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ABSTRACT Forecasting traffic flow is a typical time series problem, which has attracted increasing attention
due to the urgent need in intelligent transportation systems. Although numerous time series forecasting
methods have been investigated in past decades, from statistics basedmodels to deep neural networksmodels,
the main disadvantages of aforementioned work could be summarized as follows: 1) incapable to handle the
complexity and uncertainty of series; 2) incapable to consider external features such as spatial information
and importance of points during the learning process; 3) unstable performance on forecasting task given
various data patterns. In this study, a novel strategy was proposed to extract context-awareness information
and then integrated with Temporal Convolution Network(TCN) model, namely Context-Aware Temporal
ConvolutionNetwork(CATCN), which utilized local sub-segments to portrait the potential patterns of a series
based on series decomposition. The experiments were conducted using three sets of field-captured traffic
datasets. The results were presented and compared to state-of-the-art methodologies. The results showed
that the performance of proposed method is significantly improved, especially, on the auto-correlation series
corpora.

INDEX TERMS Traffic prediction, series decomposition, local context awareness, temporal convolution
network.

I. INTRODUCTION
In recent years, highway traffic flow prediction has gained
increasing attention, as monitoring the conditions of road
networks is important in establishing intelligent transporta-
tion systems(ITS). It can be used to provide a considerable
amount of information for road operators to evaluate the
current traffic pattern so that traffic congestion or severe
traffic accidents might be predicted in advance. However,
traffic prediction is a challenging task due to the complex and
dynamic characteristics of traffic.

To resolve this problem, statistical models, were widely
considered by researchers at earlier stages, including auto
regressive integrated moving average(ARIMA) [1] and sup-
port vector regression (SVR) [2], [3]. These methods were
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proposed under the conditions of insufficient computational
power and data for analysis, and therefore, they encoun-
tered difficulties in capturing high-dimensional and non-
linear characteristics. Alternatively, researchers focused on
deep learning models such as a long short-term memory
neural network (LSTM) in traffic speed prediction [4], [5].
A hybrid comprising a fuzzy neural network (EFNN) and
a Gaussian fuzzy membership function was introduced to
predict the traffic speed [6]. A traffic graph convolution
LSTM neural network(TGC-LSTM) was proposed to esti-
mate traffic graph convolution based on a physical network
topology combined with LSTM to improve the prediction
performance [7]. Although all aforementioned methods were
investigated for traffic prediction, several issues were still
existed: 1) Some methods required neighbouring information
to be incorporated in neural networks. While this procedure
could enhance the prediction capability, it also deteriorated
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model performance as it required evaluating spatio-temporal
effects of connected parts. In highway speed prediction, for
example, no considerable neighboring effect is exhibited,
as highway networks are generally not as complicated as city
road networks. 2)Basically, traffic speed prediction can be
considered as a task to predict the speed time series with
seasonal patterns that can be extracted from prior data series.
But in reality, time series are usually muchmore complicated,
which makes capturing different patterns to be a challeng-
ing task. Meanwhile, abilities of deep learning models to
pick up seasonality and trends from given series are still
insufficient.

When predicting a time series data, it is more common
to forecast the latter value via the seasonality of sequential
data. Therefore, the values of segments in sequence play a
significant role. In the present paper, we propose a novel
Context-Aware based Temporal Convolution Network named
CATCN to solve the traffic prediction problem. It implies
extracting prior periodic knowledge and combining it with
original sequence. In our study, traffic flow with periodical
changes indicates that it has autocorrelation feature, suggest-
ing that its variation patterns can be easily grasped. Finally,
in the conducted experiments, we find that the separated data
comprising the information about the observed traffic flow
with explicit periodic changes provide better capability. This
confirms that the idea of including prior periodic knowledge
is deemed. The key contributions of this research include the
following:

• We propose a mechanism to extract the importance fea-
tures of every point under its micro-context condition,
considering both seasonality of a global series and its
local neighbors. We choose several classical decompo-
sition methods to compute the correlation between a
sample and a target area in corpora.

• The proposed model leverages both micro-context sen-
sitivity and global longer periodic dependencies. Unlike
other spatio-temporal based approaches, our CATCN
model does not need additional features and utilize only
the generated decomposition features by a series itself.

