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ABSTRACT Mobile communications are growing and the number of users is constantly increasing at an
accelerated rate, as well as the demand for the services they request. In the last few years, many efforts
have focused on the design and deployment of the new fifth generation (5G) cellular networks. However,
novel highly demanding applications, which are already emerging, need to go beyond 5G in order to meet
the requirements in terms of network performance. But, at the same time, as the Earth does not allow
us to increase the carbon footprint anymore, the energy consumption of the communication networks
has to be critically taken into consideration. A multi-objective approach for addressing all these issues is
therefore required. This work develops a cellular network framework that allows the evaluation of different
system parameters over dynamic traffic patterns, as well as optimizing the different conflicting objectives
simultaneously. The novelty relies on that the optimization process integrates key performance indicators
from different layers of the network, namely the radio and the network layers, aiming at reaching solutions
that account for the power consumption of the base stations, the total capacity provided to mobile users
and also the signaling cost generated by handovers. Moreover, new metrics are needed to evaluate different
solutions. Starting from the well-known energy efficiency merit factor (bits/Joule), three new merit factors
are proposed to classify the network performance since they take into account several network parameters
at the same time. These indicators show us the ideal working point that can be used to plan the point of
operation of the network. These operation points are a medium-high power and capacity load and a low
signaling load.

INDEX TERMS 5G networks, optimization, heterogeneous networks, energy efficiency.

I. INTRODUCTION
In 2019, the monthly mobile traffic reached 38 Exabytes,
while this figure is estimated to be 160 Exabytes by 2025,
at a 30 percent compound annual growth rate. On the other
hand, the number of devices connected to the Internet will
triple the world population by 2022, when there will be
3.6 devices per user compared to 2.4 devices per user in
2017 [1], [2]. This growth is due to the emergence of new
applications on the Internet, such online video games, vehic-
ular communications, tactile Internet, remote surgery, virtual
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reality (VR) and augmented reality (AR), which do not only
require large bandwidths, but also challenging requirements
such as a massive number of connections and ultra-low and
reliable latency [3]–[5]. In order to meet these requirements,
both public and private initiatives started to develop the new
generation of mobile networks, the fifth or 5G, almost a
decade ago. The design principles of this new technology
were aimed at reaching 100x data rates, end-to-end delay
below 1ms, 99.999% reliability, etc. Among them, given the
current carbon footprint of the ICT industry [6], [7], these
challenging operating requirements have to be achieved by
saving 90% of the energy consumption. Three main tar-
get scenarios have been standardized in the Release 15 of
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the 3GPP consortium [8], namely, enhanced mobile broad-
band (eMBB), for providing the users with higher data rates
than LTE, massive machine-type communications (mMTCs),
for enabling a massive number of device connections, and,
finally, ultra-reliable low-latency communications (uRLLC),
aimed at low latency transmissions for small amounts of
data with ultra-high reliability. Despite these predefined 5G
scenarios, applications such as the tactile Internet does have
requirements that go beyond 5G, as they need both extreme
high data rates and ultra-reliable low latency. Therefore, the
next generation networks (6G) will necessarily encompass
new scenarios that combine the features of eMBB and uRLLC
in order to provide services to the newly envisioned applica-
tions [9], [10].

Our working hypothesis is that a multi-layer optimization
will be required to satisfy these demands, as it is proposed
here. Indeed, this work targets these latter scenarios using a
novel approach that jointly optimizes not only several per-
formance criteria from both the radio and the network layer,
but also considering energy efficiency issues [11]. From the
radio interface, we have considered the capacity the network
provides to the users, and the power consumption of the base
stations (BSs). And, from the network layer, the number of
bits used for signaling when a handover occurs due to the
user mobility, as it is strongly correlated to the latency [12]
required for uRLLC scenarios. To the best of our knowledge,
these optimization objectives, which accounts for two com-
plementary planes of the network, are yet rarely considered
together. An accurate modeling of a heterogeneous network
has been used, taking into consideration 5G enabling tech-
nologies [13] such as mmWave [14], massive MIMO [15],
[16] and network densification [17].

The optimization of different layers of the network and
energy at the same time is seldom reported in the literature.
Several previous works related to the physical layer are, for
example, the work of Zhang et al. [18]. They have pro-
posed a joint power allocation, mode selection, and channel
assignment scheme for optimizing energy efficiency in D2D
(Device-to-Device) communications. Liu et al. [19] have per-
formed two-dimensional optimization on traffic data rate and
green energy generation onHetNets. Fletscher et al. [20], [21]
have proposed several methods to optimize user allocation
and energy efficiency simultaneously. Rengarajan et al. [22]
and Di Renzo et al. [23] propose novelty models for the
optimization of energy efficiency at the physical layer. On the
other hand, works related to the network layer are, for
example, the work of Keshavarzian et al. [24]. They have
introduced several algorithms to minimize the energy con-
sumption taking into account the mobility-aware capability.
Muñoz et al. [25] optimize load balancing and handover costs
in the network layer. Also, Xu et al. [5] address the handover
problem in ultra-dense heterogeneous networks, focusing
on a single-layer optimization where they can decrease the
delay in the network. Since the problem is addressed from
a single-layer perspective, the authors obtain slightly lower
data rates than their reference model.

