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ABSTRACT Multiagent Systems (MASs) have multiple different characteristics, such as autonomy, and
asynchronous and social features, which make these systems difficult to understand. Thus, there is a lack of
procedures guaranteeing that multiagent systems once implemented would behave as desired. Determining
the reliability of such systems is further complicated by the fact that current agent-based approaches may also
involve non-deterministic characteristics, such as learning, self-adaptation and self-organization (SASO).
Nonetheless, there is a gap in the literature regarding the testing of systems with these features. This paper
presents an approach based on metadata and the publish-subscribe paradigm to develop test applications that
address the process of failure diagnosis in a self-organizing MAS. The novelty of the proposed approach
involves its ability to test self-organizing MAS systems in the context of local and global behavior. To
illustrate the use of this approach, we developed a self-organizing MAS system based on the Internet of
Things (IoT), which simulates a set of smart street lights, andwe performed functional ad-hoc tests. The street
lights need to interact with each other in order to achieve the global goals of reducing energy consumption and
maintaining the maximum value of visual comfort in illuminated areas. To achieve these global behaviors,
the street lights develop local behaviors automatically through a self-organizing process based on machine-
learning algorithms.

INDEX TERMS Metadata-oriented testing, publish-subscribe, failure diagnosis, multiagent system, self-
organizing, Internet of Things (IoT), machine learning, neuroevolution.

I. INTRODUCTION
Multiagent Systems (MASs) involve different characteristics,
such as autonomy, asynchronous and social features, which
makes these systems more difficult to understand. Thus, there
is a lack of procedures guaranteeing that multiagent systems
would behave as desired [1]. Further complicating the sit-
uation is the fact that current agent-based approaches may
also involve non-deterministic characteristics, such as learn-
ing, self-adaptation and self-organization (SASO) [2], [3].
Nonetheless, there is a gap in the literature regarding the
inspection of systems with these features. For example, there
are few approaches to test the local interactions between
agents in a self-organizing or self-adaptive MAS system
and the global behavior that emerges from these interactions
[4], [5]. One reason is the difficulty of specifying expected
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results for non-deterministic applications, especially in actual
environments.

We consider here the definition of self-organizing systems
that has been used by the editors of the IEEE International
Conference on Self-Adaptive and Self-Organizing Systems,
as follows [6]:

Self-organizing systems work bottom-up. They are
composed of a large number of components that
interact according to simple and local rules. The
global behavior of the system emerges from these
local interactions, and it is difficult to deduce prop-
erties of the global system by studying only the
local properties of its parts.

In [7], we present a preliminary version of a publish-
subscribe-based architecture that was implemented1 to make
feasible the development of multi-level tests based on logging
for multiagent systems. By using this platform, it is possible

1The source of the test system is available at http://www.inf.puc-
rio.br/ nnascimento/MAS-tests.html
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to test the behavior of individual agents and the behavior of
group of agents. However, we only showed the usability of
our platform by testing a very simple MAS application - a
marketplace to buy and sell books on-line. Therefore, the goal
of this paper is to improve this architecture and present an
approach that makes it possible to diagnose failures in a more
complex MAS application, a self-organizing one.

The novelty of the proposed approach involves its ability to
test self-organizing MAS systems in the context of local and
global behavior. As a self-organizing MAS system enables
the emergence of social features based on the behavior of
individual agents, to test this kind of system our new approach
is able to analyze the activities performed by single agents,
the interaction among the agents and the behavior that is
exhibited by the whole system. Because if an agent fails,
its failure may be related to a previous and an unexpected
behavior of another agent in the environment, the proposed
approach enables testing not only a single agent, but also the
group of agents that interact with the agent even when no
messages are exchanged between the agent and the group.
In addition, to test self-organizing applications, our new
approach promotes the development of tests separated into
two categories: global and local levels. Section V provides
more details about our proposed approach.

To illustrate and evaluate the use of the proposed approach,
we developed a self-organizingMAS application by using the
‘‘Framework for the Internet of Things’’ (FIoT) [3], which
is an agent-based framework for the development of self-
adaptive and self-organizing applications based on the Inter-
net of Things (IoT).

