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ABSTRACT With the development of autonomous vehicles, research on energy-efficient eco-driving is
becoming increasingly important. The optimal control problem of determining the speed profile of the
vehicle for minimizing energy consumption is a challenging problem that necessitates the consideration
of various aspects, such as the vehicle energy consumption, slope of the road, and driving environment, e.g.,
the traffic and other vehicles on the road. In this study, an approach using reinforcement learning was applied
to the eco-driving problem for electric vehicles considering road slopes. A novel model-based reinforcement
learning algorithm for eco-driving was developed, which separates the vehicle’s energy consumption
approximation model and driving environment model. Thus, the domain knowledge of vehicle dynamics
and the powertrain system is utilized for the reinforcement learning process, while model-free characteristics
are maintained by updating the approximation model using experience replay. The proposed algorithm was
tested via a vehicle simulation and compared with a solution obtained using dynamic programming (DP),
and as well as conventional cruise control driving with constant speed. The simulation results indicated that
the speed profile optimized using model-based reinforcement learning had similar behavior to the global
solution obtained via DP and energy saving performance compared with cruise control.

INDEX TERMS Eco-driving control, electric vehicles, model-based reinforcement learning, optimal control,
Q-learning, reinforcement learning.

I. INTRODUCTION
Recently, diverse technologies for autonomous vehicles have
been developing rapidly, which has led to advancements in
autonomous driving. In the future, vehicles can be operated
with less intervention by human drivers. Without manipula-
tion by the human driver, the vehicle becomes safer; addi-
tionally, vehicles will be able to move quickly with the aid
of computational intelligence based on autonomous vehicle
technologies in the near future. Another issue concerning
future vehicles is the environmental aspect; diverse vehicles,
such as hybrid electric vehicles (HEVs), electric vehicles
(EVs), and fuel-cell EVs (FCEVs), are being developed to
reduce emissions and increase the vehicular efficiency. The
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use of autonomous vehicles can also contribute to increasing
the vehicular fuel efficiency. In an autonomous vehicle, when
the level of driving automation increases, the intervention of
the human driver can be minimized. The efficiency of these
vehicles can be maximized while satisfying the desired travel
time. This optimization of the vehicle speed profile can be
very useful, as the vehicle efficiency can be increased without
changes in the vehicle hardware, and this technology can be
used in any type of vehicle. Additionally, considering that
in the near future, many vehicles can be operated without
a human driver, optimization of the vehicle speed profile,
which is called an eco-driving strategy, is a very important
problem.

Various studies have been conducted on eco-driving strate-
gies. First, approaches based on an analytical solution derived
from the optimal control problem have been proposed. In [1],
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a closed-form solution of the optimal problem was found
for eco-driving of EVs. Here, the optimization problem was
defined to minimize the fuel consumption, and the target
traveling time for a given distance was given as the con-
straint of the problem. Then, the optimization problem was
solved to obtain an explicit solution. In [2], an analytical
state-constrained solution was derived considering vehicle
safety constraints for EVs. Here, the minimum inter-vehicle
distance and maximum road speed limit were defined as state
constraints, and an analytical state constrained solution was
derived for connected and automated vehicles.

Additionally, in many studies, approaches based on
dynamic programming (DP) or Pontryagin’s minimum prin-
ciple (PMP) were utilized. In [3], look-ahead control was
used to optimize the speed profile. Here, based on a global
positioning system, the road geometry ahead of the vehicle
was extracted, and DP was used in a predictive scheme to
optimize the velocity trajectory for a heavy diesel truck.
In [4], stochastic approaches based on the DPwere employed.
Here, a time-independent fuel-efficient control strategy based
on stochastic DP was developed, which does not require pre-
view information of the route or the road slope. Additionally,
constraints on the vehicle-following distance are applied
to develop a fuel-efficient vehicle-following control policy.
In [5], PMP was applied to a passenger car with an internal
combustion engine vehicle. Here, optimal periodic control
was derived for cruise control, which is a hybrid system
that includes gear shift and idle operation of the engine.
In [6], the minimum fuel driving control was studied accord-
ing to PMP. Here, the vehicle model was expressed as
a point-mass vehicle with a quasi-static polynomial fuel-
consumption model, and gear shifting, clutch disengagement,
and brake control were modeled as simple on–off switches.
More recently, in [7], PMP and DP were used together for
the eco-driving of all-EVs. Here, PMP was first utilized to
find the possible operating mode satisfying the necessary
condition, and then, DP was used to solve the optimal control
problem again in the distance domain, which reduced the
computational burden of the DP calculation.