In this article, several multi-objective optimization prob-
lems have been formulated, tackling separately all pairwise
combination of the capacity, signaling and power consump-
tion objectives, plus a three-objective approach that considers
them all simultaneously. The problems have been addressed
by using Pareto-based multi-objective metaheuristics that
compute a set of trade-off solutions to the problem, thus
providing the decision maker (the network designer) with
compromise network configurations.

The structure of this article is as follows. Section II
presents the configuration of the system, detailing the dif-
ferent models used to compute the parameters and asso-
ciation strategies for assigning users to the base stations.
In Section III, the optimization and network configuration
are shown. Section IV analyzes the results obtained in the
optimization. Finally, Section V provides the reader with the
main conclusions drawn in this work and the future lines that
remain open for future research.

II. SYSTEM MODEL
This section first describes the modeling of the target
scenario, including both the base stations and the users
of the network. Then, it details the formulation of the
problem objectives, such as, capacity, power consumption,
and signaling overhead. An availability indicator is also
used to measure the demand satisfaction of the users in
a given amount of time. Finally, the UE-BS association
policy is included. The inputs and outputs of all models
are combined to generate a comprehensive model based
on the physical and network layers. This comprehensive
model allows the realization of a multilayer optimization in
Sections III and IV.

A. CONFIGURATION
The scenario comprises a working area of dimensions
500× 500 m2, where the BSs are distributed according to a
uniform random distribution that is independent on each of
the axes. These BSs are characterized into three possible cell
types according to their size and operating frequency (macro,
micro or femto). Their specifications are shown in Table 1.
UEs are also randomly distributed around the terrain, but
they move using a Random Waypoint Model (RWP), where
their location, velocity and acceleration change over time.
A graphical example of cell types and UEs movements in
a scenario is illustrated in Fig. 1. According to the MIMO
framework used, UEs may be equipped with two, three and
four antennas, modelling low, medium and high demanding
users, respectively.

As a traffic model between the UE and the BS, we assume
that the session arrival follows a Poisson process with mean
rate λ = 0.2. We also assume that the duration of a typical
session is exponentially distributed with mean µ = 10 s.
In this scenario, BSs are connected to an access network
where the routers offer IPv6 connectivity between mobile
users and the rest of the deployed network.
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FIGURE 1. UEs and BSs in different propagation scenarios. Purple ‘‘UMA
LOS’’, Blue ‘‘UMA NLOS’’ Green ‘‘UMi LOS’’, Red ‘‘UMi NLOS’’ Brown
‘‘RMa LOS’’ and Yellow ‘‘RMa NLOS’’.

TABLE 1. Specifications of the Base Stations.

B. CAPACITY MODEL
First of all, the calculation of the power received (PRX ) by
each user at each time t must be performed.

PRX [dBm] = PTX [dBm]+ G [dB]+ LPATHLOSS [dB] (1)

where PRX and PTX are the received and transmitted power,
respectively, G is the sum of the gains of the transmitting
and receiving antennas, and LPATHLOSS are the signal losses
due to the transmission path that depend on the region where
the signal is transmitted, as shown in Fig. 1. LPATHLOSS is
computed as:

LPATHLOSS [dB]=LSPACE [dB]+LSHADOWFADING [dB] (2)

where LSPACE are the signal losses due to the distance
between UE and BS, decaying following an attenuation expo-
nent n. LSHADOWFADING is the variation in LPATHLOSS due to
multiple variables such as multipath propagation, the dis-
tribution of which follows a log-normal distribution. This
distribution is given by an expected value µ and standard
deviation σ that depend on the transmission models depicted
below. Mathematically, LSPACE can be seen as

LSPACE [dB] = 20log10

(
4πd0
λ

)
+ n10log10

(
d
d0

)
(3)

where the first term computes the signal losses in free space
until reference distance d0 for a specific wavelength λ, and
the second term considers how the signal decays at a distance
d depending on the region with an attenuation exponent n.

Three transmission models are used in the experiment,
UMi (Urban Microcells), UMa (Urban Macrocells) and RMa

(Rural Macrocells) [26]–[28]. Fig. 1 shows how the terrain is
divided according to different transmission models randomly.
Each transmission model has also two possible cases, LOS
(Line-Of-Sight) and NLOS (Non-Line-Of-Sight). They are
assigned randomly to each region, making NLOS to appear
more frequently in urban models, whereas LOS does in rural
scenarios. The combination of models and cases results in
six scenarios characterized by the attenuation exponent n, the
expected value µ and the standard deviation σ .
Finally, the signal to interference plus noise ratio (SINR)

has been calculated as follows:

SINRk =
Prx,j,k (mW )

(
∑M

n=1
n6=j

Prx,n,k (mW ))+ PN0 (mW )
(4)

where Prx,j,k is the power received by user k from BS j and∑M
n=1
n6=j

Prx,n,k is the total power received by user k from all the

base stations M that work at the same frequency excepting
BS j, i.e., the interference. Finally, PN0 is the noise power
given by:

PN0 [dBm] = −174+ 10 log10 (BW j(MHz)) (5)

where BW j is the bandwidth available by the BS j in MHz.
Once the SINR is obtained, the capacity of the channel

can be calculated. The main aim when using MIMO is to
improve the spectral efficiency by increasing the number of
transmitters and receivers, resulting in better transmission
conditions compared to a SISO system. This MIMOmodel is
commonly used for studies of different nature, such as chan-
nel estimation [29], radiation pattern studies [30], or MIMO
channel efficiency evaluations [31]. The capacity is computed
for each time instant t due to the UEs movement. Eq. (6) is
used for MIMO systems [29]–[32].