This experiment is presented in Section IV. The remainder
of this paper is organized as follows. Section III presents
the related work. Section II presents the background, briefly
describing the publish-subscribe based architecture to gener-
ate tests and the Framework for the Internet of Things (FIoT).
Section V describes the approach to test self-organizing sys-
tems. Section 6 evaluates the test approach, presenting the
experimental results and evaluation. The paper ends with
some concluding remarks and a discussion about potential
future work in Section 7.

II. BACKGROUND
In this section, we first provide a brief introduction to
Multilevel-based Testing, which is one of the key concepts
of our proposed approach. Next, we provide an overview of
the Framework for Internet of Things (FIoT), which we use to
instantiate a self-organizingMAS application.We also briefly
describe some concepts involved in our proposed solution.

A. MULTILEVEL-BASED TESTING
According to Nguyen et al. (2009) [8], a full testing process
of a multiagent system consists of five levels: unit, agent,
integration (or group), system (or society) and acceptance.

Unit test tests all units of an agent, such as goals, knowl-
edge base, plans, etc. Agent test examines the capability of
a specific agent to fulfill its goal and to sense and affect the

environment. Integration test verifies the interaction of agents
and the interaction of agents with the environment, ensuring
that a group of agents and environmental resources work
correctly together. System test tests the quality properties that
the intended systemmust reach, such as performance. Accep-
tance test verifies if the MAS execution meets stakeholder
goals.

B. FIoT: A FRAMEWORK FOR INTERNET OF THINGS
The Framework for the Internet of Things (FIoT) [3] is an
agent-based software framework to generate different kinds
of applications for IoT. It is based onMAS and artificial intel-
ligence paradigms such as neural networks and evolutionary
algorithms.

The main role of FIoT is to produce MAS-based appli-
cations with decentralized, autonomous, self-organizing fea-
tures. Basically, it supports the development of three types of
agents: (i) Manager Agents; (ii) Adaptive Agents; and (iii)
Observer Agents. The primary role of the Manager Agent is
to detect new things that are trying to connect to the system
and make that connection. Adaptive Agents control things at
the scenario and must execute three key activities in sequence
namely: (i) collect data from the thing; (ii) make decisions;
and (iii) take actions. The Observer Agent examines the
environment to determine if the system is meeting its global
goals. See more details about these agents in [3].

C. DESIGNING SELF-ORGANIZING MAS THROUGH
NEUROEVOLUTION
Evolutionary algorithms, such as genetic algorithm, is a well
known approach to develop self-organizing multiagent sys-
tems [9]. It allows the emergence of features that were not
defined at design-time, such as a communication system [10].
In short, the genetic algorithm is a population-based search
algorithm, in which each individual is a solution in a prob-
lem space. The individuals are evaluated by using a fitness
function, and the fittest individuals are selected to produce
offspring of the next generation.

Nolfi et al. [11] describe some experiments where the
behavior of agents is autonomously configured through a
neuroevolution algorithm [12]. Each agent uses an artificial
neural network to sense the environment and behave accord-
ingly. To optimize their neural networks, finding the fittest
configuration (e.g synaptic weights and neural architecture),
Nolfi et al. [11] propose a genetic algorithm. Therefore, each
individual of the genetic algorithm population represents a
configuration of the agent’s neural network. In such case,
each gene of an individual may represent the strength of a
connection between two neurons.

The interested reader may consult more extensive papers
[9] and [3].

D. FAILURE DIAGNOSIS WITH LOGS CONTAINING
METADATA ANNOTATIONS
Araújo and Staa [13] investigated common approaches for
testing distributed systems. According to these authors, there
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are several approaches that perform diagnosis based on log
collection. Nonetheless, they have some limitations, such as
the need of (i) organizing logs in a centralized architecture
and in an adequate time order; (ii) providing visualization
tools to assist manual inspection; and (iii) increasing the
log details in order to enable the tool to also diagnose the
application’s logic. Therefore, they presented a diagnosing
mechanism based on logs of events annotated with contextual
information, allowing a specialized visualization tool to filter
them according to the maintainer’s needs.

In their approach, each logged event records a set of prop-
erties, represented as tags. A tag is a key-value pair where the
value is optional. Every event must contain a basic set of tags
which are: 1) timestamp: used to sort all events into a single
timeline; 2)message: a description of the event; 3)request id :
used to identify the type of event; 4) device: used to identify
the device that originated the event; 5) module: the module
that triggered the notification; and 6) line: the line of code
where the notification command was inserted.

