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ABSTRACT This article provides a study into the social network where influential personalities collaborate
positively among themselves to learn an underlying truth over time, but may have misled their followers to
believe a false information. Most existing work that study leader-follower relationships in a social network
model the social network as a graph network, and apply non-Bayesian learning to train the weakly connected
agents to learn the truth. Although this approach is popular, it has the limitation of assuming that the
truth - otherwise called the true state - is time-invariant. This is not practical in social network, where
streams of information are released and updated every second, making the true state arbitrarily time-varying.
Thus, this article improves on existing work by introducing online reinforcement learning into the graph
theoretic framework. Specifically, multi-armed bandit technique is applied. A multi-armed bandit algorithm
is proposed and used to train the weakly connected agents to converge to the most stable state over time.
The speed of convergence for these weakly connected agents trained with the proposed algorithm is slower
by 66% on average, when compared to the speed of convergence for strongly connected agents trained with
the state-of-the-art algorithm. This is because weakly connected agents are difficult to train. However, the
speed of convergence of these weakly connected agents can be improved by approximately 50% on average,
by fine-tuning the learning rate of the proposed algorithm. The sublinearity of the regret bound for the
proposed algorithm is compared to the sublinearity of the regret bound for the state-of-the-art algorithm for
strongly connected networks.

INDEX TERMS Weakly connected agents, non-Bayesian learning, diffusion learning, online learning,
multi-armed bandit, regret.

I. INTRODUCTION
The social network has grown over the years to become a
platform for influential personalities to sell their beliefs to
followers within their sphere of influence. Even if the beliefs
of these influential personalities are wrong, it is easy for
them to access first-hand information and cooperate among
themselves to learn the truth over time. However, it is difficult
for the misinformed followers to learn the truth by virtue of
their inherent weakness to independently find the truth. They
are subject to the dominating influence of these influential
personalities. Take for instance the prevalent attitude among
adolescents, where they form strong loyalty to celebrities of
their interest, and inherit the enemies of these celebrities.
In reality, most of the celebrity fights on social media are
merely for attention seeking. The rival celebrities may resolve
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their differences among themselves, but these adolescents
endlessly engage in social media battle against themselves.
This is a social learning problem. As a result of the exponen-
tial growth of social networks, it is imperative to study the
behavior of humans in social networks, and to proffer solu-
tions to the menace of negative social influence. There have
been lots of interest among researchers to study the spread
of negative information in social networks [1]–[4]. A study
in [5] discussed the connection between social relationships
among humans and health.

Graph theory is commonly used for theoretical research
on social networks. Influential personalities or agents form
a strongly connected subnetwork, while their followers form
a weakly connected subnetwork. Agents in the strongly con-
nected subnetwork can easily communicate among them-
selves to learn the truth. On the other hand, agents in the
weakly connected subnetwork are dominated by agents in
the strongly connected subnetwork, whether or not they
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communicate among themselves. At least two common graph
theoretic approaches are used to study the interaction process
[6], [7] among agents in a graph network. The Bayesian
method [6], [8]–[10] is the first approach, where agents
rely on some prior beliefs and on Bayes' rule to update
their beliefs. The non-Bayesian method [11], is the second
approach, where each agent initially obtain an intermediate
belief based on an observed private signal, using the Bayes'
rule. Then, the agent cooperates with its neighboring agents
to update its belief. Agents asymptotically learn the truth
- also known as the underlying true state - following this
approach. The underlying true state is the unknown parameter
of interest that the agents seek to uncover. Although, each
agent observes a private signal at each time instance, this
private signal is only fuzzy about the true state. No agent
can directly observe the true state; hence, the agents rely on
interactions among themselves to learn this true state over
time. Thus, the true state is said to be underlying. The state-
of-the-art non-Bayesian learning approaches use diffusion
learning [12]. The performance of diffusion learning is good
in situations where learning is continuous [13], [14].

There are lots of interesting work on training weakly con-
nected agents to learn the true state, when the true state
is time-invariant. The authors in [15]–[18] applied a graph
theoretic approach and linear algebraic manipulations to a
partitioned adjacency matrix resulting from the graph net-
work. The weakly connected agents were able to converge
to the true state, although with a belief probability less than
one. This means that the weakly connected agents could still
be controlled by the strongly connected agents, and this is
a limitation of the work. The authors in [19] overcame this
limitation by using a log-intermediate belief and updated the
belief with an exponential function. The speed of conver-
gence improved, and the weakly connected agents’ belief
probabilities reached one for the true state over time. In [20],
the authors derived some closed-form expressions to deter-
mine how close both strongly connected agents and weakly
connected agents get to their limiting points in terms of mean-
square-error. The mean-square-error performance of weakly
connected agents is determined by the mean-square-error of
the strongly connected agents. In [21], the authors did not
only proposed a model that trained weakly connected agents
to converge to the true state, but also studied the reverse
problem of learning the network topology given that the
weakly connected agents received some measurements from
the strongly connected agents. One of their main results is that
for topology learning to occur, the number of hypotheses or
states, must not be less than the number of strongly connected
subnetworks. This means that if there are two strongly con-
nected subnetworks in the graph network, then, the number
of states - which include the true state - must be at least two.

