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ABSTRACT Rain removal in videos is a problem that has attracted tremendous interest of researchers
within the field of deep learning. Although deep-learning-based rain removal methods outperform large
number of conventional vision methods, some technical issues that need to be resolved remain. In this article,
we propose a new deep learning method for video rain removal based on recurrent neural network (RNN)
architecture. Pseudo groundtruth was generated from real rainy video sequence by temporal filtering for
supervised learning. Instead of focusing on various shapes of rain streaks similar to conventional methods,
in this article, we focused on the changing behaviors of rain streaks. To accomplish this, images of progressive
rain streaks were generated from the real rain videos and are sequentially fed to the network in a decreasing
rain order. Multiple images with different amounts of rain streaks were used as RNN inputs to more efficiently
identify rain streaks and then remove them. Experimental results demonstrate that our method is suitable for
a wide range of rainy images. Moreover, experiments performed on both real-world and synthetic images
demonstrate that our proposed method can achieve competitive results in comparison with the benchmarked
and conventional approaches for rain streak removal from images.

INDEX TERMS Progressive rain removal, real rain dataset, video rain removal, image restoration, recurrent

convolutional network.

I. INTRODUCTION
Rain causes a series of visibility degradation and alters the
content and color of digital images. Raindrops can not only
annoy or confuse a human viewer but also degrade the per-
formance of any computer vision algorithm that depends on
small features. When raindrops are close to the camera lens,
each drop causes reflection highlight, scattering, and blur,
thus significantly reducing the visibility of rainy images.
Although the removal of rain, haze and snow from
images has been extensively studied for years [1]-[9], [29],
[47]-[57], it remains challenging because it is an inher-
ently ill-posed problem. Several non-deep-learning-based
rain removal methods, such as frequency domain represen-
tation [10], Gaussian mixture model [11], and sparse rep-
resentation [12], have been proposed and demonstrated to
lead to significant quality improvements. Owing to increasing

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Moinul Hossain

203134

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

interest in deep learning recently, few deep-learning-based
rain removal methods have been proposed [1]-[5], [13], [14],
[13], [27]-[31], [29], [47]-[54]. Deep networks allow us to
easily learn the correlation between rain streaks and back-
ground and typically achieve better performance than non-
deep-learning approaches.

As apair of clean and rainy images for the exact same scene
and background is difficult to obtain, general learning-based
methods commonly resort to synthetic dataset creation. These
pairs of rainy and clear images are fed as inputs and labels in a
supervised training of a CNN. However, as groundtruth image
is not available in the case of actual rainfall image sequences,
training a neural network in a supervised manner is difficult.
The network probably learns with the pseudo groundtruth
on the right in Figure 1, which is obtained from multiple
rainy images via temporal filtering. A derained image close
to the actual groundtruth can be generated by temporarily
filtering multiple images. However, this pseudo groundtruth
still suffers from the residues of rain, such as faint white
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FIGURE 1. Example of progressive rain images (including pseudo groundtruth) whose rain streaks gradually decrease from heavy to light. Under the
assumption that the difference between neighboring rainy images is only rain streaks, we attempted to learn the rain behaviors between progressive rain
images, leading to successful training without groundtruth. Although the proposed network is trained with pseudo groundtruth, it can achieve a clearer
image (located in the target of the figure), rather than the pseudo groundtruth. Note that the pseudo groundtruth image is generated by temporal filtering

with multiple rain images.

dots. Thus, imperfect groundtruth cannot guarantee excellent
network output. This motivates us to learn rain behaviors with
a sequence of progressive rain images, instead of a single
or multiple raw rain images. Figure 1 shows a sequence of
rainy images where the amount of rain streaks progressively
decreases from left to right.

Most conventional methods use a well-known rain model
to generate rainy images with various amounts of rain and
background components. However, these synthetic raindrops
and streaks appear different in terms of shapes, sizes, and
directions, compared to real raindrops. It is hard to perform
supervised learning for real rain due to the unavailable clean
version of a rainy image. Therefore, in order to overcome this
challenge, a training dataset with pairs of pseudo-groundtruth
and rainy images was generated using real rainy images. Also,
rather than synthetic raindrops, we focused on their changing
behaviors.