In [8], the traffic signal was included in the eco-driving
control framework. Here, with the assumption of vehicle-to-
infrastructure communication capabilities, an optimal speed
profile was obtained to minimize the total fuel consumption
while safely crossing an intersection. Additionally, combined
with the energy management of HEVs, the speed profile
control problemwas defined in an all-inclusive manner in [9].
Here, a bi-level methodology was used for the predictive
energy management of parallel HEVs, where the optimal
velocity was calculated first in the outer loop using a Krylov
subspace method, and in the inner loop, the optimal torque
split and gear shift were determined using PMP based on the
model predictive control (MPC) framework.

However, applying these eco-driving strategies to
real-world driving situations is not easy and has many lim-
itations. First, the environment changes frequently and has
many disturbances. Thus, the deterministic algorithm has

limitations in that it must predict future driving conditions
precisely, or there are driving environments that are difficult
to model, such as the driving behavior of the car ahead
or a traffic jam. Additionally, implementing DP or PMP
for an online eco-driving strategy is challenging because
of the computational burden of DP or the co-state sensitive
characteristics of PMP. The more practical method of MPC
was used in [10], and [11]. Here, adaptive nonlinear MPC
was utilized, and it was implemented in a vehicle with a
standard production powertrain control module. To increase
the prediction accuracy, a recursive least-squares algorithm
was used for parameter adaptation, which was combined with
MPC to obtain more reliable results under real-world driv-
ing conditions. In [12], the vehicle-following scenario was
studied. In the automated car-following scenario, the pulse-
and-gliding strategy was implemented based on the switching
logic in a servo-loop controller tominimize the fuel consump-
tion. However, these approaches also have limitations in that
MPC and periodic control are focused on finding the local
optimal for the near future, rather than the global optimal
solution with entire travel distances. Thus, the fuel-economy
improvement is limited, and consideration of complex driving
environments is challenging, requiring an additional parame-
ter calibration process.

Therefore, in this study, we conducted an eco-driving
strategy based on reinforcement learning. Reinforcement
learning is an algorithm that can learn the optimal control
policy according to the interaction between the agent and
the environment [13]. Reinforcement learning is very similar
approach to the DP-based approach in that they can optimize
the cost-to-go value function based on the Bellman equation,
and it is possible to replace this DP-based approach with
reinforcement learning-based approach. On the other hand,
unlike DP, reinforcement learning can be used as a real time
controller through learning in a stochastic manner, and it has
a model-free feature by learning the optimal control policy
through the interaction between the agent and the environ-
ment with adaptation. Accordingly, reinforcement learning
approach is well suited to the eco-driving control problem
in which an optimization solution must be found through
a probabilistic point of view in various and complex road
driving environments. Reinforcement learning has been used
for eco-driving in several studies. In [14], multi-objective
deep Q-learning was utilized for the eco-routing problem
to identify the best route for minimizing the traveling time
and fuel consumption. In [15], and [16], a reinforcement
learning algorithm was studied for minimizing the fuel con-
sumption in the vicinity of an isolated signal intersection.
In [17], eco-driving control considering the car-following
scenario using an actor–gear–critic network architecture was
studied for a conventional vehicle equipped with an inter-
nal combustion engine and automated manual transmission.
Here, a fuel economy with safe inter-vehicle distance con-
straints was considered as an objective function, but the road
slope was not considered as a state variable and was set to
zero.
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In the present study, general speed profile optimization
for an eco-driving strategy for longitudinal driving con-
sidering the road slope using model-based reinforcement
learning (MBRL) was investigated. MBRL is a methodology
that approximates the environment, including the system
dynamics; thus, learning can be conducted with guaranteed
stability [18], or few interactions [19]. In the case of vehicle
control, MBRL was successfully applied to the optimal con-
trol problem of energy management of HEVs in our previous
studies [20], [21]. The contribution of the present study is as
follows: We developed a new algorithm for the eco-driving
control problem using the reinforcement learning approach,
and through this, we confirmed that the reinforcement learn-
ing method can be well applied to the eco-driving problem.
In particular, in the eco-driving problem through optimiza-
tion of the vehicle’s speed profile reflecting the road slope,
the reinforcement learning method was compared with the
optimal solution using the existing DP method and the cruise
control case with constant vehicle speed, demonstrating the
excellence and feasibility of the reinforcement learning based
approach. Especially, we developed an eco-driving strategy
with model-based Q-learning and confirmed its effectiveness
via a vehicle simulation. To the best of our knowledge, this
was the first study in which the MBRL approach was applied
to the eco-driving control problem. Even though only the
road slope is considered among diverse driving environments
for the eco-driving strategy, considering that the proposed
approaches can be extended to diverse driving environment
conditions, e.g., traffic signals and other vehicles on the
road, thanks to the model-free characteristic of the algorithm,
the approaches using the reinforcement learning technique
can be powerful. Additionally, the trained optimal control
policy can be used for real-time vehicle controllers. The
remainder of this article is organized as follows. In Section II,
the EV model used in this study is presented. In Section III,
the optimization problem for the eco-driving strategy is pre-
sented, and theMBRL algorithm for eco-driving is explained.
In Section IV, the vehicle simulation is presented, and in
Section V, the conclusions are presented.