E. RabbitMQ: PUBLISH-SUBSCRIBE PLATFORM
RabbitMQ [14] is a message-oriented middleware, which
generates asynchronous, decoupling applications by separat-
ing sending and receiving data through a client and scalable
server architecture. It can be easily integrated into an appli-
cation to operate as a common platform to send and receive
messages, maintaining messages in a safe place to live until
received. RabbitMQ is a multi-platform that may be deployed
in Java, C, Python, and many other programming languages.
It can also be deployed in a cloud infrastructure.

By using RabbitMQ, it is possible to build a logging system
based on the publish-subscribe architecture. The publisher is
able to distribute log messages to many receivers, while the
consumers have the possibility of selectively receiving the
logs. Publisher and consumers communicate through queues.
Each queue has a particular routing key that is a list of
words, delimited by dots. There can be as many words in
the routing key as you like, up to the limit of 255 bytes.
These words can be anything, but usually they specify some
features connected to the message. For example, if a devel-
oper specifies that a log message must meet the pattern
‘‘(month).(day).(deviceId).(typeLog)’’, the valid routing keys
would be ‘‘november.11.device01.error’’ and ‘‘november.
15.device01.info’’ [14].

Therefore, a message sent with a particular routing key will
be delivered to all the queues that are bound with a matching
binding key. However there are two important special cases
for binding keys [14]:
* (star) can substitute for exactly one word; and
# (hash) can substitute for zero or more words.

III. RELATED WORK
As discussed by Serrano et al. [15], there is an abun-
dant research addressing the testing process at the agent
level, while there is few approaches for testing MAS at
the integration level. For example, Coelho et al. [16] and

Koeman et al. [17] provide tests for a specific agent without
considering it into a group.

In addition, most of the approaches for testing the inter-
actions among a group of agents are already only based on
the concept of communication sniffer, that is an agent that
can intercept messages. For example, Serrano et al. [15],
which provides an approach for testing MASs at the group
level, uses ACLAnalyser [18], a tool for debugging MAS
through the analysis of ACL [18] messages. Thus, by using
these current test approaches, if an agent exhibits unexpected
behavior (failure), a developer has to inspect this failed agent
or messages exchanged between agents to find the fault that
caused that failure. However, if an agent fails, its failure
may be related to a previous and an unexpected behavior
of another agent in the environment. This case would be a
real problem to some MAS-based approaches, such as that
one proposed by Malkomes et al. [19], which promotes the
development of cooperative agents without using message
communication.

In particular, there is a lack of approaches to test self-
organizing MAS system [4], [20], [21]. Gardelli et al. [20]
provide a theoretical system-oriented approach that aims at
anticipating design decisions at the early MAS design stages.
Bernon et al. [21] provide a simulation-driven approach,
which allows the developer to simulate different versions of
the application while designing the self-organizing agents.
Eberhardinger et al. [4] present an approach formeasuring the
performance of self-organizing mechanisms at design time
in order to select the best-fitting mechanism, and illustrate
the proposed approach in an existing agent-based system.
However, these approaches do not support the design and
execution of functional tests, and fault diagnosis.

Kaddoum et al. [22] describe some evaluation criteria that
are required to analyze self-* systems. Accordingly, design-
ers should consider some questions to validate the well-
functioning of the system and of the self-*mechanism, such
as ‘‘is the system able to solve the problem for which it
is conceived?’’ and ‘‘is the system able to self-adapt in an
efficient way?’’. In order to investigate these questions, the
authors introduce some performance and robustness metrics,
such as time (e.g. the number of steps needed by agents to
reach the solution), the quality of solution (i.e. functional
adequacy of the designed system) and time for adaptation.

IV. APPLICATION SCENARIO: SELF-ORGANIZING
STREETLIGHTS
In short, this experiment involves developing self-organizing
streetlights. The overall goal of this application is to
reduce the energy consumption while maintaining appropri-
ate visibility in illuminated areas [23]. For this purpose, each
streetlight was provided with ambient brightness and motion
sensors, and an actuator to control light intensity. In addition,
they are able to interact with each other though an wireless
communicator.

Each street light is controlled by an AdaptiveAgent.
We used a neuroevolutionary algorithm [23] to support the
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FIGURE 1. The neural network controller for street lights.