Most existing literature that applied graph theory to study
truth-learning in the social network assumed that the true state
is time-invariant [11], [13], [14], [22]. An analogy of the
approach in this existing literature is described as follows:
At the initial time, all agents are doubtful of the true state.

However, after cooperation among one another, the beliefs of
the influential agents in the strongly connected subnetwork
will converge to the true state over time. On the other hand,
the agents in the weakly connected subnetwork will lose their
own beliefs and will be subtly manipulated to accept the
false beliefs of agents in the strongly connected subnetwork.
A limitation of this social learning model is that it does
not consider the dynamic nature of social network. This is
not practical, since streams of information are released and
updated every second in social networks [23], [24]. Thus,
the true state is arbitrarily time-varying. Hence, the analyses
and results in this existing literature are not applicable to
a dynamic setting. It has been shown in [25], [26], that
convergence of agents to the true state is difficult to achieve
when the true state is dynamic. For the setting discussed in
this article, where the true state is arbitrarily time-varying,
common existing approaches are therefore inadequate; hence
online (reinforcement) learning is introduced into the graph
theoretic framework.

Online learning is an aspect of machine learning where
agents receive information sequentially. Online learning has
shown to perform well in predicting the time-varying true
state for strongly connected agents unlike conventional social
learning methods that fail. For instance, [27] proposed an
online learning approach that can help strongly connected
agents predict the time-varying true state. Although, the per-
formance of the agents often come with some regret. Mini-
mizing this regret is the main goal of online learning. Online
learning strategies have the flexibility to work with different
forms of observed private signals. For instance, in most exist-
ing literature, the private signals observed by the agents are
strictly linear; however online learning can work for arbitrary
signals [28]. There are many online learning strategies. The
multi-armed bandit technique, which is an online learning
strategy, has proven to be one of the most successful for
social learning even in difficult situations, where cooperation
among the agents is difficult [27], [29]. In such a setting,
an agent may be denied feedback information from its neigh-
boring agents making consensus difficult.

Although, the multi-armed bandit technique has proven to
be quite effective for training strongly connected agents to
learn the truth when the true state is arbitrarily time-varying
[27], [30], it is yet to be applied for weakly connected agents.
Thus, this article applies multi-armed bandit technique to
help weakly connected agents predict the time-varying true
state. The regret incurred by these weakly connected agents
is expected to be higher than the regret incurred by strongly
connected agents. A preliminary study of this work can be
found in [31].

A. RESEARCH CONTRIBUTIONS
The contributions of this article are as follows:

1) It studies the problem of negative influence from influ-
ential personalities to their followers in social net-
works. To address this problem, the social network is
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modeled as a graph network, where the influential per-
sonalities form strongly connected subnetworks, and
their followers form weakly connected subnetworks.

2) It applies non-Bayesian learning and multi-armed ban-
dit technique, which is an online learning strategy,
to help the agents in a weakly connected subnetwork
learn a time-varying true state. Hence, a non-stochastic
multi-armed bandit algorithm is proposed.

3) It provides simulation results that show that the weakly
connected agents converge to the most stable state,
despite the arbitrarily time-varying nature of the true
state. The most stable state is the true state that appears
to be the most stable among the sequence of arbitrarily
time-varying true states over the time horizon. Also, the
sublinearity of the proposed algorithm for the weakly
connected subnetwork is compared with the sublinear-
ity of the state-of-the-art algorithm for strongly con-
nected subnetwork already established in literature.

The rest of the paper is organized as follows: Section II
explains the system model in detail, Section III explains
the proposed algorithm, Section IV gives some theoretical
results, Section V discusses simulation results, Section VI
concludes the findings, and Appendix A shows the proof of
Theorem 1.

II. SYSTEM MODEL
A. NETWORK MODEL
Consider a directed graph G = (V, E) where V = {1, · · · ,N }
represents the set of agents in the network with |V| = N .
Let a pair of non-negative scalar weights {ajk , akj} ∈ E be
assigned to the edges connecting agents k ∈ V and j ∈ V .
The edge weight ajk represents the weight assigned to the
directed path from j to k . Similarly, akj represents the weight
assigned to the directed path from k to j. The network is said
to be strongly connected if there exists a directed path in both
ways connecting any two agents of a neighborhood, and there
is at least one self-loop, i.e., akk > 0 for an agent k . The
presence of at least a self-loop means that in the strongly
connected subnetwork, there is at least one agent who uses its
own opinions in its decision-making process. Such an agent
is said to be self-conscious. Agents not connected by an edge
have a weight of 0 for that direction. This implies that it is
possible to have ajk > 0, but akj = 0. Adopting the definition
for a weakly connected network in [16], a weakly connected
network is defined as a network that acts as a receiver only
and can be dominated. The neighborhood of any agent, say
agent k , is the set of agents connected to k . Denote the
neighborhood of agent k asNk . Note that agent k is a member
of its own neighborhood. The adjacencymatrix of the graph is
a square matrix whose elements are the weights of the edges
linking any two agents. Denote the adjacency matrix as A.
When each column vector elements in the adjacency matrix
sum up to one, then the matrix is said to be left-stochastic,
i.e.,

ajk ≥ 0,
∑
j

ajk = 1. (1)

FIGURE 1. A graph network consisting of two strongly connected
subnetworks controlling two weakly connected subnetworks.

