. The magnetic field distribution by EFGM (61 × 81 nodes).

FIGURE 11. The leakage coefficient when the air gap changing.

permanent magnet. Fig. 11 illustrates the curve of the flux
leakage coefficient varies with the air gap between the slider
and permanent magnet changes. It is clear that with the
increase of the air gap, the flux leakage coefficient increases,
which means the force imposed on the slider by the perma-
nent magnet decreases.

Table 2 depicts the detailed value of the flux leakage coeffi-
cient kσ calculated by the IEFGM and FEM, it is evident that
the result of the IEFGM is very close to FEM. Besides, when
the air gap changes, the grids are required to be remeshed
when using the FEM; as for the IEFGM, the node distribution

TABLE 2. Detailed value of the flux leakage coefficient.

FIGURE 12. The leakage coefficient when the width of PM changing.

shown in Fig. 5 is always employed and no adjustment is
required.

Fig. 12 shows the flux leakage coefficient when the width
of PM changing, it can be seen that increasing the width
of PM can improve the usage of PM, however, the cost of
the clutch will be higher, thus the selection of PM width
wm = 4 mm.

D. IMPROVEMENT OF THE ANALYSIS MODEL
Compared with the 3D model shown in Fig. 1, it is clear
that the 2D analysis model shown in Fig. 2 cannot take the
flux leakage on the front and back region of the clutch into
account, resulting in the smaller flux leakage. Therefore,
the 2D model is improved, and the idea is: firstly, enlarge
the magnetic leakage of the upper region by symmetric the
upper and lower region; then move the edge of the base to
align with the edge of the slider to further compensate the
flux leakage. The improved 2D model is shown in Fig. 13,
it can compensate the flux leakage on the front and back
region, besides, the magnetic field calculation is simpler, and
the spent time is 1.5 s which less than half of the spent time
by original 2D model.

Fig. 14 illustrates the comparison of the leakage coefficient
between the 3Dmodel and improved 2Dmodel, it can be seen
that the calculation results of these two methods are quite
close when the gap smaller than 1.5 mm, and the maximum
relative error is less than 10%.

E. FORCE ANALYSIS
The equivalent magnetic circuit of the clutch is shown in
Fig.15. According to Fig. 15, the magnetic circuit equations
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FIGURE 13. The Improved 2D model.

FIGURE 14. The leakage coefficient.

FIGURE 15. The equivalent magnetic circuit.

are express in (48),
Fm = Fc −8mR0
Fm = 8δRδ
8m = kσ8δ

(48)

where
Fc = Hchm (49)

R0 =
hm

µ0wmlm
(50)

Rδ =
δ

µ0wmlm
(51)

The magnetic flux density of the main magnetic circuit is
obtained by solve (48), as expressed in (52),

Bδ =
Br

kσ + δ/hm
(52)

FIGURE 16. The force analysis model.

FIGURE 17. The experimental platform.

FIGURE 18. The force when slider at different positions.

then based on the virtual displacement method, the force on
the slider can be defined by (53).

fδ =
B2δ
2µ0

wmlm (53)

The force analysis model is shown in Fig. 16. Define f ∗ as
the per unit value of the force, and the base value is expressed
in (54).

fb =
B2r
2µ0

wmlm (54)

VII. EXPERIMENT
In order to validate the magnetic field calculation results by
IEFGM, the clutch prototype (without slideway and coils)
and experimental platform are built, as shown in Fig. 17.

The holding force of the clutch when the slider at different
positions is illustrated in Fig. 18. It is clear that the results
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calculated by the IEFGM in excellent agreement with the
experimental results. According to Fig. 18, the clutch has
two steady states: ‘touch’ state when the slider close to the
permanent magnet on the left side; ‘detach’ state when the
slider is close to the permanent magnet on the right. In addi-
tion, when the slider at the center of the clutch, the horizontal
force imposed on the slider is zero, but a slight movement of
the slider will make the clutch transition to the above steady
state, so this is an ‘unstable’ balanced state. The force on the
slider when the clutch in steady state is the holding force,
i.e., the force when δ = 0 mm and δ = 3mm in Fig. 18.
According to equation (54), the base value of force is

related to the remanence of the permanent magnet, thus if
a larger holding force is needed, one can consider using
rare-earth permanent magnets that have a larger remanence
and better resistance to demagnetization.

VIII. CONCLUSION
This paper introduces the interpolating element-free Galerkin
method to the application of magnetic field calculation.
A modified weight function is proposed and its effective-
ness is demonstrated by studying the magnetic field distri-
bution of a novel permanent magnet bistable electromagnetic
clutch. Compared with the traditional EFGM, the IEFGM is
convenient to impose boundary conditions and only requires
to employ fewer nodes to get accurate results, make the calcu-
lation efficiency higher. Based on the IEFGM, the magnetic
field of the electromagnetic clutch is analyzed, an improved
2D analysis model is proposed. The improved 2D model
solves the problem that the original 2Dmodel cannot consider
the magnetic flux leakage on the front and back region of the
clutch. Then the force analysis of the clutch is carried out, and
the holding force when the clutch in steady state is obtained.
Finally, a clutch prototype experimental platform is built, and
the experimental results verified the accuracy of the IEFGM
in magnetic field analysis.
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