FIGURE 2. Overview of the general application architecture.

design of the street behaviors of the street lights automati-
cally. Figure 1 illustrates the three-layer neural network with
sigmoid function that is used by each streetlight to determine
the communicating signals, and whether it turns on its lights
or not.

As shown in Fig 2, an ObserverAgent evaluates the over-
all application performance and uses a genetic algorithm to
optimize the AdaptiveAgents neural network.

Each solution is evaluated after the simulation ends based
on energy consumption, the number of people that finished
their routes before the simulation ends, and the total time
spent by people moving during their trip:

fitness = (1.0× pPeople)− (0.6× pTrip)

− (0.4× pEnergy) (1)

Equation (1) shows the values to be calculated for the
evaluation in which pPeople is the percentage of people that
finished their routes before the simulation ends; pEnergy is
the percentage of energy that was consumed by streetlights
out of the maximum energy value that could be consumed
during the simulation. We also considered the use of the
wireless transmitter to calculate energy consumption; pTrip is
the percentage of the total duration of people’s trips out of the
maximum time value that their trip could last; and fitness is
the fitness of each candidate that encodes the proposed neural
network solution.

The interested reader may find more details about the
application scenario in [23].

V. TEST APPROACH: MULTILEVEL-BASED DESIGN
Themain goal of a self-organizing system is to achieve global
properties through local interactions. Therefore, we propose
to execute several functional ad-hoc tests at local and global
levels. The idea of the tests at the global level is to verify if
the self-organized system solves the overall problem. If these
global tests pass, we can conclude that the most basic tests
(the intern ones), which were modeled at the local level,
are also satisfying the functional requirements. If a global
test fails, we need to understand which part of the system
generated the failure, verifying the internal tests results. How-
ever, if we were executing tests at system level (performance)
or evaluating how the system self-organize, we should ver-
ify the local tests independently of the global tests results.
For example, according to the performance tests proposed
by Kaddoum et al. [22] to self-* systems, we could verify
whether the agents can reach the global solution by executing
a desired number of steps.

We need to customize these tests according to the appli-
cation. In general, at the global level, we should verify if the
self-organized system is able to solve the problem for which it
is conceived [22]. For example, our streetlight application has
the goal of achieving an specific energy consumption target
and maintaining the maximum visual comfort in illuminated
areas in order to enable people to finish their routes. If the
multiagent system does not solve this problem, we should
investigate local tasks to understand why the self-organizing
process failed, as depicted in Fig 3.

FIGURE 3. Testing steps.

In our illustrative example, we can investigate the fail-
ures generated by the tasks associated with the frame-
work (i.e. the ManagerAgent cannot identify new street-
lights at the scenario), to the agent design (i.e. streetlight
agents must detect people, but they do not have motion
sensors), tasks related to the application scenario (i.e. street-
lights should communicate, but the distance between them
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is higher than the wireless range), or the tasks related to
the learning algorithm execution (i.e. the ObserverAgent is
executing the genetic algorithm wrongly, selecting the worst
solutions to compose a new generation instead of the best
solutions).

A. DESIGN AND IMPLEMENTATION: AN ARCHITECTURE
BASED ON METADATA AND THE PUBLISH-SUBSCRIBE
PARADIGM
We developed a publish-subscribe-based architecture as a
foundation for generating different kinds of test applications
for MASs at different levels. Our goal is to provide mecha-
nisms to capture and process logs generated by agents auto-
matically. As depicted in Fig 4, their architecture consists of
three layers:MASApplication (L1), Publish-Subscribe Com-
munication (L2), and Test Applications (L3). The Publish-
Subscribe Communication layer uses the RabbitMQ platform
[14] for delivering logs from agents (publishers) to be con-
sumed by test applications (subscribers).

FIGURE 4. A publish-subscribe-based architecture to test MASs.