A graph network may be a combination of subnetworks,
as shown in Fig. 1. The top two subnetworks are strongly con-
nected, while the bottom two subnetworks are weakly con-
nected. All subnetworks in Fig. 1 have directed arrows, but
the directed arrows in each subnetwork are purposely omitted
to avoid confusion with the directed arrows indicating domi-
nation. Also, while the strongly connected subnetworks have
at least one self-loop, the weakly connected subnetworks
have no self-loop. As common in graph theory [12], [13],
[16], a strongly connected subnetwork is left-stochastic and
has a spectral radius of one, i.e., the eigenvalues are bounded
by one. A strongly connected subnetwork also follows the
Perron-Frobenius theorem, and has a single eigenvalue at
one, while other eigenvalues are strictly inside a unit disc.
On the other hand, a weakly connected subnetwork is not
left-stochastic and does not include the strongly connected
subnetwork in its neighborhood.

B. DIFFUSION LEARNING
In diffusion learning, all agents start with a uniform prior
belief over each state in the network. Let 2 = {θ1, . . . , θM }
be the set of all possible states that can be detected by a graph
network, and let θ∗t ∈ 2 denote the unknown time-varying
true state of the network at time t . Intuitively, 2 represents a
bounded set of discrete information containing a time-varying
truth. Take for the purpose of illustration only, θ∗t could mean
the price of stock that fluctuates arbitrarily over time, and
2 could mean a set of all known stock prices, any of which
could be θ∗t . Here, the strongly connected agents could mean
a collection of some wealthy enterpreneurs and stockbrokers.
The weakly connected agents could mean some social media
followers of these enterpreneurs who are novice to the stock
market, but wish to invest in stock. Each agent in the entire
graph network has some prior belief. The prior belief for
the agent k ∈ V for instance, is denoted as µk,0(θ ) = 1

M
at time t = 0. It is to be noted that the agent k ∈ V in
this context refers to any agent in the entire graph network.
Each agent will update its belief at each time t ≥ 1 first
by observing a random private signal. Intuitively, this private
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signal represents a side observation not fully informative but
accessible by each agent. From the above illustration, the
private signal couldmean some rumors about the stock prices.
The observed private signal of the agent k is denoted as Sk,t ,
and it is drawn from some known likelihood function Lk (·|θ∗t )
that is dependent on the time-varying true state θ∗t . Sk,t is a
member of a finite state space Zk,t . The private signals are
independent over time and over all agents. These signals are
not fully informative which necessitates cooperation among
the agents i.e.,

Sk,t = θ∗t + n, ∀k ∈ V, t ≤ T (2)

where n ∼ N (0, 1). The observed private signal is a noisy
version of the underlying time-varying true state. The agent
k uses this observed private signal to compute the likelihood
Lk (Sk,t |θ ) over each state θ ∈ 2 as follows:

Lk (Sk,t |θ ) =
1√

2πσ 2
k,t

exp {−(Sk,t − θ )2/2σ 2
k,t } (3)

where σ 2
k,t is the variance of agent k at time t . Then, the agent

uses the Bayesian rule to generate an intermediate belief as
follows:

ψk,t (θ ) =
µk,t−1(θ )Lk

(
Sk,t |θ

)∑
θ ′∈2 µk,t−1 (θ

′)Lk
(
Sk,t |θ ′

) (4)

where ψk,t (θ ) is the intermediate belief of the agent k at
round t . To account for the exploration-exploitation trade-
off in online learning, an intermediate probability pk,t (θ ) is
introduced. This intermediate probability is computed from
the intermediate belief. This is given as:

pk,t (θ ) = (1− γ )µk,t−1(θ )+ γψk,t (θ ), (5)

where γ is the exploration parameter. The agent k cooperates
with other agents in its neighborhood to compute a consen-
sus probability Pk,t (θ ), using the weight connections in the
adjacency matrix. This is illustrated as follows:

Pk,t (θ ) =
∑
j∈Nk

ajkpj,t (θ ). (6)

If k is a strongly connected agent, then, akk ≥ 0 in (6),
and if k is a weakly connected agent, then, akk = 0.
Because there is at least an agent in the strongly con-
nected subnetwork with self-loop, there is at least an
agent that will use a weighted portion of its own inter-
mediate probability to compute the consensus probability
according to (6). However, in the weakly connected sub-
network, since there is no self-loop, there is no agent
that uses its intermediate probability to compute its con-
sensus probability. This implies that none of the weakly
connected agents uses its opinions in its decision-making
process.