In this article, we propose a new deep learning method
for video rain removal. Rather than feeding a network with
synthetic pairs of clean and rainy datasets, real-world rainy
images are used to train it in a supervised manner. The fol-
lowing are the key contributions of the study. First, we create
training and evaluation datasets based on real rain videos.
Several progressive rainy images are generated using tempo-
ral filtering, and their rain streaks are gradually decreased.
The resulting image with the least raindrops is regarded as the
pseudo groundtruth, and the other images are fed into a net-
work as an input. For a real rainy image, its clean version can-
not be almost obtained. Thus, rather than using a pair of clean
and rainy images, we utilized many gradually rain decreasing
images (hereinafter referred to as progressive rain images),
and we attempted to learn the decreasing behaviors of rain-
drops. Second, we adopted a recurrent neural network (RNN)
that handles sequential inputs and/or outputs as a base archi-
tecture. We observed that real rain video scenes have varying
rain streaks with different shapes, sizes, and directions. Most
conventional methods adopted the approach of extracting
rain streaks themselves and subsequently removing them.
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However, the shape and size of rain streaks vary, and, thus,
accurately removing them is difficult. Rather than concentrat-
ing on the raindrops, we focused on their changing behaviors.
Our progressive rain images have the strongest correlation
of rain streaks among them owing to the lighter rainy inputs
being a subset of the heavier ones in terms of rain streaks only.
Multiple rainy images with different rain streaks are used as
the RNN inputs to more efficiently identify rain streaks.

The rest of this article is organized as follows. Section II
introduces related works on image and/or video rain removal.
Section III describes the generation of real rain datasets
from rainy videos. Section IV describes our RNN-based
rain removal architecture. Section V verifies the effective-
ness of our proposed rain removal method visually and
quantitatively. Finally, Section VI provides the concluding
statements.

Il. RELATED WORKS
In this section, we briefly review the existing image and video
rain removal algorithms.

A. SINGLE IMAGE RAIN REMOVAL

For the removal of a single image rain streak, Kang et al. [10]
proposed a method that decomposes an input image into
its low-frequency component as a structure layer and its
high-frequency component as a texture layer. Their method
attempts to separate rain streak frequencies from the high-
frequency layer via sparse coding-based dictionary learning
with HoG features. Although the decomposition concept is
refined, its results tend to blur the background. In a similar
manner, several methods address the problem by separating
the signals into a rain layer and a structure layer, based on
texture appearances. Kim et al. first detected rain streaks
that are removed with the nonlocal mean filter [20]. Li et al.
exploited the Gaussian mixture model to extract rain streaks.
Deep learning promoted the development of single-image
deraining [11]. Further, Luo et al. proposed a discriminative
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sparse coding method to separate rain streaks from the back-
ground [12].

Owing to the success of convolutional neural net-
work (CNN) in classification, segmentation, and recognition
[22]-[26], [36]-[40], CNN has been applied to rain removal.
Deep networks in [13], [14] are adopted as a basic model to
separate the structure and texture layers from rainy images.
Fu et al. proposed a deep network that uses the image detail
layer as its input and predicts the negative residues as rain
streaks [13]. The network has a good capacity to retain the
texture details; however, it cannot handle cases of heavy
rain where the rain streaks are dense. Yang et al. proposed
a deep learning-based joint rain detection and removal to
recurrently remove rain streaks and accumulations [14], [52],
obtaining impressive results in heavy rain cases. However, the
rain streaks and textures of the background are intrinsically
overlapped in the feature space.