Ck,j,t

(
bits
s

)
=
BW j,t

Nj,t
log2

∣∣∣∣Ij + SINRk,t
No.Rxk

∗ H ∗ HH
∣∣∣∣ (6)

where BW j,t/Nj,t is the total bandwidth available to the user,
and the log2 calculates the spectral efficiency in bits/s/Hz,
where Ij is an identity matrix whose dimension is the number
of transmitter antennas by BS j and H is the channel matrix,
which is generated randomly by using a complex normal
distribution. The channel matrix dimensions are given by
the number of antennas from users (rows) and base stations
(columns).

C. POWER CONSUMPTION MODEL
One of the objectives of the optimization problem is the
reduction of energy cost. Therefore, energy efficiency (EE) is
an important parameter to define [33]. This indicator becomes
fundamental in the deployment of new mobile generations
due to the requirements of 90% reduction of power consump-
tion. Nowadays, energy efficiency is a parameter to be taken
into account in any new deployment [34], [35]. We have
considered an EE indicator that shows the performance in bits
per Joule, that is, the number of bits of information that can
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be reliably transmitted through the communication channel
per energy unit. It can be defined as:

EE
(
bits
Joule

)
=

DataRate(bits/s)
PowerConsumption(W )

(7)

One of the main motivations for including EE issue is
the fact that the theoretical limits of both the transmission
data rates and the minimum latency are known: the Shannon
limit and the speed of light, respectively. However, there is
no known limit of the maximum energy efficiency that can
be obtained in a network. In addition, Section IV will show
how energy efficiency is a major distinguishing criterion to
characterize the results.

Regarding the power consumption model, it takes into
account both the consumption between UE and BS and the
consumption between BS and the router in the access net-
work. The power consumption of a BS, denoted as Pbc, can
be expressed in the Aggregated Power Consumption Model
[36] as:

Pbc = αP+ β + δS + ρ (8)

where P represents the transmitted or radiated power of each
BS and S is the data rate. The coefficient α denotes the
power transmission efficiency due to an RF amplifier and
supply losses, β represents the power dissipated due to signal
processing, and δ is a constant denoting dynamic power
consumption per data unit. These terms differ for different
BS types defining a differential consumption model [37].

Detailing this model further, it can be seen that the power
consumption can be therefore divided into three types. On the
one hand, αP, the power consumption proportional to the
transmission that depends directly on the power transmitted
by the BS. On the other hand, δS, the power consumption
proportional to the capacity that depends exclusively on the
demand required by the user since it is directly linked to the
data traffic. Finally, β and ρ represent fixed consumption
terms.

Taking all this into consideration, the total power consump-
tion in the system can be calculated as follows:

PTotal =
∑BS

i=1
MiPbc + PBackhaul (9)

where the first term is the sum of the powers of all base
stations multiplied by the number of transmitting antennas
corresponding to each base station, and PBackhaul represents
the energy consumed by the backhaul. This latter has to be
included to sum up the power consumption required to carry
the signaling information from one region to another through
the access network.

D. SIGNALING MODEL
To achieve an efficient service provisioning and a better usage
of the network resources, 5G networks require to address
issues not only in the radio and data link environment, but
also in the layer 3 management protocols. Mobility manage-
ment mechanisms allow reachability and maintain ongoing

communication during roaming of mobile users in different
networks. One of the key aspects in the performance of these
protocols is related to the signaling, especially in densified
networks, where high-speed mobile nodes experience fre-
quent handovers with a high signaling load due to the short
cell radius [38], [39].

Thus, for optimal system design, it is necessary to accu-
rately model the impact of the mobility in other network
parameters. In this work, we measure the impact of the
mobility management on radio and link metrics. In current
centralized solutions, the mobility management relies on an
IP mobility anchor node, which is the network agent that
tracks the network connection point of a user as the user
moves. Whenever the user changes their point of attachment
to the network, the user registers with this agent through
signaling messages informing of its current location. As a
result of this signaling exchange, the Mobile Node (MN)
acquires a new IP address in this foreign network.

In mobility management protocols [40], [41], this anchor
node is the centralized part of the system since it is on the
critical path of both signaling and data for mobile users.
Regarding the signaling, a mobility management protocol
requires that an MN sends a location update to its mobility
anchor whenever it moves from one subnet to another. This
location registration is required even though the MN does not
communicate with others while moving. The signaling cost
associated with location updatesmay become very significant
as the number of MNs increases.

Moreover, this cost depends on the size in bytes of the
signaling messages (su) and the number of hops between the
MN and the mobility anchor (hMN−anchor ) in every handover
process during the time interval that the MN communication
remains active. Thus, we refer to the aggregate signaling cost
of registration update for a session as Cs and it is expressed
as:

Cs = suhMN−anchorNh (10)

where Nh is the number of handovers that cause a
layer 3 handover.