C. ONLINE LEARNING
The network is set up as an online learning problem that is
best described as a game between the agents and an oblivious
adversary. The goal of the adversary is tomaximize the regret.
Thus, the agents must be able to make smart decisions to
outwit the adversary and minimize regret. Before the game
begins, the adversary fixes the loss lk,t (θ ) ∈ [0, 1] for
each agent k at each time t and over all the states. The
time-varying true state incurs no loss, i.e., lk,t (θ∗t ) = 0. The
agents can minimize regret by ensuring it accurately predict
the time-varying true state on most occasion, and thus incur
minimum number of losses throughout the entire duration of
the game. The agents’ performance can be benchmark against
an oracle that has some knowledge of the game setting, and
would prefer to stick to a state that incurs the lowest possible
losses over the entire duration of the game. Therefore, each
agent’s expected regret is the difference between the total
expected loss incurred by the agent that follows a randomized
approach in predicting the time-varying true state, and the
total expected loss of the oracle who chooses to stick to the
best fixed state θ• for the entire duration of the game. This is
given as:

R(T ) = EFT

[
T∑
t=1

∑
θ∈2

pk,t (θ )lk,t (θ )−
T∑
t=1

lk,t
(
θ•
)]
, (7)

whereR(T ) is the expected regret over the time horizon T , and
the filtrationFT = σ (Sk,1, . . . , Sk,T , lk,1, . . . , lk,T , θ1, .., θT )
represents the history of all observed private signals, states
chosen and incurred losses.

III. PROPOSED ALGORITHM
The proposed algorithm is an adversarial multi-armed ban-
dit algorithm designed to help weakly connected agents to
predict the time-varying true state. The parameters for the
algorithm are the feedback graph, the learning rate η ≥ 0 and
the exploration parameter γ ∈ (0, 12 ]. The input to the algo-
rithm is the adjacency matrix A, and the number of statesM .
The output of the algorithm is the belief µk,t (θ ) ∀θ ∈ 2. The
operation of the algorithm is discussed as follows: In step 0,
each agent’s belief µk,0(θ ) is initialized over the state θ ∈ 2
as a uniform distribution. For each round of the algorithm,
the following steps are executed: In step 1, the intermediate
probability pk,t (θ ) is computed. This involves a trade-off
between exploitation and exploration with the parameter γ .
In exploitation, the algorithm sticks to the past belief of each
agent about the states, while in exploration, the algorithm
combines the likelihood of each agent over the states with the
effect of domination from the strongly connected subnetwork.
The trade-off is necessary to minimize regret. Thus, pk,t (θ ) is
computed with the introduction of the domination number δ
(see Definition 1). The exploration parameter is shared evenly
between ψk,t (θ ) and 1

δ
. In step 2, the consensus probability

is computed from (6). In step 3, a state is drawn at random
according to the consensus probability distribution Pk,t . Loss
is incurred for the chosen state. In step 4, the estimated loss
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Proposed Algorithm: Online Diffusion Learning for Weakly Connected Network
Parameters: Feedback graph, learning rate η > 0.
V is the set of weakly connected agents and E is the set of edges.
Exploration parameter γ ∈ (0, 12 ].
Input: The adjacency matrix A, |2| = M
Output: The belief µk,t (θ ) ∀θ ∈ 2
Step 0: Initialize µk,0(θ ) = 1

M
For each round t ∈ {1, · · · ,T }
Step 1: Compute pk,t (θ ) = (1− γ )µk,t−1(θ )+

[ γ
2ψk,t (θ )+

γ
2δ

]
∀ θ ∈ 2

Step 2: Compute Pk,t (θ ) =
∑

j∈Nk
ajkpj,t (θ ), Pk,t = (Pk,t (θ1), . . . ,Pk,t (θM ))

Step 3: Draw state θt ∼ Pk,t and incur loss lk,t (θt) ∈ [0, 1]
Step 4: Compute

l̂k,t (θ ) =
lk,t (θ )
Pk,t (θ )

I {θ = θt } ∀θ ∈ 2

Step 5: Update

µk,t (θ ) =
µk,t−1(θ ) exp

(
−ηl̂k,t (θ )

)
∑
θ ′∈2 µk,t−1(θ ′) exp

(
−ηl̂k,t (θ ′)

) ∀θ ∈ 2

Step 6: end

over the whole state is computed. This is important because
the algorithm needs to update the belief over all the states
but does not know the value of the losses for unchosen states
at each time. This is typical of multi-armed bandit settings.
This estimated loss is an unbiased estimate of the true loss in
expectation, as shown in Lemma 1. In step 5, the algorithm
updates the belief of each agents over all the states using an
exponential function. Notice that the belief update equation
is normalized to ensure that the sum of the beliefs over all
the states is one. Step 6 ends an iteration of the algorithm.
The algorithm repeats from step 1 until the time horizon is
reached.