B. VIDEO RAIN REMOVAL

For the image restoration of rain videos, earliest methods use
a temporal median filter for each pixel [15], [16]. Temporal
median filtering exploits the fact that, in all but the heav-
iest storms, each pixel is more often clear than corrupted.
Garg et al. proposed a method that can control a video cam-
era’s operational parameters when capturing a rainy scene
[17]. They suggested using temporal and spatial blurring
either by increasing the exposure time or reducing the depth
of field. Thus, adjusting these camera parameters while cap-
turing the video will reduce the appearance of rain streaks.
These early attempts primarily rely on the linear space—time
correlation of raindrops and, thus, fail when the rain streaks
are diversified in terms of its scales and densities. Subse-
quent studies formulate rain streaks with more flexible and
intrinsic models. Zhang et al. added an additional constraint
called the chromaticity constraint [7]. They observed that
intensity changes in RGB color channels are identical to
pixels that represent rain streaks. This method is an improve-
ment over simple median filtering. Recently, several methods
further utilized temporal dynamics, including continuity of
background motions, explicit motion modeling, and random
appearance of rains between frames, to facilitate video rain
removal [18]-[21]. Chen and Chen proposed embedding
motion segmentation by using a Gaussian mixture model into
rain detection and removal [19]. Tripathi et al. trained a Bayes
rain detector based on spatial and temporal features [41]. Kim
et al. trained an SVM to refine the roughly detected rain maps
[20]. Further, Wei et al. encoded rain streaks as patch-based
mixtures of the Gaussian model that can finely adapt a wider
range of rain variations [42].

1Il. DATASET GENERATION

The synthesized rain datasets widely used in several super-
vised rain removal methods have different characteristics than
actual rain. The length and thickness of rain streaks in the
synthesized image are not similar to real rain. Therefore,
synthesized datasets do possibly not reflect the actual rain
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characteristics to CNN hyper-parameter learning. Therefore,
in this article, we constructed a real rain dataset based on the
following observations.

We observed that the amount and characteristics of rain
streaks differ across real rain images, which vary on weather
conditions at the time when the image was captured. For
example, under heavy rain conditions, rain streaks closer to
camera lens are thicker and long, and those farther away from
the camera are thinner and shorter. Moreover, if the distance
of the rain streaks from the camera is farther away, rain is
captured similar to fog. Another observation is that, in most
cases, the colors of background objects become brighter due
to rain streaks. The light reflected by raindrops is mixed with
the light of the background objects such that the background
is captured brighter than the original color. Our final obser-
vation is that raindrops are random and fast regardless of the
amount of rain; this implies that a clean background without
rain can be captured at least several times in several video
frames. These observations indicate that simply generating
pseudo groundtruth images from real rain image sequences
using temporal filtering is possible.

FIGURE 2. Overview of our dataset generation with the actual rain image
sequence. We generated several progressive rain images to include
different amounts of rain by controlling the window length for temporal
filtering.

Figure 2 shows the overview of our dataset generation
process from a real rain video. We created a real rain dataset
using the following steps. The pixels on the temporal axis in
an image sequence were grouped as a vector. The elements
(temporal samples) of each vector can be one among rain,
background, and their mixture. Based on our second observa-
tion, we adopted a minimum operation to effectively obtain a
rain-free pixel, which was used as the pseudo groundtruth.

Subsequently, we obtained progressive rain images,
wherein the rain streaks gradually increase. Based on the
second observation mentioned previously, all rain streaks
in an image sequence can be extracted by the maximum
operation. In other words, a maximum pixel in each group
of temporal pixels is selected as a rain pixel. The amount
of rain can be easily controlled by the number of pixels
to be temporarily filtered; that is, the wider the temporal
filtering window, the higher the probability that a rain pixel
will be selected (Figure 2). By adjusting the window length
of temporal filtering, we can generate few progressive rain
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FIGURE 3. Network structure of the proposed rain removal method.

images ranging from light to heavy (Figure 1). Further, our
RNN network takes four different progressive rain images as
inputs (Figure 3).

IV. PROPOSED METHOD

The key concept of the proposed network is that the rain
streaks are progressively removed by feeding rainy inputs in a
decreasing rain order. In this section, we describe our method
of removing rain streaks through the RNN structure, taking
advantage of the strong correlation between input images.

A. RNN ARCHITECTURE

Recurrent neural networks (RNNs) handle sequential inputs
and/or outputs. RNN architectures that are widely used:
many-to-one and many-to-many. Figure 3 shows the
overview of our proposed network structure. A common
RNN architecture involves using a series of images as inputs
that become progressive rain streak images (described in the
previous section), including a target one herein.