• The result of evaluating the proposed method on three
real-world traffic datasets demonstrate CATCN provides
better capability of capturing patterns in a series. The
proposed method achieves the lowest forecasting error
compared with four state-of-the-art methods.

The rest of this paper is be organized as follows. Section II
provides an overview on the related research works dedi-
cated to time series forecasting and traffic flow prediction.
In Section III, we first describe the overall architecture of the
proposed framework and then introduce the detailed building
modules that include the determination of a sliding window,
context-aware feature generation, and context-aware convo-
lution. In Section IV we discuss the results of the exper-
iments conducted on three different datasets and compare
the performance of the proposed method and the alternative
approaches. Eventually, in Section V we conclude on the

results acquired from experiments and summarize the overall
contribution of this research.

II. RELATED WORK
A. TIME SERIES FORECASTING
As one of the most commonly used models in machine learn-
ing, time series forecasting could be applied in various fields
[8], [9]. In recent years, due to the characteristics and the basic
utilization of traffic flow prediction, it has been considered as
a time series forecasting problem.

Earlier methods, such as ARIMA [10] or XGBoost [11],
are widely used in time series tasks. Due to its mathematical
soundness, ARIMA can achieve an acceptable performance
[12]–[15] and can be combined with the other neural net-
works to further upgrade its performance [16], [17]. XGBoost
is frequently used with the combination of other modules
so that advantages of each modules can be integrated and
yielding better results [18]–[20]. With the rapid evolution
of deep learning frameworks, the time series forecasting
problem is mostly considered from the viewpoint of neural
networks, including LSTM [21], [22] and WaveNet [23] that
has been initially designed for audio generation [24]. Among
other methods, we can consider like TCN that is deemed
applicable to specific issues, and simply relies on the dila-
tion convolution capturing longer temporal information with
a growing reception field. TCN ignores the local periodic
characteristics of convolution features [25]. Other hybrid
TCN approaches, e.g., Multi-Stage TCN (MS-TCN), Ensem-
ble Empirical Mode Decomposition-Temporal Convolutional
Network (EEMD-TCN) and Temporal Graph Convolutional
Network (T-GCN) are integrating external information to
help improving the forecasting capacity [26], [27].

B. EXISTING MODELS FOR TRAFFIC PREDICTION
A non-convex low-rank plus sparse decomposition model
attempts to separate the rearranged matrix into low-rank
and sparse matrices. Therefore, the resulting non-convex
optimization problem can be efficiently handled using
the augmented Lagrange multiplier (ALM) algorithm [28].
Meanwhile, several existing methods were investigated to
apply convolutional neural networks(CNN) to traffic predic-
tion owing to the recent advancement of the CNN-related
networks and their excellent performance. Wu et al. pro-
posed a model defined as a mixture of CNN and LSTM
[29]. The model relied on the powerful feature extraction
ability of CNN and considered the characteristic of the
traffic prediction problem through LSTM. Fusion convolu-
tional LSTM network(FCL-Net) was proposed to integrate
the spatial and temporal dependencies [30]. A model called
ITRCN attempted to convert a traffic network into images and
apply a CNN to extract underlying characteristics. Moreover,
it processed temporal features by using the gated recurrent
unit(GRU) [31]. The methods based on CNN are deemed
more capable of capturing spatial dependencies. However,
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FIGURE 1. The architecture of CATCN Model.

CNNmay fail to consider the locality of sub-segments simul-
taneously, local periodicity might be ignored.

A graph convolution network(GCN) can be used to simu-
late dependence between connecting neighbors in the non-
Euclidean space and aggregate the spatial information of
related nodes [32]. Although GCN allows incorporating the
impact of a neighborhood into prediction, while the depen-
dence on a pre-defined graph structure makes it unstable
for dynamic scenario. Zhao et al. [33] proposed a model
combining GCN and GRU called T-GCN that also captured
both temporal and spatial relations. Many researchers have
already found that the structure of a road and its connected
nodes, such as interchange or toll stations, provides relevant
information. Zheng et al. [34] proposed the generative multi-
advanced network(GMAN) that utilized multiple attention
blocks to model the impacts of spatio-temporal factors on
prediction performance.