E. AVAILABILITY MODEL
Availability is defined as the probability of a user demand to
be fulfilled at a given time. This parameter turns out to be of
vital importance because in many occasions the total capacity
provided is not sufficient to meet the user requirements. This
fact will depend on whether his demand is satisfied by the
capacity, so availability in the model is computed as

Availabilityk = P{Ck ≥ Dk} (11)

whereCk is the capacity for the user k andDk are the demands
from the user k . Total availability in the system is computed
as an average of every user present in the scenario.

AvailabilityTotal =

∑k
i=1 Availabilityk

N
(12)

204298 VOLUME 8, 2020



A. Ramírez-Arroyo et al.: Multilayer Network Optimization for 5G & 6G

F. BS-UE ASSIGNMENT
Two policies for pairing UEs and BSs have been devised,
being they two aimed at maximizing SINR. Other criteria
could have been used, such as minimizing the distance or
maximizing the power received between UE and BS. How-
ever, the maximization of the SINR is the one usually applied
in actual network deployments. The two strategies are:

• Planning 1: the UE is paired with the BS that provides
the highest SINR out of all those available in the sce-
nario, regardless its type.

• Planning 2: the aim is to avoid continuous handovers
between BSs. As so, it pairs the UE with the BS that
provides the highest SINR among all those available
in the scenario, but only when the change leads to an
improvement in the SINR above a certain threshold.

III. MULTILAYER NETWORK OPTIMIZATION
A. NETWORK CONFIGURATIONS
Two different configurations have been devised. A light set-
ting with 20 UEs and 5 BSs, and a heavy one with 50 UEs
and 20 BSs, respectively. From now on, the first configuration
will be mentioned as light configuration, and the second one
as heavy configuration. These configurations distribute the
propagation models randomly as shown in Fig. 1. Moreover,
the type of UEs and BSs are also uniformly distributed.

B. OPTIMIZATION PROBLEM
This section clearly states the optimization problem
addressed in this work. First, the decision variables that define
the problem are the transmitted powers of the BSs, which
fully impacts all the optimization objectives defined in the
previous section. Indeed, it clearly determines the power
consumption of the network (eq. (9)). As it also directly
changes the SINR, because it modifies the power received
by the users (eq. (4)) and, hence, the data rates provided by
the network (eq. (6)) and the cell limits, inducing a different
number of handovers, thus modifying the signaling cost.
Moreover, the availability changes if the data rates changes.
As it can be seen, updating the transmission power of just one
single base station may provoke changes in the values of all
the objectives.

Given the problem difficulty, with a severe epistasis among
the decision variables, and the potential large scale of the
instances of the ultradense deployments, we have relied on
metaheuristics [42] as optimization tools. More concretely,
evolutionary multi-objective algorithms (MOEAs) have been
used [43] because, on the one hand, they can approximate the
Pareto front of a problem in one single run and, on the other
hand, as randomized black-box optimizers, they can address
optimization problems with nonlinear, non-differentiable or
noisy objective functions. The objectives to be optimized are
those shown in Section II, namely, capacity, power consump-
tion, signaling cost and availability.

In this way, the optimization problem is mathematically
formulated as follows: Let B be the set of the deployed

Base Stations (BTSs). A solution to the presented problem
is then a real-valued vector, s ∈ (0, 1]|B|, where si indicates
the transmitted power of BTS i. Thus, the four objectives
functions are:

f1 (s) = min PowerConsumption(s)

f2 (s) = max Capacity(s)

f3 (s) = min SignalingCost(s)

f4 (s) = max Availability(s)

which are grouped and combined resulting in several multi-
objective optimization problems.

C. ALGORITHMS
A brief technical description of the each of the algorithms
used to address the problem is provided in the following. Note
that in order to measure the quality of the approximated fronts
given by the algorithms, the hypervolume indicator (HV)
was used, which is recognized as one of the most suitable
Pareto-compliant metrics in the multi-objective community
[44]. Higher values of this indicator are better.

• NSGAII: The Non-Dominated Sorting Genetic
Algorithm II [45] is a genetic algorithm based on gener-
ating a new population from the original one by applying
the typical genetic operators (selection, crossover, and
mutation); then, the individuals in the new and old
population are sorted according to their rank, and the
best solutions are chosen to create a new population.

• SMPSO: SMPSO [46] is a multi-objective particle
swarm optimization algorithm in which global best par-
ticles are generally the non-dominated solutions found
during the particle movement and they can be exploited
to guide the particle swarm to approach the entire Pareto
Front.

All the two algorithms use Polynomial Mutation as muta-
tion operator, with a probability of 0.01. In the case of
NSGAII, SBXCrossover with crossover rate of 0.9 is also
used.