The goal of the proposed algorithm is to converge to the
most stable state from the arbitrary sequence of time-varying
true states over the time horizon. The most stable state
appears to be the true state that is the most stable from the
arbitrary sequence θ∗1 , . . . , θ

∗
T . The belief probability of all

agents over the most stable state is expected to reach a value
of 1 over time. Intuitively, the agents in a weakly connected
subnetwork will converge to the state that appears to be the
truth in most occasion.

IV. THEORETICAL RESULTS
In this section, theoretical results are presented.
Definition 1: The weak domination number of a graphG is

denoted by δ(G), and is the smallest size of any subset D ⊆
V , which belongs to the strongly connected subnetwork and
dominates the weakly connected subnetwork.
Remark: In standard graph theory, a weakly dominating

set D ⊆ V , is the set of nodes that dominates the weakly
connected subnetwork. Computing a maximal dominating set
is NP-hard but it can be efficiently approximated within a
logarithmic factor using the greedy algorithm [32].
Assumption 1: The exploration over the subset D and the

intermediate belief ψk,t (θ ) is assumed to be uniform.
This assumption is useful for the proof of Theorem 1.

Lemma 1: The estimated loss l̂k,t (θ ), is an unbiased esti-
mate of the true loss lk,t (θ ) in expectation, and it is given as

EFt/Ft−1

[
l̂k,t (θ )

∣∣∣Ft−1] = lk,t (θ ) and

EFt/Ft−1

[
l̂k,t (θ )2

∣∣∣Ft−1] =
lk,t (θ )2

Pk,t (θ )
. (8)

Proof:

EFt/Ft−1 [l̂k,t (θ )|Ft−1]

=

∑
2

lk,t (θ )
Pk,t (θ )

Pk,t (θt )I{θt = θ} = lk,t (θ )

EFt/Ft−1 [l̂k,t (θ )
2
|Ft−1]

=

∑
2

(
lk,t (θ )
Pk,t (θ )

)2

Pk,t (θt )I{θt = θ}

=
lk,t (θ )2

Pk,t (θ )
.

Theorem 1: The upper bound on the expectation of
the regret in the proposed algorithm for the weakly
connected network is O

(
(δ lnM )2T 2/3

)
when γ =

min
{
(δ lnM )2

T 1/3 , 12

}
, η =

γ 2

δ
, and T ≥ M3 lnM/δ2.

Proof: See Appendix A.
Remark: The regret bound for the proposed algorithm is

worse than the regret bound for strongly connected network
obtained in [30], which is O

(√
αT lnM

)
, where α repre-

sents the independence number of the strongly connected
graph. However, the regret bound of the proposed algorithm
is comparable to the regret bound of EXP3.G for weakly
observable graphs of order Õ(T 2/3) [33], where the tilde
symbol represents the removal of some constant parameters.
In EXP3.G, the loss feedback is not strictly bandit like the
proposed algorithm, and each weakly connected agent is
allowed to observe the losses of its neighbors. Also, the
proposed regret bound is comparable to the regret bound of
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FIGURE 2. Two strongly connected subnetworks A and B controlling
weakly connected subnetwork C.

Lazy Revealing Action algorithm with order Õ(T 2/3) for the
full information setting [34], where each weakly connected
agents can observe the losses of all agents in the graph
network. Despite the restrictions of the bandit setting, the
proposed algorithm has the same regret bound as the EXP3.G
and Lazy Revealing Action algorithms with less restrictive
settings. This is an advantage of the proposed algorithm.

V. SIMULATION RESULTS
The simulation uses the network in Fig. 2 consisting of two
strongly connected subnetworks A and B and a weakly con-
nected subnetwork C. The adjacency matrix for the weakly
connected subnetwork is given as:

A =

 0 0.2 0.8
0.5 0 0.1
0.3 0.4 0


It can be observed from Fig. 2 that none of the weakly con-

nected agents 6, 7 and 8 in the weakly connected subnetwork
C has a self-loop. This means that for a weakly connected
agent k (which may be any of 6,7 or 8), its self-loop weight
akk = 0. Since there is not a single self-loop in subnetwork C,
none of the weakly connected agents uses its own opinion for
decision making. A weakly connected subnetwork is known
not to be left-stochastic; hence, the adjacency matrix A can be
formed such that akk = 0, and

∑
j ajk < 1 with ajk ≥ 0. The

domination number in Fig. 2 is 2 since two nodes from the
strongly connected subnetworks are sufficient to influence
the weakly connected subnetwork. For instance, node 2 and
node 4 from the two strongly connected subnetworks in Fig. 2
are sufficient to send one-way information from both strongly
connected subnetworks to the weakly connected subnetwork.
It is not important to show the convergence of the strongly
connected agents, as this is shown already in [30]. However,
it is of importance to show that the weakly connected agents

can converge to the most stable state, albeit, at a slower rate
compared to the strongly connected agents.