III. FRAMEWORK
To address the traffic prediction problem, we propose a novel
framework that is based on fusing local structure contexts
and global trends to enable the model to better capture series
patterns. The overall architecture is illustrated in Figure 1.
Sensitivity fusion captures periodic local dependencies and
combines prior knowledge with the original series. Causal
convolution can ensure the consistency of the channels during
the fusion process. Sensitivity decompositionmodule decom-
poses the trend and seasonal components of the original series
that can preserve the global features. Meanwhile, the method
generates VSD, VMD and DPR vectors which preserve the
local features. Then, these features are integrated by another
causal convolution.Receptive fields grow exponentially as the
layer deepens, enabling dilated convolution to extract both
global and local patterns. After propagation through a dense
layer, the network forecasts a value ŷ. It should be noted
that the thickness of the last full connection varies, reflecting
that the significance of each point is fused and has different
weights.

Specifically, we apply casual convolution to transform a
channel dimension and to establish interaction between chan-
nels. The segment levels of the original series are acquired

through the sampling process. Therefore, by estimating local
contexts, we can extract the context-aware vectors with the
same length as the original series. The capability of capturing
the longer periodic context awareness information in a neural
network is ensured by utilizing stacked dilated convolution
that has exponentially growing reception fields. The network
outputs the forecasting results one point at a time after exe-
cuting propagation through dense layers.

A. LOCAL CONTEXTS GENERATION
As the length of each context can vastly influence the capabil-
ity of the proposed model to capture series patterns, we need
to determine the length of each context first. We define a
sliding windowW that describes every single context’s length
throughout a sampling process. Given a series as following:

S = {x1, x2, x3, . . . , xn, xn+1} (1)

in which n denotes the length of the series and xn+1 denotes
its next timestamp. We first determine the upper limit of the
size of sliding window |W | using moving average.
Moving average plays the role of a low-pass filter that

eliminates the high-frequency disturbance in a time series and
maintains the useful low-frequency trend. Low-frequency
filtering at time t turns to the convolution of time series S
after adding a window with length |W |. Filtering function F
in this window is defined as follows:

xt =
∑t+(|W |−1)/2

i=t−(|W |−1)/2
Fiyt−i (2)

in which |W | denotes the size of a sliding window;F denotes
the filtering function; xt denotes a point at timestamp t .
For each point xi ∈ S, we compute the moving average

with window size varies from 1 to n. The upper limit of the
sliding window sizeW up

i at the i-th position is reached when
the mean absolute percentage error reaches the minimum.
Therefore, we obtain a series of upper limits of |W |:

W up
= {W up

1 ,W
up
2 , . . . ,W

up
n } (3)

We perform grid search |W | with upper limit W up
i for

each xi ∈ S by computing the autocorrelation coefficient as
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Algorithm 1: Sensitivity Fusion

Input: Time series S ← {x1, x2, x3, . . . , xn} ∈ Rnc×n

with channel dimension nc and length n.
Output: The series fuses local context S ′.
Data: Sensitivity vector VVSD← ∅, VVMD← ∅,

VDPR← ∅. Determine the sliding window size
|W | through the method mentioned in
Section III.A.

1 STL time series decomposition Se,Tr ← STL(S) ;
2 Causal convolution with kernel size K1 ∈ R1×nc×1,
S ← conv(S,K1) ;

3 Apply zero-padding to series S, and pad |W |2 zeros to the
head and the tail of the series respectively ;

4 Sample the tail of series S to obtain target context
St ← {xn−W+1, xn−W+2, . . . , xn} ;

5 Duplicate target context n times to gain target vector Vt ;
6 for i=1:n do
7 Sample series S by sliding window to obtain local

contexts ;
8 Si← {xi− |W |2

, . . . , xi−1, xi+1, . . . , xi+ |W |2
} ;

9 SVSDi←
(Si−St )2
|W | ;

10 SVMDi←
|Si−St |
|W | ;

11 SDPRi←
(Si×St )
St

;
12 Add SVSDi,SDPRi,SVMDi to SVSD,SVMD,SDPR

repsectively ;
13 end
14 Extend series in channel dimension
S ← S ⊕ SVSD ⊕ SVMD ⊕ SDPR ⊕ Se ⊕ Tr ;

15 Causal convolution with kernel size K2 ∈ Rnc×dc1×1,
S ′← Conv(S,K2) ;

follows:

ρk =

∑n−k
i=1 (xi − x)(xi+k − x)∑n

i=1 (xi − x)
2 (4)

where x denotes the mean value; k represents the range
of autocorrelation computation. The optimal |W | at the i-th
position can be determined using the following rule:

wi = k if ρk = max{ρj}, j ∈ [1,W up
i ] (5)

wherewi denotes the optimal slidingwindow size |W | at the i-
th position. Eventually, the final sliding window size |W | can
be determined by voting. Accordingly, the most votes may
correspond to be the window size.