IV. RESULTS
In order to provide the results with confidence, 30 inde-
pendent runs of the MOEAs have been carried out. Also,
thorough statistical procedures have been used [47] with
a confidence level of 95% (p-value < 0.05). The p-value
obtained for the multcompare test is 1.5229e-06. The results
of this procedure have shown that all the differences are
statistically significant, thus pointing out that the HV of
SMPSO is statistically greater (better) than that of NSGA-II
and the MatLab algorithms. The results have been analyzed
in terms of the empirical attainment functions (EAF) [48]
and the best aggregated front among all the non-dominated
solutions found in all the 30 runs. The EAD used here is
the 50%-attainment surface in the multi-objective domain
that is analogous to the median value in the single-objective
one.
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FIGURE 2. Pareto front of the average capacity per user against power
consumption. Results obtained for planning 1 in both heavy and light
configurations.

A. JOINT OPTIMIZATION OF CAPACITY AND POWER
CONSUMPTION
The first experiment carried out considers two objectives: the
capacity per user and the power consumption. The results
show the average over time of the capacity for every UE.
Similarly, they show the power consumption for every BS.
Both light and heavy configurations have been considered.
The assignment UE-BS selected is planning 1.

Fig. 2 shows the average capacity that a user can reach for
the lowest power consumption that can provide that capac-
ity. It can be concluded that heavier configurations need to
use larger amounts of power to fulfill the user data rates
demanded by each user. This behavior can be explained from
two points of view. On the one hand, the number of UEs is
larger in the heavy configuration. Therefore, the number of
BSs has to be larger to obtain the same capacity per user,
and the transmitted power will be larger for a larger number
of BS. On the other hand, the more UEs and BSs, the more
interference is generated in the system for the same scenario,
which implies difficulties to provide the same service.

The benefits of having such an approximated Pareto front
is that the decision maker can easily choose whether s/he
desires to lose the capacity to save power, or conversely to
provide the maximum possible capacity at the expense of
power savings. One of the ways to find the balance between
these two parameters can be obtained representing the rela-
tionship among themselves, the energy efficiency, as it can be
observed in Fig. 3. This illustrates EE in the capacity range.
The horizontal axis is the same as in Fig. 2, so that the vertical
axis is scaled by normalizing it with respect to the horizontal
axis and thus obtaining the EE. Therefore, the maximum
point in terms of EE for both light and heavy strategies could
be considered as an optimal operation point.

Fig. 3 shows how themost efficient points are those with an
average capacity of around 3 Gbps for the light configuration
and 4 Gbps for the heavy configuration. In addition, it can
be clearly seen how the light configurations work better than
the heavy configurations. Finally, it shows the differences in
efficiency are greater in the light configurations.

From this point on, only light configuration has been used
(in this section and in the others as well). The solutions with
higher energy consumption have also been limited. As it can

FIGURE 3. Energy efficiency of the Pareto front of the average capacity
per user against power consumption. Results obtained for planning 1 in
both heavy and light configurations.

FIGURE 4. Pareto front of the average capacity per user against power
consumption for several fixed thresholds. Results obtained for planning 2
in the light configuration. Best aggregated value.

FIGURE 5. Pareto front of the average capacity per user against power
consumption for several fixed thresholds. Results obtained for planning 2
in the light configuration. Average.

be seen in Fig. 3 the energy efficiency falls drastically at these
points and we are not interested in working on these points.

Now, the planning strategy (BS-UE assignment) is changed
to evaluate its impact. The optimization is done separately
with 5 different threshold values (1, 3, 5, 7 and 9 dB). The
approximated Pareto fronts for the fixed threshold values
are shown in Figs. 4 and 5. The results represent the best
aggregated non-dominated solutions of the 30 runs of each
threshold case in Fig. 4, whereas the attainment functions are
depicted in Fig 5. Looking at Fig. 4, the results show similar
results for the different thresholds, except for 3 dB (orange
line), which is slightly worse. Despite the range between
3.2 and 3.5 Gbits/s, the best approximated front is when the
threshold is equal to 9 dB. However, when moving to the
average fronts in Fig. 5, the differences among thresholds
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FIGURE 6. Energy efficiency of the Pareto front of the average capacity
per user against power consumption for several fixed thresholds. Results
obtained for planning 2 in the light configuration.

FIGURE 7. Pareto front of the average capacity per user against power
consumption when the threshold is optimized. Results obtained for
planning 2 in the light configuration.

diminish. In this figure, the blue line that represents a thresh-
old of 1 dB is slightly better. This indicates that the algo-
rithm can more easily find solutions with that threshold since
average optimal results are achieved by the lowest threshold.
In contrast with Fig. 4 where the best Pareto front results are
foundwith a threshold of 9 dB. This fact indicates the need for
a high computing workload to approach the average results
towards the best aggregated values.

As it is explained in Section II.C, the merit factor accepted
by the scientific community, EE (bits/Joule), eases the com-
parison of different solutions of a given approximation to
Pareto front. In order to obtain the maximum limit of the
energy efficiency, the values have been obtained from the
aggregated Pareto fronts (see Fig. 4). Thus, Fig. 6 illus-
trates the energy efficiency for several thresholds, which are
very similar among them. The only remarkable difference
appears, again, in the central part of the graph, between 3 to
3.5 Gbits/s, where it seems that the slope decreases and the
orange line (3 dB) is clearly below.