II. VEHICLE MODELING
In this study, a vehicle simulation was performed for training
and testing the proposed algorithm. For the simulation, an EV
was used. Compared with conventional internal combustion
engine-based vehicles, EVs can recover energy from regener-
ative braking, making themmore suitable for energy-efficient
driving. However, the algorithm proposed in this article is not
limited to EVs but is applicable to all vehicles.

For the EV modeling, a backward-looking vehicle simu-
lation was performed via a quasi-static modeling technique,
and only longitudinal vehicle dynamics are considered. The
vehicle configuration is shown in Fig. 1, and the vehicle
parameters used in the simulation are presented in Table 1.
The efficiency of the motor including the efficiency of the
converter ηelec(Tmot , ωmot ), was calculated using a prede-
termined map, as shown in Fig. 2, and the electric power

FIGURE 1. Simulation model of EVs.

FIGURE 2. Efficiency of the motor, including the converter efficiency.

TABLE 1. Vehicle model parameters.

consumed by the motor pbat , was calculated using the fol-
lowing equation:

pbat = ηelec−sgn(Tmot ) · Tmotωmot (1)

where Tmot represents the motor torque, and ωmot represents
the motor speed. The battery state of charge (SOC) dynamics
can be expressed as follows:

˙SOC = −
VOC −

√
V 2
OC − 4RbatPbat

2RbatQbat
(2)

where Voc(SOC) represents the open-circuit voltage,
Rbat (SOC) represents the internal resistance of the battery,
and Qbat represents the battery capacitance. The powertrain
dynamic is given as follows:

Twh = (Tmot − Tfd,loss) · γfd (3)

where Twh represents the wheel torque, γfd represents the gear
ratio of the final drive, Tfd,loss(Tfd , ωfd ) represents the torque
loss in the final drive, Tfd represents the input torque in the
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final drive, and ωfd represents the input speed in the final
drive, which can be expressed as follows:

ωfd = ωmot =
v · γfd
Rtire

(4)

where Rtire represents the tire radius, and v represents
vehicle’s longitudinal speed. The vehicle dynamic is given
as follows:

v̇ =
Twh/Rtire − Fbrake − Fload

Mveh +Meq
(5)

where Fbrake represents the brake force, Mveh represents the
vehicle mass,Meq represents the equivalent mass of the rotat-
ing inertia in the vehicle component, and Fload represents the
road load force, including the grading resistance, which can
be expressed as follows:

Fload = f0 + f1 · v+ f2 · v2 +Mvehg sin θ (6)

where f0, f1, and f2 are the road load coefficients, which
have the units of N , N/km, and N/km2, respectively, and
θ represents the road slope. Using this vehicle model,
a vehicle simulation was conducted to train and test
the proposed algorithm, as explained in the following
section.