Let us suppose that xn+1 is the point to predict for given
series S; then, sample context is defined as follows:

St = {xn−|W |+1, xn−|W |+2, . . . xn} (6)

Then we sample each point to extract local context as follows:

Si = {xi− |w|2
, . . . , xi−1, xi+1, . . . , xi+ |w|2

}, i ∈ [1, n] (7)

while sliding the window through the entire series for the
point. In each sample context, we exclude the sample point,

meaning that we only consider neighbor points as its context.
It should be noted that if the length of a sample context is
less than |W |, then zero-padding is applied to keep the length
fixed. After sampling, we can obtain one target context and
n sample contexts. In vectorization representation, the target
context can be represented as a target vector Vt ∈ R1×|W |,
and all sample contexts can be represented as a vector Vs ∈
Rn×|W |.

B. CONTEXT-AWARE VECTOR GENERATION
After context generation, we obtain |W | features for each
context, and then we apply the sub-series data corresponding
to each time series are mapped to points in the |W |-length
space. Therefore, the historical locality of a time series can be
preserved in this way, including the dimension of the series
and the complexity of computations.

For each sample context, we apply three different methods
to compute the similarity between itself and the target con-
text.

1) VALUE SQUARE DEVIATION (VSD)

VSD(Si,Tt ) =
1
|W |

∑|W |

j=1
(Sij − Ttj)2 (8)

where |W | denotes the sliding window size; Sij is the j-th
value of local context Si; Ttj corresponds to the j-th value of
target context Tt . VSDmeasures the average square deviation
between two contexts.

2) VALUE MEAN DEVIATION (VMD)

VMD(Si,Tt ) =
1
|W |

∑|W |

j=1
|Sij − Ttj| (9)

VMD measures the average mean deviation between two
contexts.

3) DOT PRODUCT RATIO (DPR)

DPR(Si,Tt ) =

∑|W |
j=1 Sij × Ttj∑|W |

j=1 S
2
ij

(10)

DPR is used to measure the ratio of the dot product between
two contexts, and the value range is [ n−22n−1 , 1].
Then we decompose the series using STL, a filtering pro-

cedure for decomposing a time series into trend, seasonal
and remaining components based on loess [35]. The STL
decomposition comprises two recursive procedures: one is
inner loop and the other is outer loop. In detail, the inner loop
consists of six steps: detrending, cycle-subseries smoothing,
low-passed filtering of smoothed cycle-subseries, detrend-
ing of smoothed cycle-subseries, deseasonalizing and trend
smoothing. Therefore, the decomposed trend and seasonality
of the time series are representative features that can reflect
the overall characteristics of the series.

A time series can be regarded as superposition of different
components Y = Tr + Se + Re, where Y denotes the original
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FIGURE 2. Structure of the sensitivity fusion layer. Causal convolution is used to perform channel transformation and interaction. After decomposition,
we extend the original series using the sensitivity vectors in the channel direction for fusing. It should be noted that the dimension of the series before
and after sensitivity fusion remains the same, only except the fact that the local periodic pattern is included.

time series; Tr refers to the trend component; Se corresponds
to the seasonal components; Re is the remainder. A detrended
series can be referred to as Y−Tr . Then, each cycle-subseries
is smoothed by loess at all time positions. The collection of
smoothed values for all cycle-subseries comprise the tem-
porary seasonal series C . The low-pass filtering smoothing
outputs L. Next, the seasonal component is subtracted by
Se = C − L. Then the deseasonalizing is applied by Y − Se.
As a result, components of the time series are extracted.

To fuse the context-aware vectors generated by the meth-
ods mentioned above, we concatenate them based on the
original series in the channel direction:

S ′ = S ⊕ SVSD ⊕ SVMD ⊕ SDPR ⊕ Se ⊕ Tr (11)

where ⊕ denotes concatenation; SVSD corresponds to the
VSD series; SVMD is the VMD series; SDPR denotes the DPR
series; Se refers to the seasonal component of the series; Tr
represents the trend component of the series. After channel
extension, the original time series incorporates the local peri-
odic information as its prior knowledge.