Given four input images R;, (i = 1, 2, 3, 4) corresponding
to progressive four rain images, they first go through an
encoding block to extract feature maps X;, (i = 1, 2, 3, 4). For
clarity, i = 1 in the notations R; and X; indicates a target rain
image and its feature map, respectively. The input sequence of
rain frames is constructed as {R1, Ry, R3, R4}, where a higher
n represents a heavier rain image.

Our proposed RNN architecture comprises four blocks:
initial feature extraction (encoding block), difference residual
block, multi-dilated residual dense block, and reconstruction
(decoding block). They are sequentially described in the
remainder of this section.

B. ENCODING BLOCK

Image information is extracted from each input using an
encoder block. As we used various numbers of rain images
as inputs, the extracted feature tensors contain different detail
information for the same background scene. This sufficient
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detail information can be useful when reconstructing the
final output. During the extraction of the feature of each
input, a nonlocal block is added to the encoding module
to extract both local and global information simultaneously.
Local information is easily extracted by a general convolution
layer. For the extraction of global details, a nonlocal block is
used instead of a convolution layer.

C. DIFFERENCE RESIDUAL BLOCK

Here, we aimed to progressively remove rain streaks by
sequentially feeding from heavy to light rain images into
RNN. Several conventional methods adopted an approach
that extracts rain streaks and subsequently remove them.
However, the shape and size of the rain streaks vary, and
accurately removing them is therefore difficult. In this study,
we focused on the decreasing behaviors of rain streaks in few
progressive rain images. Therefore, we added the difference
residual block (DFRB), as shown in Figure 4 (a). DFRB is
composed of three ResBlocks and two regular convolution
layers. A current input is enhanced by combining it with the
next input. The difference between the two input features
represents the decreased rain streaks in the image sequence,
and it helps efficiently train various shapes of rain streaks.

D. MULTI-DILATED RESIDUAL DENSE BLOCK

The multi-dilated residual dense block (MDRD) is designed
for extracting global features, as illustrated in Figure 4 (b).
The MDRD comprises eight dilated convolution layers, seven
regular convolution layers and two 1 x 1 convolution layers.
To obtain more global details, we increased the receptive
field via dilated convolutions with increasing dilation factors.
Each regular convolution layer uses the concatenation of
two neighbor dilated convolution feature maps from previous
layers as an input to create a richer nonlinear representation.
Thus, our network is developed as a cascade of four multi-
dilated residual dense blocks; each block uses the previ-
ous MDRD output feature as an input. The dilation factors
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FIGURE 4. (a) Difference residual block (DFRB) structure and
(b) multi-dilated residual dense block (MDRD) structure. D.n (n = 1-8) in
(b) indicates dilated convolution layers.

increase from one to the next, and all regular and dilated
convolutions are followed by ReLU nonlinearity [24].

E. DECODER BLOCK

The reconstruction of the output derained image was per-
formed by decoding the auto encoder. To propagate finer
details to the output, we incorporated additional ResNet-style
[25] skip connections between the input and the output of
each block. The skip connection is a simple concatenation
of the input feature blocks to the output ones.

F. LOSS FUNCTION
Our objective is to optimize network parameters that mini-
mize the following loss function:

L =pLp; + u2Ryy, (D

where w; and pp are the coefficients that are empirically
determined. The first term, Ly, is a L loss between the
derained image C and pseudo groundtruth. The second term
Rry is atotal variation (TV) regularizer [43]. As mentioned in
Section III, rain streaks mostly have higher pixel values than
the surrounding pixels; thus, TV regularization is applied to
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smoothen the rain streak pulse. The TV loss is given by

B
Rrv(x) = > ((xijs1 — x)* + Gipry — )2, ()
iJ
where x is a vectorized and mean-subtracted image and i and
Jj denote the location of the pixels and g = 2.

V. EXPERIMENTAL RESULTS

A. IMPLEMENTATION DETAILS

Our network was trained using real rain dataset pairs of
66,432 images, with a fixed resolution of 768 x 512.
It is implemented using the PyTorch framework on a PC
with 2 NVIDIA RTX 2080ti GPUs [36]. For loss optimiza-
tion, we adopted the Adam optimizer with a batch size of
32 [37]. The initial learning rate is 0.0001 and is divided
by 10 for every 20K iterations.