Each agent publishes logs with annotations that are com-
posed of the following tags:
• agentType: the type of the agent (e.g OBSERVER,
STREETLIGHT). In JADE, it refers to the name of the
container where this agent lives;

• agentName: the name provided for the agent by the
system developer/user (e.g streetlight01, streetlight02,
observer01);

• action: the event that caused the log generation (e.g
readMotionSensor, selectBestIndividuals, switchStreet-
Light);

• typeLog: types of logs (e.g error, info, warning);
• className,methodName, codeLine: necessary informa-
tion to identify which parts of the code generated the
event;

• resource: the main resource that has been manipulated
or requested by an agent during an event execution (e.g
neuralController, streetlight01Info, memory). It may be
used to investigate all events that are related to a specific
resource;

• timestamp: time that the log was created. It is used to
sort all events into a single timeline [13];

• message: a description of the event.
Thus, a log message must meet the pattern ‘‘(agent-

Type).(agentName).(action).(typeLog). (className).
(methodName).(codeLine).(resource).(timestamp). (mes-

sage).’’ Each application will have a set of values that each
tag may assume, except the message tag is an open field.

All agents in the MAS application layer are also a
TestableAgent type. As shown in Fig 5, a Testable agent
extends the JADE agent. Thus, it complies with FIPA spec-
ifications. A Testable agent uses the RabbitMQ properties
to send logs with annotations as messages. These logs can
be published from any part of the agent’s code. Via the
TestableAgent class and JADE properties, some tags have
their values attributed autonomously, such as agentType,
agentName and timestamp.

FIGURE 5. Simplified class diagram for creating testable MASs.

The RabbitMQ autonomously delivers log messages to
queues according to their tags’ values. As shown in Fig 4,
each test application defines a binding key in order to sub-
scribe itself to consume messages from a specific queue.
For example, a test application that monitors only error
logs from the Observer agent must have the binding key
‘‘Observer.*.*.error.#.’’ Therefore, this application will con-
sume any log with the tuples (agentType,Observer) and (type-
Log,error). It is also possible to create applications that use
multiple bindings. For example, if a performance test appli-
cation needs to calculate the number of Adaptive agents that
are connected to the system, this application will have to
consume logs with different action values. Thus, it needs to
consume logs with the tuples (action,connectToSystem) and
(action,beDestroyed).

Test applications do not interfere on the execution of each
other. Each test class extends the class RabbitMQConsumer
that starts an independent process to consume messages from
a specific queue. We used the Template Method Pattern [24]
tomodel the consumeMessagemethod. Thus, to consume and
process particular log messages, a test class must overwrite
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FIGURE 6. Making FIoT agents as Testable Agents.

FIGURE 7. Setting log values for each Testable FIoT agent: AdaptiveAgent.

and customize themethods getListBindingKey() and process-
Data().

By using queues, the publisher generates a set of infor-
mation elements without the need of knowing which
applications will consume them. In addition, more than
one application can consume the same data, but giv-
ing them different treatments. To understand more about
the characteristics of RabbitMQ that we used in our
approach, see https://www.rabbitmq.com/tutorials/tutorial-
five-java.html (Accessed in 03/2019).

B. ADAPTING FIoT AGENTS TO BE TESTABLE AGENTS
Our first step was to allow FIoT agents to publish logs during
the application execution, extending the TestableAgent class,
as shown in Figure 6. Then, we set the log values that can
be published by each Testable FIoT agent (see Figures 7
and 8). For example, the AdaptiveAgent can use the word
‘receiveIputDataFromSmartThing’ to replace the tag action
in the annotated log, while the ObserverAgent can use ‘start-
GeneticAlgorithm’.

VI. TESTS AND RESULTS
Our test approach takes two perspectives into account: the
local and the global. The local perspective considers the tasks
that an individual agent in the collection of streetlight agents
must execute, such as collecting data, switching the light and
communicating with the other agents. The global perspective
takes the global tasks into account, such as verifying whether
the self-organized system guarantees that people finish their
routes before the simulation ends and whether the system
achieves a pre-specified energy consumption target.

FIGURE 8. Setting log values for each Testable FIoT agent: ObserverAgent.

In this experiment, we have one test application consuming
logs related to the global perspective, while we have two
test apps related to the local perspective: one to monitor
the ObserverAgent and its learning algorithm execution and
another one to monitor the streetlight agents.

By using our proposed architecture, we created some test
applications to execute functional tests at local and global
levels. Within these two test levels, we also explore other
perspectives, such as: (i) a framework perspective (i.e. eval-
uating the agent interactions generated because of the frame-
work that we used to create the application); (ii) a learning
perspective (i.e. a test application to inspect the interactions
generated because of the learning algorithms); (iii) a MAS
designing perspective (i.e. a test application to evaluate the
sensors, actuators and analysis architecture that were selected
to compose the agent), and (iv) a scenario perspective (i.e.
a test application to consume the logs generated by the appli-
cation scenario).