III. MODEL-BASED REINFORCEMENT LEARNING FOR
ECO-DRIVING STRATEGY
A. OPTIMAL CONTROL PROBLEM FORMULATION
The optimal control problem for an eco-driving strategy can
be defined to minimize the battery electric energy consump-
tion for state vector consists of the vehicle speed and the trav-
eling distance x = {v, d}, while driving a given distanceD for
a given time T as follows:

min
(∫ T

0

˙SOC (v(t), u(t)) dt
)

subj.to v̇ = f (v(t), u(t))

ḋ = v

v(t) ∈ [vmin(t), vmax(t)]

u(t) ∈ [Tmot,min(ωmot (t)),Tmot,max(ωmot (t))]

d(0) = 0, d(T ) = D

v(0) = v0, v(T ) = vf (7)

where f represents the nonlinear vehicle dynamics explained
in the previous section, u represents the control variable,
which is motor torque with the maximum torque Tmot,max
and the minimum torque Tmot,min. v0 and vf represent the
vehicle initial speed, and the vehicle final speed at D respec-
tively, which have the minimum and maximum speed of vmin,
and vmax .
To simplify the optimal control problem, it can be

expressed as one state formulation using dt = dd/v as
in [22], which is the weighted sum of the battery SOC

usage and the traveling time according to the distance,
as follows:

min
(∫ D

0

˙SOC
v(d)

dd + ω
[∫ D

0

1
v(d)

dd − T
])

subj.to v̇ = f (v(d), u(d))

v(d) ∈ [vmin(d), vmax(d)]

u(d) ∈ [Tmot,min(ωmot (d)),Tmot,max(ωmot (d))]

v(0) = v0
v(D) = vf (8)

where ω represents the weighting factor to be tuned for satis-
fying the total driving time. By transferring the optimal con-
trol problem from (7) to (8), the problem is defined according
to the traveling distance d , while the vehicle’s initial and
final speed constraints remain the same. As mentioned in the
section I, the traffic-signal and car-following situations are
not considered.

B. DETERMINISTIC DP
First, deterministic DP is used to solve the optimal control
problem. The foregoing optimal control problem can be
presented in discrete form as follows:

min

(
N−1∑
k=0

L (v(k), u(k))

)
subj.to v̇ = f (v(k), u(k))

v(k) ∈ [vmin(k), vmax(k)]

u(k) ∈ [Tmot,min(ωmot (k)),Tmot,max(ωmot (k))]

v(0) = v0
v(N ) = vf (9)

where the index k represents the discretization step for N
segments, which is equally divided with unit distance 1s,
and L(v(k), u(k)) represents the instantaneous cost incurred,
which can be expressed as follows:

L (v(k), u(k))) = 1SOC(k)+ ω ·1time(k) (10)

1SOC(k) = ˙SOC(k) ·
21s

v(k)+ v(k + 1)
(11)

1time(k) =
21s

v(k)+ v(k + 1)
(12)

Then, the optimal solution can be obtained using the Bellman
equation [23], as follows.

J∗k,N (v(k)) = min
{
L(v(k), u(k))+ J∗k+1,N (v(k + 1))

}
(13)

Here, Jk,N represents the cost function for traveling from step
k to N , which can be expressed in the recursive form using
the instantaneous cost L(v(k), u(k)), and the cost function for
traveling from step k+1 to N , Jk+1,N . Using (13), an optimal
speed profile based on the travel distance can be obtained, but
deterministic DP is computationally inefficient and difficult
to adapt under driving-condition changes. Thus, it has many
limitations when used in real-time vehicle controllers.
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C. MODEL-BASED REINFORCEMENT LEARNING
First, the optimal control problem can be expressed to
minimize the expected total cost over an infinite horizon,
as follows:

min

(
Jπ (x0) = lim

N→∞
E

{
N−1∑
k=0

γ kg(xk , π(xk ))

})
(14)

where Jπ (x0) represents the cost with initial condition and
control policy π , γ represents the discount factor, and g rep-
resents the instantaneous cost, which can be expressed as
follows:

gk = 1SOC(k)+ ω ·1time(k)+ η(vk ) (15)