To obtain more information about the effects of the thresh-
old on the network parameters, a new experiment has been
conducted, but now including a threshold parameter as a
decision variable to be optimized. The results obtained in this
case are illustrated in Figs. 7 and Fig 8.

Fig. 7 depicts the approximated Pareto front when the
threshold is taken into consideration. It also displays a color
scale on the right part of the plot to show the threshold value
computed by the algorithm for each of the non-dominated
solutions reached. It can be observed that all these solutions

FIGURE 8. Energy efficiency of the Pareto front of the average capacity
per user against power consumption when the threshold is optimized.
Results obtained for planning 2 in the light configuration.

have always obtained thresholds above 5 dB. A second inter-
esting finding arises when the capacity is roughly 3.2 Gbits/s,
where a sharp increase in the power consumption occurs.
This is a very valuable information for the network designer
(decision maker) as s/he can significantly reduce the energy
consumption of the network, penalizing minimally its capac-
ity. As it can be seen, at this point the algorithm tries different
values for the threshold around 7 dB, without finding a better
performance in terms of capacity without increasing power
consumption. At a first glance, if only Fig. 7 is considered,
it may seem reasonable to work at operating points below
3 Gbps. However, observing the energy efficiency in Fig.
8, the true fact is that the solutions near 4 Gbits/s do have
the higher energy efficiency. This is due to the fact that the
increase in energy consumption is counteracted by the rapid
increase in capacity, so that in terms of efficiency, the increase
in capacity is bearable at the expense of the additional trans-
mission power required. It is also important to note from
Fig. 8 that in the zone where the algorithm does not find
suitable solutions (3 to 3.5 Gbits/s approximately) the trend
of energy efficiency changes showing that best efficiencies
are in accordance with Fig. 7.

B. JOINT OPTIMIZATION OF SIGNALING COST AND
CAPACITY
The second experimentation is the joint optimization of data
rates and signaling cost. As explained above, signaling cost
is the accumulative layer 3 mobility signaling overhead for
supporting mobility service for a user. This metric is directly
proportional to the number of hops between the mobility
anchor and the user and also to the total number of handovers.
Therefore, the reduction of this cost implies an overall reduc-
tion in the handover latency. Therefore, the aim of this second
experiment is to target a possible 6G scenario where ultra-low
latency and very high transmission data rates are required.

In a similar way to the previous section, the variables to be
optimized are the transmitted power at the base station and the
optimization is performed for fixed thresholds. Fig. 9 shows
the aggregated front of the non-dominated solutions reached
in the 30 independent runs. It can be seen that higher thresh-
olds obtain the approximated fronts that converge the most.
It has to be clarified that, a zero signaling cost indicates that
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FIGURE 9. Pareto front of the average capacity per user against signaling
cost for several fixed thresholds. Results obtained for planning 2 in the
light configuration. Best aggregated value.

FIGURE 10. Efficiency (bitsdata/bitssignaling) of the Pareto front of the
average capacity per user against signaling cost for several fixed
thresholds. Results obtained for planning 2 in the light configuration.

the user remains in the same cell throughout the simulation,
sacrificing capacity at the cost of decreasing latency. In order
to further analyse the information enclosed in the approx-
imated fronts, similar to the merit factor shown previously
(EE), this work proposes for the first time, and to the best of
our knowledge, a merit factor that provides the ratio of data
sent for each signaling bit used (if no signaling is generated
because no handover occurs, the metric remains undefined).

Fig. 10 shows the results, which indicates that lower capac-
ities obtain higher efficiencies in terms of signaling bits sent
through the network per data bit. It can be therefore concluded
that it is more interesting to work at operation points with low
signaling. From the results, it can be seen that a high threshold
is required to obtain the highest values in our merit factor
(green and purple lines) since they obtain same merit factor
for larger capacities.

In a similar way to the previous section, an optimization
with a threshold as the variable is done. Figs. 11 and 12
show capacity-signaling cost optimizationwhen the threshold
value is a decision variable for the best aggregated value
in order to see the maximum performance of the network.
Similar to Fig. 9, Fig. 11 reveals that the higher capacity
incurs the higher signaling cost. This is explained by the
fact that to obtain maximum capacity, the user has to be
constantly moving between those BSs that provide the best
SINR, which incurs in signaling cost, and therefore, higher
latencies. Moreover, paths followed by the signaling traffic
are fixed. For that reason, it is not possible to find a large
number of solutions in the Pareto front.

FIGURE 11. Pareto front of the average capacity per user against
signaling cost when the threshold is optimized. Results obtained for
planning 2 in the light configuration.

FIGURE 12. Efficiency (bitsdata/bitssignaling) of the Pareto front of the
average capacity per user against signaling cost when the threshold is
optimized. Results obtained for planning 2 in the light configuration.

To conclude this section, it can be said that high thresholds
produce better results than low thresholds. It should also be
noted that the cost of signaling vary much more strongly than
the capacities in relative terms. Finally, it is more convenient
to work in the area of low signaling as it is shown in Fig. 12.