This section presents part of the test plan that we created
and performed for testing the application presented in the
section IV.

A. ACTIVITY DIAGRAMS FOR FIoT AGENT BEHAVIOR
In order to support the identification of functional tests,
we first created activity diagrams for the street light agents
and for the ObserverAgent, as depicted in Figures 9 and 10.

B. LOCAL AND GLOBAL TESTS
We executed various test cases, taking seven parameters
into account: (i) level (e.g. local or global); (ii) sub-level
(e.g. related to the learning, framework, agent design or sce-
nario requirements); (iii) function (e.g. composed of a set of
actions; for example, the function evaluateSolution may be
composed of the actions calculateEnergy and calculateNum-
berPeople); (iv) procedure (e.g. a general description of the
test); (v) input (e.g. a resource, a component); (vi) expected
value (e.g. the result that will be produced when executing the
test if the program satisfies its intended behavior); and (vii)
validation method (e.g. the strategies that a tester performs
to evaluate the system, comparing the program execution
against expected results). Each test case execution produced
several logs with meta-information annotations, which were
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FIGURE 9. Activity diagram of the streetlights.

FIGURE 10. Activity diagram of the ObserverAgent.

consumed by test applications. Then, we used these logs as a
validation method, as shown in Table 1.

To validate a test case, the test application must verify
whether the logs are appearing in the order described in the
Validation Method column. Therefore, after the developer
informs the logs from the validation column, the test appli-
cation will automatically create a state machine, where each
state represents an action. For example, Figures 11 and 12
illustrate the state machine that were created to validate
the execution of the global test ‘‘evaluate solution’’ and the
local test ‘‘switch the light ON’’, respectively. As shown,
the verification program defines the transition between states
as a log. A transition will only occur when the expected
log appears. Each state has a maximum wait time for the
expected log(s). Thus, if the maximum wait time exceeds a

threshold, an error linked to the current state will be gen-
erated. This situation indicates that an agent performed an
unexpected behavior and the action was not successful exe-
cuted. For example, if the multiagent system does not self-
organize to a satisfactory solution, it will not produce the
log ‘‘OBSERVER.observer.achieveEnergyTarget.#’’. Thus,
an error linked to the state ‘‘calculateEnergy’’ will be gen-
erated, as depicted in Fig 11.

In order to force test failure and verify if these test
applications were able to identify faults, we forced certain
classes to act incorrectly during the execution of the pro-
gram over some local tests. For example, to test the function
‘‘switch the light ON’’, we inserted a defect that makes
some streetlights to go dark during the simulation. There-
fore, a streetlight agent that switched its light ON on the
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TABLE 1. Functional tests at local and global levels (Simplified Table).

previous execution, did not detect brightness on the cur-
rent execution and failed. As the test application did not
receive the log ‘‘LIGHT.light1.detectLight.info.#’’, its state
machine indicated a failure in the state ‘‘switchLightON,’’
as depicted in Fig 13. Considering that a person can only
move if his current and next positions are not completely dark,

it interferes on the overall solution evaluation. Consequently,
if a person does not finish his or her route, the test at the
global level will also fail. Fig 14 depicts the logs that were
generated by agents while this situation was being executed.
Fig 15 depicts the global test that was executed without this
defect.
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FIGURE 11. Simplified state machine for verifying test cases generated for the function ‘‘evaluate selected
solution’’.

FIGURE 12. Simplified state machine for verifying test cases generated for the functions ‘‘switch the light ON’’
and ‘‘switch the light OFF’’.

FIGURE 13. Executing the state machine to test the function ‘‘switch the light ON’’: failure generated between states ‘‘switchLightON’’
and ‘‘detectLight’’ - specific log was not consumed.