Assuming there are five states, i.e.,2 = {θ1, · · · , θ5}, any
of which can be the true state at each time t , since the true
state varies arbitrarily over time. This time-varying true state
θ∗t is randomly chosen using the randi function in MATLAB.
If algorithm 1 is implemented, each weakly connected agent
will converge to the most stable state over time, despite the
time-varying nature of the true state. The parameters used
for the simulation are: t = 1, . . . , 400; η = 0.2; and γ =
0.1. The private signals observed by each agent k is drawn
from a time-varying Gaussian distribution N (θ∗t , 1), where
θ∗t represents the arbitrarily time-varying true state at time t ,
and the distribution is centered around this time-varying true
state. The variance of the distribution is 1. It is to be noted
that at each time t , each agent draws its observation from
this distribution independently. At the start of the algorithm,
the belief µk,0(θ ) is uniformly distributed over the state. This
means that µk,0(θ ) = 1

5 . The algorithm is iterated 50 times.
The settings for the simulation parameters are very similar to
what was used in [30]. However, the algorithms in [30] are
different from the proposed algorithm due to the presence of
domination in the weakly connected subnetwork.

FIGURE 3. Convergence of agents’ belief in weakly connected
subnetwork C to θ1 at η = 0.1 at the 1st iteration.

Figs. 3-5 show how the weakly connected agents converge
to the most stable state using algorithm 1. Each of the figures
have five plots. Four of those plots show how the beliefs of
agents 6, 7 and 8 converge to zero for some states. However,
the beliefs of the agents 6, 7 and 8 will converge to a value of
1 only for the most stable state. The most stable state appears
to vary from iteration to iteration because the sequence of the
true states θ∗1 , . . . , θ

∗
T varies arbitrarily over the iteration.

Fig. 3 shows the convergence of the beliefs of agents 6, 7
and 8 at the 1st iteration when η = 0.1. It can be seen that the
beliefs of these agents for states θ2, θ3, θ4 and θ5 go to zero
over time. However, the beliefs of these weak agents converge
to θ1 with a value of 1 at t = 161. Thus, θ1 is the most stable
state at the 1st iteration.
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FIGURE 4. Convergence of agents’ belief in weakly connected
subnetwork C to θ1 at η = 0.1 at the 50th iteration.

Fig. 4 shows the convergence of the beliefs of agents
6, 7 and 8 at the 50th iteration with η = 0.1. It can be
seen that the beliefs of these weakly connected agents for
states θ1, θ2, θ4 and θ5 go to zero over time. However, the
beliefs of these agents converge to θ3 with a value of 1 at
time t = 189. Thus, θ3 is the most stable state at the 50th

iteration. The most stable state at the 50th iteration differs
from the most stable state at the 1st iteration. Hence, the most
stable state varies arbitrarily over the number of iterations.
The convergence of these weakly connected agents is slow
compared to the convergence of strongly connected agents
shown in [30]. We can compare the average speed of con-
vergence for weakly connected agents, using the proposed
algorithm, to the average speed of convergence for strongly
connected agents in [30], using the state-of-the-art algorithm,
over 50 iterations. On average, the weakly connected agents
converge at time t = 171, while on average, the strongly
connected agents converge at time t = 103. This means that
the weakly connected agents converge 66% times slower than
the strongly connected agents.

To show how important is the learning rate for fine-tuning
algorithm 1, a higher learning rate η = 0.2 is used in Fig. 5.
At the 50th iteration, the beliefs of the weakly connected
agents 6, 7 and 8 go to zero for states θ1, θ2, θ4 and θ5. How-
ever, the beliefs of these weakly connected agents converge
to θ3 with a value of 1 at time t = 124. Here, the convergence
is improved. Thus, fine-tuning the learning rate can improve
the speed of convergence of the weakly connected agents.
On average, the weakly connected agents converge at time
t = 120. This is approximately 50% improvement.
Fig. 6 shows the comparison of the sublinearity of

the regret bound of algorithm 1, which is given as
O((δ lnM )2T 2/3), to the regret bound obtained in [30], which
is O(

√
αT lnM ) for strongly connected agents. The sub-

linearity is defined as limt→∞
R(t)
t . It can be seen that the

regret bound of algorithm 1 decays slowly compared to
that of the strongly connected agents in [30], when other
parameters of the regret bound are kept constant except
time.

FIGURE 5. Convergence of agents’ belief in weakly connected
subnetwork C to θ3 at η = 0.2 at the 50th iteration.

FIGURE 6. Sublinear regret bound comparsion between the algorithm
designed for strongly connected agents in [30] and the proposed
algorithm designed for weakly connected agents.