C. CONTEXT-AWARE CONVOLUTION
After the generation of context-aware vectors, we focus on
temporal convolution to consider the local periodic informa-
tion and accordingly to make more reasonable predictions.
Context-aware convolution comprises three major steps.
Step 1 (Sensitivity Fusion): In the proposed model,

we check whether it is required to compress channels and
provide interactions between different channels by applying
causal convolution before sensitivity fusion. This is because
both the number and the length of channels corresponding
to series would change once a convolution computation is
applied. The aim is to realize end-to-end learning. As illus-
trated in Algorithm 1, applying causal convolution could
ensure the consistency of channels, expanding the channel
of a context-aware series that can be used for further train-
ing. The structure of the sensitivity fusion layer is presented
in Figure 2.
Step 2 (Temporal Convolution): At this step, we enlarge

the receptive field by stacking three dilated convolution layers

Algorithm 2: Context-Aware Temporal Convolution

Input: Time series S ← {x1, x2, x3, . . . , xn} ∈ Rnc×n

with channel dimension nc and length n
Output: Context-aware series S
Data: Convolution layers nl , dilation sizes

l ← {1, 2, 4, . . . , 2nl−1}, convolution kernels
K ← {K1 ∈ Rdc1×dc2×1,K2 ∈

Rdc2×dc3×1, . . . ,Knl ∈ Rdcnl×dcnl+1×1}

1 for i=1:n do
2 Sensitivity fusion, S ′← SensitivityFusion(S) ;
3 Dilated convolution computation with kernel Ki,

S← Conv(Si,Ki, dilation = li) ;
4 S ← S ;
5 end

with dilation equal to 1, 2, 4, ensuring that the longer periodic
context awareness information is captured during the process.
We aim to enable the network to predict based on different
point weights, and therefore, we need to enhance the context
importance through each layer. This can be achieved by fus-
ing the sensitivity information with the current series before
performing each dilated convolution. This step is illustrated
in Algorithm 2.
Step 3 (Forecasting): To update the value of the series,

the learned features are propagated through the dense layer at
the last step. The original series were fused with prior knowl-
edge through temporal convolution so that the points in the
dense layer have different weights, and therefore, the network
can approach the forecasting result in accordance to the real
values automatically.

D. MODEL TRAINING
As illustrated in Figure 1 and Algorithm 2, dilated convolu-
tion is one of the key components of the proposed model.
The dilated convolution operator can apply the same filter
with different ranges using various dilation factors. Let d be
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FIGURE 3. Ten random selection of a time series of three datasets.

a dilation factor and ∗d is defined as:

(F ∗d k)(p) =
∑

s+dt=p

F(s)k(t) (12)

where ∗d represents a dilated convolution or an d-dilated
convolution; F is a discrete function; k is a discrete filter;
p refers to the receptive field.

Then the proposed model updates the weights to minimize
the cost function by backpropagation. Suppose δ(l+1) repre-
sents the error term for the (l+1)-st layer in the network with
a cost function J (W , b; x, y) where (W , b) are the parameters
and (x, y) are the training data and ground-truth values. If the
l-th layer is densely connected to the (l+ 1)-st layer, then the
error for the l-th layer is computed as:

δl =
(
(W (l))T δl+1

)
• f ′(z(l)) (13)

and the gradients are:

∇W (l)J (W , b; x, y) = δ(l+1)(S(l))T (14)

∇b(l)J (W , b; x, y) = δ
(l+1) (15)

Eventually, to calculate the gradient with respect to the
filter maps, we rely on the border handling convolution oper-
ation again and flip the error matrix δ(l)k :

∇W (l)
k
J (W , b; x, y) =

m∑
i=1

(S(l)i ) ∗ rot90(δ(l+1)k , 2) (16)

∇b(l)k
J (W , b; x, y) =

∑
a,b

(δ(l+1)k ) (17)

where S(l) is the input to the l-th layer and the temporal
convolution output of the (l − 1)-th layer; rot90 denotes
rotation of ninety degrees. The operation (S(l)i ) ∗ δ(l+1)k is the
‘‘valid’’ convolution between i-th input in the l-th layer and
the error with respect to the k-th filter.