Using our proposed solution, a test application can auto-
matically select those logs from different agents that are
essential for a specific test case and present them sorted in
a single timeline. As a result, the interface depicted in Fig 16
shows just the logs that were consumed by the evaluation
test application according to this binding key list. In addition,

all logs are organized in a single timeline. As shown, not
all logs depicted in Fig 17 were presented in this interface,
but only the logs relevant to the execution of this test case.
Thus, we were able to verify these logs in order to find
the fault that generated the failure indicated by the state
machine.
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FIGURE 14. Executing the state machine to test the evaluation solution: failure generated between states ‘‘calculatePeople’’ and
‘‘calculateTripDuration’’ - because the machine did not receive the log that indicates that everyone finished their routes during the
selected solution.

FIGURE 15. Executing the state machine to test the evaluation solution.

FIGURE 16. Subscribing to receive only logs related to the evaluation solution testing.

FIGURE 17. Subscribing to receive logs from all agents.

C. TEST RESULTS
As shown in Table 1, we executed some functional tests at
local and global levels. By using state machines, the test
applications were able to validate these test cases by com-
paring the logs consumed from the MAS publisher against
the logs listed in the ‘‘Validation Method’’ column. In addi-
tion, we also conducted some tests by inserting software
failures and verifying if our test software could be use-
ful for detecting these faults. As a result, after the state
machine had indicated a failure, the developer could use
the interface to identify the fault and reduce the diagnosis
time.

VII. CONCLUSION AND PROSPECTS
We presented a promising decoupled architecture that allows
a developer to execute tests simultaneously and indepen-
dently while running a MAS. In addition, we provided evi-
dence of the applicability of our proposal, using it to test
a self-organizing MAS application. We showed that it is
possible to develop different tests for a self-organizing multi-
agent system at local and global levels by using logs con-
tainingmeta-information annotations and a publish-subscribe
technology.

In the following we are proposing future directions that we
intend to investigate.
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A. OTHER APPLICATION DOMAINS
In this paper, we described a self-organizing application in
the IoT domain. But, our approach can also be applied to
other application domains. For example, we may consider
autonomous vehicles applications [25] or self-organizing
swarm robotics [10], where the robot behavioral mechanisms
are automatically generated by using a learning algorithm.
Floreano et al. [10] describes a set of robotic agents that
self-organizes to forage in an environment containing a food
and a poison sources. Their overall goal is to increase the
robot density around the food. Thus, these robotic agents
may learn to distinguish the poison source from the food
source and to signal to the other robots the food position.
Therefore, we could develop a test application at the global
level to evaluate if all robots are at the food source after
the simulation ends. At the local level, we can evaluate the
learning algorithm and the physical characteristics of the
robots, such as their sensors and actuators.

B. PHYSICAL ENVIRONMENT
The self-organizing process can occur in a simulated or in
a physical environment. However, many devices could be
damaged if we were to use real equipment, since several
configurations must be tested during the training process.
Therefore, to execute the training algorithm, we decided
to simulate how smart street lights behave in a fictitious
neighborhood. After the training process, we can transfer the
evolved neural network to physical devices and observe how
they behave in a real scenario. As our approach is based on
a publish-subscribe platform, it works independent on the
programming language. But we need to adapt our physical
streetlights to publish logs at runtime.

C. TESTING PREDICTION AND SELF-ADAPTIVE
APPLICATIONS
There are other non-deterministic characteristics that have
been usually associated to current MAS systems, such as
learning and self-adaptation. It is possible to extend our
approach to test these kinds of applications. For example,
we describe in [26] a multiagent architecture to monitor fruit
storage and offer predictions about shelf life. Analogously,
this application has a global goal of achieving an specific
target accuracy. If this system does not present a desired
result to the new dataset entries, we can implement local
tests to evaluate the sensors measuring the storage conditions,
to test the back-propagation algorithm, and the communica-
tion among the agents.

D. TESTING SELF-ORGANIZING NEURAL NETWORKS
According to Amari [27], non supervised learning scheme is
sometimes called self-organization. It occurs when a neuron
modifies its weights depending only on its state and input
signal, without a teacher or error signal. In such case, tests at
the global level may evaluate the general purpose of the self-
organizing neural network, while tests at the local level may

evaluate each neuron, verifying the algorithms for encod-
ing inputs and decoding outputs, whether the input signals
received by each neuron is part of the information source,
whether the output of a neuron is received as an input by
another neuron, etc. In addition, we can also develop a test
to consume logs from the application scenario, allowing us
to create a map between context changes [28] and neural
changes.
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