We can compare the results in this article with the results
obtained in [16] and [21], for the case where the true state
is time-invariant. From Fig. 9 in [16], it can be seen that
the weakly connected agents converge to the true state with
a belief probability less than 1. This means that the weakly
connected agents are still manipulated by the strongly con-
nected agents. This model is not very good in practice, as the
goal should be to train the weakly connected agents to learn
the true state with a belief probability of 1. On the other hand,
the authors in [21] showed that the weakly connected agents
can learn the time-invariant true state with a belief probability
of 1, as shown in Fig. 8 in [21]. The convergence in this article
is comparable to what is obtained in [21], even though the true
state is arbitrarily time-varying here.

This work can be extended to situations, where the strongly
connected agents have limited control over the weakly con-
nected agents. More so, it will be interesting to improve the
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regret bound for the weakly connected agents in this article.
A much challenging problem will be situations where the
transfer of information from the strongly connected agents to
theweakly connected agents is bothways. Also, the algorithm
may be trained on massive social media data that can be
modeled as a massive graph network, instead of using a graph
network with few number of nodes.

VI. CONCLUSION
In conclusion, this article studied leader-follower relation-
ships in social networks, and proposed how followers can
overcome manipulations from leaders (or influential person-
alities), in order to learn an arbitrarily time-varying truth.
These influential personalities form strongly connected sub-
networks, while their followers form weakly connected sub-
networks. It has been shown in existing work that strongly
connected agents can cooperate among themselves to learn
this time-varying truth - otherwise called the time-varying
true state. However, trainingweakly connected agents to learn
the arbitrarily time-varying true state is yet to be investi-
gated. Thus, this article focused on training weakly connected
agents to converge to the most stable state over time from
the arbitrary sequence of time-varying true states over the
time horizon. To achieve this, a non-stochastic multi-armed
bandit algorithm is proposed, and it is shown by simulation
that the beliefs of weakly connected agents can converge to
this most stable state. Also, it is shown that the most stable
state varies randomly over the number of iterations. The speed
of convergence for these weakly connected agents trained
with the proposed algorithm is slower by 66% on average,
when compared to the speed of convergence for strongly
connected agents using the state-of-the-art algorithm already
established in the literature. This is becauseweakly connected
agents are harder to train. Fine-tuning the learning rate of the
proposed algorithm can improve the speed of convergence
of the weakly connected agents by approximately 50% on
average. Finally, The sublinearity of the regret bound for the
proposed algorithm is compared with the sublinearity of the
regret bound for the state-of-the-art algorithm for strongly
connected agents.

APPENDIX A

By equating the upperbound and lowerbound on the fraction
ln Wk,T

Wk,0
, we can subtly find the upperbound of the regret. This

approach is well-known in multi-armed bandit (Lemma 4 and
Theorem 2 in [33], [35]).

Let µk,t (θ ) :=
wk,t (θ )
Wk,t

and Wk,t :=
∑
θ∈2 wk,t−1(θ )

exp
(
−ηl̂k,t (θ )

)
. Verify that the update equation for µk,t (θ )

in Step 5 of the proposed algorithm is same as the definition
of µk,t (θ ) here.

Wk,t

Wk,t−1
=

∑
θ∈2 wk,t−1(θ ) exp

(
−ηl̂k,t (θ )

)
Wk,t−1

=

∑
θ∈2

µk,t−1(θ ) exp
(
−ηl̂k,t (θ)

)
≤

∑
θ∈2

µk,t−1(θ )
(
1− ηl̂k,t (θ )+ η2 l̂2k,t

)
where we use

ex ≤ 1+ x + x2 for all x ≤ 1

≤ 1− η
∑
θ∈2

µk,t−1(θ )l̂k,t (θ )+ η2
∑
θ∈2

µk,t−1(θ )l̂2k,t (θ )

(A-1)

where we use
∑
θ∈2 µk,t−1(θ ) ≤ 1 in (A-1)

using ln (1− x) ≤ −x

ln
Wk,t

Wk,t−1
= ln

(
1− η

∑
θ∈2

µk,t−1(θ )l̂k,t (θ )

+ η2
∑
θ∈2

µk,t−1(θ )l̂2k,t (θ )
)

≤ −η
∑
θ∈2

µk,t−1(θ )l̂k,t (θ )

+ η2
∑
θ∈2

µk,t−1(θ )l̂2k,t (θ ).

Summing over t = 1, . . . ,T , we get

ln
Wk,T

W0
≤

T∑
t=1

∑
θ∈2

(
− ηµk,t−1θ l̂k,t (θ )+η2µk,t−1 l̂2k,t (θ )

)
(A-2)

We apply telescoping series in (A-2) to arrive at ln Wk,T
W0

. Thus,

we have found the upperbound on ln Wk,T
W0

.