IV. EXPERIMENTS
In this section, we mainly describe the setup of the conducted
experiments and compare the performance of the proposed
CATCNwith several existing deep learning models that serve
as baselines in traffic flow prediction.

A. DATASET DESCRIPTIONS
In the experiments, we use the following datasets to test the
performance of the proposed model. To explicitly reveal the
peculiarity of a traffic time series, we randomly extracted ten
examples from all three datasets. First, we compute basic
properties of each series, such as auto-correlation, mean
change, mean second derivative central etc. Then, we cluster
the series into five clusters, from each cluster we randomly
select two examples and put all the examples together for
plotting. In this way, we can make sure that the randomly
selected subset of the data is representative enough.

1) PEMS-BAY∗

This dataset was obtained from the California department of
transportation. It contains the description of the road occupy
rate corresponding to the Los Angeles County highway net-
work. The dataset comprised the information about the traffic
speed registered by 325 sensors in the Bay Area of California,
starting from January 1 2017, toMay 31 2017.We aggregated
the observed traffic speed values into five-minute intervals
having the size of 6030 × 92. Then we separate the dataset
into observation group 6030×80 for training and forecasting
group 6030 × 12 for forecasting. Std of the dataset is 8.72;
mean value 62.94; min value 3.70, max value 76.90. As
shown in Figure 3 (a), most of the recorded patterns varied
periodically in time, while some of them demonstrated abrupt
jumps in the beginning. Theoretically, a time series of a traffic
flow with recurrent changes should have represented more
accurate results.

2) SEATTLE-ILDD†

The data was collected by using inductive loop detectors
deployed on freeways in Seattle area. The freeways con-
tained I-5, I-405, I-90, and SR-520. This dataset contained
the spatio-temporal information about the speed of the con-
sidered freeway system. The speed information at a milepost
was averaged over the data from multiple loop detectors on
the main lanes in a same direction. The dataset is aggregated
into five-minute intervals with the dimension 5730× 92. It is

∗https://github.com/liyaguang/DCRNN
†https://github.com/zhiyongc/Seattle-Loop-Data
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FIGURE 4. Results of the performance evaluation on the PEMS-BAY dataset in terms of three metrics. The horizontal line represents the time length and
the vertical line indicates one of the tested metrics.

TABLE 1. Context-aware TCN parameter settings.

separated into observation group 5730 × 80 for training and
forecasting group 5730×12 for forecasting. Std of the dataset
is 8.14; mean value 59.94; min value 3.59, max value 75.94.
The random sampling results are represented in Figure 3 (b).

3) Metr-LA‡

Metr-LA was a dataset comprising the information from the
Los Angeles highway. Specifically, the dataset contained the
data on the traffic speed registered during four months using
207 sensors deployed in the county. The dimension of this
dataset is 1000×92 with five-minutes interval. It is separated
into observation group 1000×80 for training and forecasting
group 5730× 12 for forecasting. Std of the dataset is 19.19;
mean value 58.55; min value 0.00, max value 70.00. Accord-
ing to the random sampling results represented in Figure 3(c),
both sudden speed changes and static time series could be
observed.

For each dataset, we run and evaluate all the methods ten
times to eliminate outliers and then average the results to
reduce random error. We apply Z-score normalization and
split the dataset into a training set (70%) and test set (30%)
in a chronological order randomly during each run, enabling
the experiments to be conducted in a rigorous and controlled
environment to make it generalizable.

B. COMPARISON WITH THE BASELINE METHODS
To prove the validity of the proposed approach, we compared
four forecasting methods: 1) neural network-based methods,
including LSTM, Transformer, TCN, andWaveNet; 2) neural
networks integrated with context awareness: CATCN (the
proposed method).

‡https://www.metro.net/

C. EVALUATION METRICS
To compare the performance and the effectiveness of
the considered methods, we utilized the following met-
rics: mean absolute error(MAE), mean absolute percentage
error(MAPE) and root mean square error(RMSE).

MAPE is used to measure the relative errors, and is often
reported as a percentage:

MAPE(y, ŷ) =
1
n

∑n

i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣× 100% (18)

where yi denotes the prediction output; ŷi is the ground-truth
value; n corresponds to the total length of the series.