C. JOINT OPTIMIZATION OF SIGNALING COST AND
POWER CONSUMPTION
In this section, a power consumption-signaling cost optimiza-
tion is carried out following the methodology of the previous
ones. Figs. 13 and 14 show the best aggregate and average
value of the 30 simulations respectively. In these figures,
it can be seen how the high threshold values (green and

FIGURE 13. Pareto front of the power consumption against signaling cost
for several fixed thresholds. Results obtained for planning 2 in the light
configuration. Best aggregated value.
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FIGURE 14. Pareto front of the power consumption against signaling cost
for several fixed thresholds. Results obtained for planning 2 in the light
configuration. Average.

FIGURE 15. Efficiency (1/(bitssignaling · Joule)) of the Pareto front of the
power consumption against signaling cost for several fixed thresholds.
Results obtained for planning 2 in the light configuration.

purple) work much better. Furthermore, the differences are
much more pronounced for lower power consumption values.
The higher power consumption incurs in lower signaling cost.
The increase in the transmitted power by BSs decreases the
number of handovers since the users tend to stay connected
to the same BS.

In a similar way to the previous sections, a newmerit factor
that can compare the different points on the Pareto front is
proposed. This new merit factor is the inverse of the watts
consumed multiplied by the signaling cost. This merit factor
will indicate the joint cost of the signaling and the power
consumption and it will show the best operation points. Thus,
Fig. 15 shows this new merit factor. In line with the previous
figures, the best values of the new merit factor are obtained
for the higher thresholds. This trend is shown across the entire
range of power consumption. It can be seen how the most
efficient working points are for the highest power consumed.

To follow the same structure as in the previous sections,
optimization is carried out with the threshold as another
decision variable in the optimization. The results are shown
in Figs. 16 and 17. Fig. 16 presents the best Pareto front and
Fig. 17 presents the merit factor. The results show how in
the extremes of power consumption, the algorithm always
chooses very high values for the threshold. This is in line
with Figs. 13 and 14 where it can be seen that the differences
between the different thresholds are greater at the extremes.

D. TRI-OBJECTIVE OPTIMIZATION PROBLEM
From the previous sections, it can be seen how when com-
paring data rates and power consumption, the best operation

FIGURE 16. Pareto front of the power consumption against signaling cost
when the threshold is optimized. Results obtained for planning 2 in the
light configuration.

FIGURE 17. Efficiency (1/(bitssignaling · Joule) of the Pareto front of the
power consumption against signaling cost when the threshold is
optimized. Results obtained for planning 2 in the light configuration.

points are for high data rates. However, when comparing
signaling cost and data rates, the optimum operation points
are at low data rate points. Therefore, these operation points
are contradictory and a joint optimization of the three factors
is necessary in order to draw conclusions. Therefore, a com-
bination of the three previous optimizations is made, where a
surface is obtained as Pareto front as it is a three-dimensional
optimization. Fig. 18 depicts this optimization and three
trends can be distinguished. Signaling is minimized for low
capacities and high power consumptions. Capacity is max-
imized for high power consumptions and high signaling.
Power consumption is minimized for low capacities and high
signaling.

FIGURE 18. Pareto front of average capacity per user against power
consumption against signaling cost. Results obtained for planning 1 in
the light configuration.

Finally, a merit factor that takes into account the
three network parameters simultaneously (data rates, power
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FIGURE 19. Merit factor (bitsdata/(W · bitssignaling)) as a function of:
(a) data rate, (b) power consumption and, (c) signaling cost.

FIGURE 20. Pareto front of average capacity per user against power
consumption against availability. Results obtained for planning 1 in the
light configuration.

consumption and signaling cost) is proposed. This merit
factor is calculated by dividing the data bits by the power
consumed and the signaling bits. It reveals how many data
bits can be sent with a watt of power and one bit of signaling.
Fig. 19 shows this new merit factor as a function of average
capacity in Fig. 19(a), as a function of power in Fig. 19(b) and
as a function of signaling in Fig. 19(c). In these figures, it can
be seen that the highest efficiencies of this merit factor are
given for medium-high capacity and power values (around
3.5 Gbits/s and 30 to 31 kW). Also, in accordance with the
previous sections, the best operations points are those found
for low signalization values.

In addition, Fig. 20 shows a three-dimensional optimiza-
tion that involves capacity, power consumption and avail-
ability. Taking into account availability is another key factor
since the user should have coverage in order to satisfy his
requirements. Total availability is obtained for high power
consumptions where higher SINRs are able to improve the
capacity, and therefore the data rate.

E. NSGAII AND SMPSO TRI-OBJECTIVE OPTIMIZATION
PROBLEM
The previous section shows the study of the objectives with
the default algorithm used by MatLab. Going further as
explained in Section III, this study is performed with two
additional algorithms, NSGAII and SMPSO. These allow
us to go deeper into the tri-objective optimization case and
extend results depending on the algorithm used. Ten iterations
have been performed for each algorithm. The figures shown
throughout this section show a representative description of
the set of all the iterations.

Following the idea proposed in Fig. 18, a representation of
the three-dimensional Pareto front is drawn in Fig. 21 for each
of the three algorithms applied. On the one hand, the front
of NSGAII differs slightly from the original MatLab front.
On the other hand, the front proposed by SMPSO is quite
different from the two previous ones.