Here, η(vk ) represents the penalty cost that is applied when
the vehicle speed is higher than vmax or lower than vmin,
as follows:

η(vk ) =

{
0 if vmin(k) ≤ vk ≤ vmax(k)
costpenalty else

(16)

Here, costpenalty is a positive constant. The optimal control
problem is defined in an infinite horizon; thus, the generated
control policy is time-invariant, which can be easily imple-
mented on a real-time vehicle controller. The state variable x
is defined as follows:

x = {v, h, θ} (17)

where h represents the height, and θ represents the road slope.
x is discretized as follows:

v ∈ {v1, v2, v3, . . . , vNv} (18)

h ∈ {h1, h2, h3, . . . , hNh} (19)

θ ∈ {θ1, θ2, θ3, . . . , θNθ } (20)

where Nv, Nh, and Nθ represent the number of the discretized
speed, height and road slope respectively, and the control
variable is also discretized as follows:

u ∈ {u1, u2, u3, . . . , uNu} (21)

where Nu represent the number of the discretized control
input.

Therefore, in this study, the eco-driving control policy was
determined according to the current vehicle speed, height,
and road slope. Among them, vehicle speed or road slope
directly affect the cost values. However, in the case of height,
it does not directly affect the cost value instantly, but it reflects
the future cost concerning the road driving environment.
Combined with the road slope, height can be expressed as
a state of the Q function indicating the expected total cost of
future energy use. That is, even in the same uphill situation,
the optimal driving speed of the vehicle may vary according
to the current height, and this is obvious when considering
the relationship between the kinetic energy of the vehicle and
the potential energy, and the energy consumption of driving
the vehicle accordingly. Therefore, by considering the height
as a state variable with the vehicle speed and the road slope,

it is possible to better represent the value of the cost-to-go
function in Q function and a probabilistic driving situation
than when the road slope is considered only.

Based on Q-learning [24], The optimal cost J∗(xk ) and
optimal control policy π∗(xk ) can be expressed as follows:

J∗(xk ) = min
u
(Q∗(xk , u)) (22)

π∗(xk ) = argmin
u
(Q∗(xk , u)) (23)

Then, the Q function can be updated as follows:

Q(xk , uk )

← Q(xk , uk )+α
(
gk+γ min

u
Q(xk+1, u)−Q(xk , uk )

)
(24)

In this study, to solve the optimal control problem, a novel
eco-driving strategy utilizing MBRL was developed on the
basis of a previous study on MBRL for the HEV control case
study in [21]. In (17), the state variable xk = [vk , hk , θk ] is
partially stochastic (the driving environment hk and θk can be
considered stochastic without preview terrain information),
but it is possible to expect vk , and gk deterministically based
on the vehicle powertrain dynamics equations of (1)–(6), and
the cost equation (15) for the given driving conditions of
hk , and θk and the given control input u. Thus, the domain
knowledge of the known vehicle dynamic model and pow-
ertrain system can be used in reinforcement learning, while
the remaining model uncertainty due to modeling error or
other driving environments that are difficult to model can be
learning via model-free still.

On the basis of this observation, we developed a new
MBRL algorithm for the eco-driving strategy. The overall
algorithm is presented in Fig. 3 and Algorithm 1. In the
new algorithm, the agent’s learning takes place based on
approximation model using the deterministic variable, while
stochastic variables are reflected in the agent’s learning
through the experience replay. Usually, in the Q-learning,
the agent derives the action uk using methods such as ε-
greedy (exploitation and exploration) according to the Q
function value and the current state xk , and conducts learning
by updating Q function value using the observation of the
reward gk and the next state xk+1. Alternatively, in the new

FIGURE 3. Model-based reinforcement learning algorithm for eco-driving.
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Algorithm 1 Model-Based Reinforcement Learning
Algorithm for Eco-Driving

Input: data xk , size N
repeat
Observe xk = [vk , hk , θk ]
Choose the greedy action
uk = argminu Q∗(xk , u)