Now, we proceed to find the lowerbound on ln Wk,T
W0

. For
any fixed θf ∈ 2,

ln
Wk,T

Wk,0
≥ ln

wk,T
(
θf
)

Wk,0
= −η

T∑
t=1

l̂k,t (θf )−lnWk,0 (A-3)

where Wk,0 = M . In (A-3), we obtain lnwk,T (θf ) =
−η

∑T
t=1 l̂k,t (θf ) as follows:

wk,T (θf ) = wk,T−1(θf ) exp
(
− ηl̂k,T (θf )

)
= wk,T−2(θf ) exp

(
− η

(
l̂k,T (θf )+ l̂k,T−1(θf )

))
...

= wk,0(θf ) exp
(
− η

T∑
t=1

l̂k,t (θf )
)

But wk,0(θf ) = 1 because Wk,0 = M and µk,0(θf ) = 1
M .

Applying the natural logarithm,we arrive at−η
∑T

t=1 l̂k,t (θf ).
Now, to find the upperbound on the regret, we equate (A-2)

and (A-3)
T∑
t=1

∑
θ∈2

(
− ηµk,t−1(θ )l̂k,t (θ )+ η2µk,t−1(θ )l̂2k,t (θ )

)
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≥ −η

T∑
t=1

l̂k,t (θf )− lnM

T∑
t=1

∑
θ∈2

ηµk,t−1(θ )l̂k,t (θ )− η
T∑
t=1

l̂k,t
(
θf
)

≤

T∑
t=1

∑
θ∈2

η2µk,t−1(θ )l̂2k,t (θ )+ lnM .

Dividing by η, taking conditional expectation and introducing
min function to show the fixed choice of the oracle with
the lowest possible accumulated loss over the time horizon,
we get

EFt/Ft−1

[
T∑
t=1

∑
θ∈2

µk,t−1(θ )l̂k,t (θ )

∣∣∣∣Ft−1

]

−EFt/Ft−1

[
min
θf ∈2

T∑
t=1

l̂k,t
(
θf
) ∣∣∣∣Ft−1

]

≤ EFt/Ft−1

[
T∑
t=1

∑
θ∈2

ηµk,t−1(θ )l̂2k,t (θ )

∣∣∣∣Ft−1

]
+

lnM
η

Opening the bracket yields

T∑
t=1

∑
θ∈2

µk,t−1(θ )EFt/Ft−1

[
l̂k,t (θ )

∣∣∣∣Ft−1

]

− min
θf ∈2

T∑
t=1

EFt/Ft−1

[
l̂k,t

(
θf
) ∣∣∣∣Ft−1

]

≤

T∑
t=1

∑
θ∈2

ηµk,t−1(θ )EFt/Ft−1

[
l̂2k,t (θ )

∣∣∣∣Ft−1

]
+

lnM
η

(A-4)

Applying Lemma 1 in (A-4), we get

T∑
t=1

∑
θ∈2

µk,t−1(θ )lk,t (θ )−
T∑
t=1

lk,t
(
θ•
)

≤ η

T∑
t=1

∑
θ∈2

µk,t−1(θ )
l2k,t (θ )

Pk,t (θ )
+

lnM
η

T∑
t=1

∑
θ∈2

µk,t−1(θ )lk,t (θ )−
T∑
t=1

lk,t
(
θ•
)

≤ η

T∑
t=1

∑
θ∈2

µk,t−1(θ )
1

Pk,t (θ )
+

lnM
η

(A-5)

where we use l2k,t (θ ) ≤ 1 in (A-5)
Using assumption 1, because of uniform exploration over

D and ψkt

pk,t (θ ) ≥
γ

2δ
; hence Pk,t (θ ) ≥

γ

2δ
(A-6)

(A-6) is gotten from Step 1 and Step 2 of the proposed
algorithm. We can find the bound on

∑
θ∈2

µk,t−1(θ )
Pk,t (θ )

and

substitute into (A-5).∑
θ∈2

µk,t−1(θ )
Pk,t (θ )

≤
2δ
γ

(A-7)

we use
∑
θ∈2 µk,t−1(θ ) = 1 in (A-7). Substituting (A-7)

into (A-5), we get

T∑
t=1

∑
θ∈2

µk,t−1(θ )lk,t (θ )−
T∑
t=1

lk,t
(
θ•
)

≤ η

T∑
t=1

2δ
γ
+

lnM
η

(A-8)

pk,t (θ ) ≤ µk,t−1(θ )+ γ (A-9)

(A-9) is gotten from Step 1 of the proposed algorithm since
ψk,t (θ ) ≤ 1. Apply (A-9) in (A-8) and take expectation to
obtain;

EFt

[ T∑
t=1

∑
θ∈2

pk,t (θ )lk,t (θ )−
T∑
t=1

lk,t
(
θ•
) ]

≤ ηT
2δ
γ
+ γT +

lnM
η

choosing η =
γ 2

δ
, γ = min

{
(δ lnM )2

T 1/3 , 12

}
and

T ≥ M3 lnM/δ2 gives the regret bound of

O((δ lnM )2T 2/3)
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