In order to study these results further, the objectives
are divided into three two-dimensional planes presented in
Fig. 22. The first column, which draws the signaling as a
colour scale, shows that NSGAII and SMPSO achieve bet-
ter results than MatLab. NSGAII finds a space of solutions
with lower energy consumption (objectives are shifted down-
wards) and less signaling (colder colors). In SMPSO it is
remarkable that a set of low signaling cost objectives is found.
They minimize energy consumption and signaling cost in
exchange for lower average capacity per user. This set of
objectives at the bottom left would be the example of a conser-
vative deployment. The second column represents the power
consumption as a colour scale. NSGAII gets colder colours
since it is the algorithm with the best solutions in terms of
energy saving. SMPSO concentrates the objectives in high

FIGURE 21. Pareto fronts of average capacity per user against power consumption against signaling costs. Optimization algorithms are default in
MatLab, NSGAII and SMPSO. Results obtained for planning 1 in the light configuration.
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FIGURE 22. Two-dimensional representation of the Pareto fronts. First, second and third rows represent MatLab, NSGAII and SMPSO algorithms
respectively. First, second and third column represent signaling costs, power consumption and average capacity per user as a colour scale.

TABLE 2. Hypervolume Comparison.

capacity areas except for a small section corresponding to the
conservative case explained above.

Finally, the third column draws the power average capacity
per user as a colour scale. By the same reasoning as above,
NSGAII objectives are shifted to the left, corresponding to
more energy efficient areas for similar capacities and signal-
ing. SMPSO explores a new area at the bottom left corre-
sponding to the conservative case.

The previous analysis of the Fig. 22 can be completed
with another analysis using performance metrics such as
hypervolume. Table 2 shows the average hypervolume for all
iterations of each algorithm.

In terms of hypervolume, the best algorithm is SMPSO,
followed by NSGAII in second place, and finally MatLab.
The explanation is similar to that given in Fig. 22. On the
one hand, NSGAII improves on MatLab with decreases in
power consumption. On the other hand, SMPSO explores
Pareto front areas that are not analyzed in the two previous
algorithms. This case allows a more complete view of the
Pareto front, which maximizes the hypervolume.

F. BASELINE COMPARISON
The hypervolume indicator shows the best Pareto fronts in
a very compact way. However, it does not allow to see the
improvement from the starting point. A visual comparison
with the baseline can be made. The baseline used for the
study consists on the average capacity per user, signaling
cost and power consumption objectives when all BSs are
operating at maximum power. This operation point provides
the following results: 2.51 Gbps (average capacity per user),
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FIGURE 23. Baseline in the two-dimensional representation of the Pareto fronts. First, second and third rows represent MatLab, NSGAII and
SMPSO algorithms respectively. First, second and third column represent signaling costs, power consumption and average capacity per user as a
colour scale.

43.9 kW (power consumption) and 116.5 kbps (signaling
cost). Fig. 23 shows the operating point of the baseline on
the Pareto fronts obtained for the three algorithms. In the first
column it is clear that the power consumed in the deployment
is improved, going from 43.9 kW to values in the range of
23 kW to 33 kW. The second column shows that the baseline
obtains intermediate values in terms of signaling and capac-
ity. However, the yellow color of the baseline indicates that
the power consumed to obtain these capacities and signaling
is much higher than the rest of the objectives on the fronts.
Finally, the third column shows a performance similar to the
first one, where the power consumed is much higher than the
Pareto front.

V. CONCLUSION
In this work, we have presented a multilayer network
optimization that optimizes some performance criteria. The
comprehensivemodel, based on the physical and network lay-
ers, allows the multilayer optimization where all objectives

are improved simultaneously. UEs capacity and BSs power
consumption from the network layer are optimized. UEs
signaling bits due to handovers in the network from the data
link layer are also considered in the optimization. These
optimizations are reflected in Pareto fronts, which show a
set of non-dominated solutions to the problem. They keep
a trade-off that provides the network designer with a set
of optimal settings for the network deployment. In order to
decide a certain configuration, the calculation of efficiency
parameters, such as energy efficiency, has also been carried
out, showing the optimum operating point for the network.
To go deeper into finding the optimal working point, three
new merit factors have been proposed that take into account
different parameters of the network.

The analysis of the merits factors shows the opti-
mal operation points. These points can be useful for the
telecommunication companies in order to allow new services
with high performance in all parameters. Therefore, the new
merits factors play a fundamental role in finding the balance
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between the different criteria assessed. Pareto fronts have
been obtained from three different optimization algorithms.
The comparison with the baseline shows that these Pareto
fronts are able to improve multiple objectives simultaneously.
The hypervolume analysis indicates that SMPSO presents the
best objectives on the Pareto front.

As a future direction, D2D communications and
multi-access edge computing (MEC) could improve the
performance indicators since these technologies decrease
the signaling costs and power consumption on the scenario
due to the cooperation among close users. Moreover, the
statistical multiplexing could increase the benefits of the
optimization by coordinating several streams simultaneously.
Although this technique slightly increases signaling traffic in
the network, this is offset by the potential resource savings in
terms of spectrum allocation.

5G and 6G aim to substantially improve all these QoS
metrics simultaneously. To this end, this study has easily
illustrated the trade-off between these performance indicators
reached by three multi-objective optimization algorithms.
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