Observe reward gk , and state xk+1
Update approximation model

ĝ(x|u) ← ĝ(x|u)+ αg(gk (xk |uk )− ĝ(x|u))

v̂(x|u) ← v̂(x|u)+ αv(vk+1(xk |uk )− v̂(x|u))

Update Q using approximation model
for m = 1 to Nv do
for l = 1 to Nu do

Q ← (1− α)Q(xk = [vm, hk , θk ], ul)

+α
(
ĝk + γ min

u
Q(x̂k+1 = [v̂k+1, hk+1, θk+1], u)

)
end for

end for
k ← k + 1

until Simulation stop

algorithm, the agent derives the greedy control input using
the Q function and observes the reward and the next variable
(exploitation), but observed information is used to make an
approximation model, and by using it, various control inputs
are tested for a given stochastic state transition (exploration).
In other words, according to the experience of the driving
environment of hk and θk , learning with experience replay
is conducted to optimize the Q function value as shown in
‘‘for’’ loop in the Algorithm 1. With estimation of v̂k+1 and
estimation of the reward ĝk , the Q function value can be
updated for different vehicle speeds v ∈ {v1, v2, v3, . . . , vNv}
and control inputs u ∈ {u1, u2, u3, . . . , uNu}, as follows:

Q ← (1− α)Q(xk = [v, hk , θk ], u)

+α
(
ĝk+γ min

u
Q(x̂k+1= [v̂k+1, hk+1, θk+1], u)

)
(25)

where ĝk , and v̂k+1 can be determined based on the vehicle
powertrain model. Alternatively, ĝk , and v̂k+1 can be deter-
mined based on approximation model for keeping model-free
characteristic of reinforcement learning (see [21]), that
approximation could be done based on the experience as
shown in following equation:

ĝ(x|u) ← ĝ(x|u)+ αg(gk (xk |uk )− ĝ(x|u)) (26)

v̂(x|u) ← v̂(x|u)+ αv(vk+1(xk |uk )− v̂(x|u)) (27)

where αg and αv represent the learning rates. According to the
experience of the stochastic state transition from (hk , θk ) to
(hk+1, θk+1), the deterministic state transition from vk to v̂k+1
and reward ĝk can be estimated to optimize the Q function
value. In this study, to simplify the problem, the control input

uwas defined as the relative offset of the vehicle speed instead
of the motor torque, as follows:

u ∈ {−10δ,−9δ,−8δ, . . . , 0, . . . ,+8δ,+9δ,+10δ} (28)

Here, δ represents the unit speed for discretization in (18).
Then, the estimation of v̂k+1 is not required, as v̂k+1 is deter-
mined u directly, and the control policy can be expressed in a
more intuitive form in the direction of reducing or increasing
the speed of the vehicle in several steps.

The feature of this algorithm is to separate the model-based
insight of the vehicle powertrain, which can be estimated
relatively well, from various driving situations that are dif-
ficult to estimate, so that the control policy is extracted
more effectively using reinforcement learning. Additionally,
the proposed algorithm has the advantage of experience
replay, which accelerates the convergence and enhances the
stability. Furthermore, the control u can be tested in the
nested ‘‘for’’ loop of the experience replay process before
it is used in the real greedy action; thus, irrelevant control
inputs can be excluded to prevent fatal system errors or
optimize the controller performance. Additionally, to reduce
the computational burden, the ‘‘for’’ loop in the algorithm can
be alternated via prioritized sweeping without searching all
the v and u values.

IV. VEHICLE SIMULATION
A simulation based on the vehicle model described in
Section II was performed. For the vehicle simulation
and development of the reinforcement learning algorithm,
MATLAB was used. Information regarding the driving envi-
ronment, i.e.,hk and θk , was recorded during real-world driv-
ing and used in the simulation. The height and road slope
profiles are shown in Fig. 4. The distance of the diving cycle
was 10 km, and it was divided into equal intervals of 10 m.