MAE is applied to measure the average absolute error
between the predicted value and the ground-truth value and
is calculated as follows:

MAE(y, ŷ) =
1
n

∑n

i=1
|yi − ŷi| (19)

RMSEwas employed tomeasure the deviation between the
predicted and ground-truth values. RMSE was selected as it
deemed more sensitive to outliers:

RMSE(y, ŷ) =

√
1
n

∑n

i=1
(yi − ŷi)

2 (20)

In above equations, y denotes the ground-truth value and ŷ
denotes the predicted value outputted by the network.

D. PARAMETER SETTINGS
In the considered benchmark models, we used the following
parameter settings:

LSTM [36]: hidden dimension dh = 10 with one layer
stacked;

WaveNet [24]: residual channel 32; skip channel 128 with
layer K = 4 for each block; three blocks stacked in total;
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FIGURE 5. Variance estimation of five methods on PEMS-BAY when autocorrelation values of the time series are different:(a) shows the results when
autocorrelation is in [0,0.6] and (b) represents the rest of cases. Each bar in the figure refers to the mean MAPE averaged on ten runs. Meanwhile,
the standard deviation of each forecasting interval is presented.

TABLE 2. Performance evaluation on 15 mins ahead prediction on three datasets.

FIGURE 6. Visualization of forecasting result of CATCN on three datasets.

Transformer [37]: eight layers in total; query size q = 32;
value size v = 32; the number of heads 32; hidden dimension
dh = 256; attention window size 32; dropout rate β = 0.3.
The rest of parameter settings remained the same as in the
original paper;

TCN [38]: three dilated convolution layers stacked; each
layer had the kernel size 2 and stride 1.

Parameters for the context awareness integrated model are
provided in Table 1.

E. LOSS FUNCTION
To train the models through back propagation and to measure
the deviation between the prediction and the ground-truth
values, we adapted RMSE as the loss function:

loss(y, ŷ) =

√∑n
i=1(yi − ŷi)

n
(21)

where yi denotes the prediction output; ŷi is the ground-
truth value; n corresponds to the total length of the series in
question.

F. FORECASTING PERFORMANCE EVALUATION
Table 2 provides the forecasting results averaged on ten runs
on three traffic datasets, the best results are highlighted in
bold and the second-best results are underlined.
The accuracy of all tested methods applied to the PEMS-

BAY dataset with the varying time length is represented
in Figure 4. We illustrated the performance of the pro-
posed method and the other four alternative approaches while
extending the time length. As observed, except WaveNet,
the tested models exhibited increasing errors as the time
length augmented, and yet CATCN still outperformed other
compared methods in terms of three metrics.
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FIGURE 7. The autocorrelation of the PEMS-BAY dataset.

We demonstrated the relevance of autocorrelation and rep-
resent model performance, as shown in Figure 5 and Figure 7.
Low autocorrelation of the considered time series indicated
that the sequence did not reflect typical periodical changes
and tended to vary without exhibiting explicit recognizable
patterns, thereby hindering sequence prediction to achieve
satisfying results. We can observe that when autocorrelation
is in [0,0.6], MAPE on PEMS-BAY tends to have smaller
variance and the outliers differ in short intervals.

Figure 6 provides the visualization of the forecasting
results on the three datasets. We can notice that after integrat-
ing the context-awareness features, the proposed method has
a better capability of capturing the local patterns. Meanwhile,
even though the trend of the forecasting result is consistent
with the true value in general, the proposed CATCN still
meets challenges when the abrupt change occurs.

V. CONCLUSION
In the present paper, we proposed a novel deep learning
architecture that was capable of performing local features
extraction and combining prior knowledge with the original
series to achieve better performance in traffic prediction com-
pared with the existing methods. It should be noted that the
proposed network relied on a generic method and therefore,
it could not only achieve better results being applied to in
traffic series but also was expected to perform well in gen-
eral time series forecasting. The proposed CATCN method
could learn a pattern of the local fluctuation and enhance
performance after extending the channels of time series with
periodic trends. The end-to-end training was realized by inte-
grating causal and dilated convolution, thereby improving the
robustness of the proposed network.

The results of the conducted experiments indicated that the
proposed CATCN achieved the best results compared with
the considered alternative methods and also demonstrated
that integrating traffic time series with local sensitivities
allowed capturing useful information. Furthermore, the pro-
posed method did not require to train attention weights, still
providing better capabilities compared with the method using
attention mechanisms.
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