FIGURE 4. Driving environment: (a) driving cycle A; (b) driving cycle B;
(c) driving cycle C.
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The slope was assumed to be a piecewise constant. The
parameters used in the reinforcement learning algorithm are
presented in Table 2. For discretization, the nearest-neighbor
method was used. The vehicle speed was discretized
by 1 km/h from 0 to 100 km/h, and height was discretized
by 5 m. The road slope was discretized by 1%. For the
weighting factor, ω, which should be defined to satisfy the
desired traveling time for a given driving environment, was
assumed to be 0.004. For the battery SOC, the initial value
was defined as 70% and the initial vehicle speed was defined
as 60 km/h. The initial value of the approximation model was
defined roughly using (1)–(6) and was updated during the
learning process.

TABLE 2. Parameters for learning.

A. LEARNING CURVE AND CONTROL POLICY
Using the proposed algorithm, a learning process was con-
ducted to determine the energy-efficient speed trajectory
using driving cycles A, B, and C, separately. With an initial
speed of 60 km/h, the vehicle speed was generated for each
driving cycle, and learning was performed 500 times. The
learning curve resulting from the learning process utilizing
driving cycle A is presented in Fig. 5. As shown, the sum
of the instantaneous cost in (15) rapidly decreased and con-
verged as the learning was repeated, indicating that the learn-
ing process was successful. The resulting speed trajectories
and height with respect to the traveling distance, as well as
the motor torque profiles for all the driving cycles, are pre-
sented in Fig. 6. Generally, the vehicle speed decreased when
the vehicle traveled uphill and increased when the vehicle
traveled downhill. Using the proposed algorithm, the optimal
velocity profile utilizing the slope and height information
of the terrain was learned. As an example, the control pol-
icy extracted from the Q function using driving cycle A is
presented in Fig. 7, where the optimal speed command for
either an increasing or decreasing speed is shown according
to vehicle’s current speed, and slope. Here, the trend of the
control according to the current speed and slope value was
confirmed: for a low speed, the control policy increased the
speed actively, and higher slope values tended to reduce the

FIGURE 5. Learning curve for driving cycle A.

FIGURE 6. Optimized speed trajectory and height with respect to the
traveling distance, as well as the motor torque. Results are presented for
different driving cycles: (a) A; (b) B; (c) C.

speed. In all three cycles, the vehicle’s speed was maintained
between approximately 60 and 80 km/h. This is because the
same weighting coefficient ω was used, and in the same way,
the tendency to control with the target speed section can be
confirmed in the extracted control policy.

B. COMPARISON WITH DETERMINISTIC DP RESULT AND
CRUISE CONTROL RESULT
The energy saving performance of the given speed trajectory
was evaluated by comparing it with the result of DP, as well
as general cruise control in which the vehicle is driven at a
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FIGURE 7. Control policy extracted from driving cycle A for a height
of 50 m.

constant speed. As mentioned in Section III, DP can present
the global optimal solution; thus, the solution of DP can be
used as a benchmark. However, in contrast to DP, in which
the initial and final condition of the state can be defined,
in the proposed MBRL algorithm, the final speed cannot be
determined in advance. Thus, according to the MBRL result,
the initial and final speed results (v0 and vf , respectively)
were set as constraints in DP, to compare the energy saving
performance fairly by making the remaining kinetic energy
of the vehicle identical between the two cases. For cruise
control, the vehicle is driven at an average speed equal to the
MBRL result vave, and the initial and final speed constraints
are applied.

The simulation results are presented in Table 3, and Fig. 8.
Table 3 presents the traveling time, SOC usage, and percent
energy saving of SOC usage with respect to the cruise control
result. The traveling time was an important factor, as driving
the same distance slower tended to use less battery SOC.
In the simulation, the traveling time results for DP, MBRL,
and cruise control were close, with a maximum difference
of 0.6%, which is negligible. With regard to the battery
SOC use, DP was the most efficient of the three approaches,

TABLE 3. Simulation result for DP, MBRL, and cruise control.

FIGURE 8. Optimized speed trajectory and battery SOC for cruise control,
DP, and MBRL: (a) driving cycle A; (b) driving cycle B; (c) driving cycle C.

followed by MBRL. Compared with cruise control, DP and
MBRL exhibited average energy saving of 3.4% and 2.0%,
respectively. Fig. 8 shows the speed profiles and battery SOC
trajectories. The speed profiles obtained from MBRL were
similar to those obtained from DP, as expected from the
energy saving performance results. However, there was a
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difference between the DP and MBRL results, even though
training was successfully conducted using the entire driving
cycle information in MBRL. This can be explained by the
problem definition: in MBRL, the optimal control problem is
defined as minimizing the expected total cost in an infinite
horizon, whereas in DP, it is defined in a finite horizon. This
results in a higher energy saving for DP, while the control pol-
icy ofMBRL can be used as an offline real-time controller in a
stochastic manner. However, for various driving environment
scenarios, MBRL shows good performance, because MBRL
has learned the optimal behavior well using the transition
probability of the vehicle’s driving environment {hk , θk} to
{hk+1, θk+1} through the learning process. Unlike determin-
istic DP in which entire driving environment information
should be given in advance, or stochastic DP inwhich amodel
for the transition probability matrix of a driving environment
should be given in advance [25], in reinforcement learning,
the agent brings the transition probability distribution of the
driving environment to the optimization problem through
the interaction with the driving environment. Therefore, it is
possible to derive optimal control through learning based on
model-free characteristics.

C. PERFORMANCE FOR LEARNING WITH COMBINED
DRIVING CYCLES
The performance of the algorithm when the learning process
was conducted with various driving cycles was evaluated.
Here, all the driving cycles (A, B, and C) were utilized for the
training process, and the resulting Q function was employed
as an offline control policy for simulation using each driving
cycle. Thus, by testing the control policy obtained from the
learning process using combined driving cycles, we checked
whether the algorithm could show the performance when it
visited an area previously learned. The simulation results are
presented in Fig. 9 and Table 4. In Fig. 9, speed trajectories

TABLE 4. Simulation results for learning with all driving cycles and cruise
control.

FIGURE 9. Optimized speed trajectory and battery SOC obtained from
learning with a specific driving cycle only and leaning with all driving
cycles: (a) driving cycle A; (b) driving cycle B; (c) driving cycle C.

obtained from learning with a specific driving cycle only
and leaning with all driving cycles are compared, both using
MBRL. As shown, the vehicle speed profiles were similar
for all the driving cycles, indicating that the driving-cycle
information (once learned in MBRL) could be stored in the
Q function value and that improved performance could be
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repeated when the vehicle revisited a driving environment;
however, there was a small performance reduction in energy
saving. In Table 4, the energy saving performance of the
speed profile based on learning with all driving cycles was
compared with that of cruise control. Similar to the pre-
vious comparison, the final speed and traveling time were
applied as constraints for generating a cruise control speed
profile. The results indicated that there was still meaningful
energy saving, even though the percentage improvement was
reduced compared with learning using a single driving cycle
in Table 3. Therefore, the offline control policy (represented
as the optimized Q function) can be utilized as a real-time
controller for the eco-driving strategy.

V. CONCLUSION
A reinforcement learning algorithm was developed for the
eco-driving of an EV, and through this, we confirmed that
the reinforcement learning method can be well applied to
the eco-driving problem. Especially, we showed that using
MBRL, an energy saving optimal speed trajectory utilizing
the road slope of the driving cycle can be acquired, and it
was compared with the optimal solution using the existing
DP method and the cruise control case, demonstrating the
excellence and feasibility of the reinforcement learning based
approach. The proposed MBRL algorithm separates the vehi-
cle energy-consumptionmodel from the driving environment;
thus, learning can be conducted efficiently with the domain
knowledge of vehicle dynamics and the powertrain model,
while model-free characteristics are maintained by updat-
ing the approximation model with experience replay. The
proposed algorithm exhibited an energy saving performance
of 1.2% – 3.0% compared with cruise control and similar
behavior to DP. Additionally, we showed that by training
the control policy with combined driving cycles and testing
for separated specific driving cycles, the control policy can
be used as an offline real-time controller. The limitation
of this study is that we only used road slope information
to generate an optimal speed profile among diverse driving
environments; other constraints associated with traffic signals
or other vehicles on the road were not included in the learning
process. However, the approaches based on reinforcement
learning have advantages for dealing with model uncertainty
using the interaction between the agent and the environment;
thus, we expect that these constraints with disturbance can be
modeled and an optimal control policy can be learned suc-
cessfully in a stochastic manner. This should be investigated
in a future study.
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