B. TRAINING DATASET

As real rainy images and the corresponding sunny images are
not simultaneously available, we created a real rain dataset
using our own steps, as discussed in Section III. We captured
several rainy videos on a rainy day as well as searched for
many rainy videos on YouTube. We generated progressive
rain inputs and pseudo groundtruth via temporal filtering.
Our real rain dataset includes 66,432 frames for 120 different
scenes. During a training phase, they are randomly cropped
into 64 x 64 x 3 patches.

(®)

FIGURE 5. (a) Example of rainy image sequence, including a moving
object and (b) its object mask maps.

To generate progressive four inputs in Figure 2, temporal
filtering window (image sequence lengths) was set to 1, 3,
5, and 7. If the image sequence contains moving objects,
ghosting artifacts frequently occur in video deraining. The
ghost artifact is one of the obstacles to accurately derain,
and preprocessing is necessary to prevent artifacts. Prior to
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FIGURE 6. Rain removal results of real rain images include a moving object. Upper images are n-1th frames in image sequence, lowers are nth frames:
(a) rainy images, (b) results using the method in [31], and (c) results using our proposed method.

TABLE 1. Quantitative average results on 20 synthetic DID-MDN dataset images. Red indicates the best result, and blue indicates the second best

Rainy  Ground Truth Method[c] Method[d] Method[e] Method[f] Method[g] Method[h] Method[i] Method[j] Method [k] Ours

PSNR 20.77 Inf 29.23 30.40 23.65 34.38 25.82 26.85 29.31 25.20 29.40 34.99
SSIM 0.4794 1 0.6972 0.7232 0.5850 0.8000 0.5788 0.5897 0.6985 0.6395 0.6462 0.8296
UQI 0.4822 1 0.7156 0.7584 0.6128 0.8247 0.5866 0.6103 0.7129 0.6487 0.6644 0.8591
VIF 0.2583 1 0.5535 0.6659 0.5092 0.7589 0.4317 0.4474 0.6146 0.4907 0.5906 0.7949

the generation of the input images, we first searched for
image regions with motion, and an optical flow algorithm was
used to generate the moving object mask. Figure 5 shows an
example of the image sequence and its moving object masks.
Temporal filtering for input images was performed only on
static regions, except for the moving region specified in the
moving object mask.

C. REAL-WORLD IMAGE RESULTS

Conventional methods are also evaluated on real-world
images. Figure 6 shows the qualitative results on our real
dataset that includes a moving object. As also shown in
the figure, the method [31] still suffers from artifacts after
deraining. In particular, in the moving object of a car, some
rain can be removed; however, a considerable number of
artifacts are produced. Our proposed method provides better
visual performance by effectively removing rain streaks and
preserving details.

Figure 7 shows another qualitative result on real-world
images. For another method [28], color distortion happens in
the deraining results, whereas the methods in [13], [29], [30]
cannot thoroughly remove rain streaks. Another method [28]
tends to remove image details such as leaves on the tree as
well as rain streaks, as shown in Figure 7 (el). The raindrops
on the ground remain in the methods used in [31], [34]. In the
methods used in [27], [13], [29], [30], we can observe arti-
facts near the edge region. Conversely, our method evidently
removes rain streaks better and improves the visual quality.
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D. SYNTHESIS IMAGE RESULTS

We also quantitatively and qualitatively compared perfor-
mances on synthetic images. Four quality measures were
used for quantitative evaluation: peak signal-to-noise ratio,
structural similar index [44], universal quality index (UQI)
[45], and visual information fidelity [46]. Table 1 presents
the quantitative results on 12 synthetic images. The proposed
method achieves competitive performance compared to the
conventional methods. In particular, our method achieves the
highest UQI values. For other measures, we also quantita-
tively achieved the best and the highest scores.

Figure 8 also visually demonstrates the effectiveness of
our proposed method for a synthetic rain sequence. The
derained images of the methods used in [29], [30], [32],
[34] contain rain artifacts and streaks, but some rain streaks
remain, especially for heavy rain, as shown in Figure 8
(c1-c2, f1-12, gl—g2, j1-j2). The methods used in [21], [31]
successfully remove bright and thick rain streaks; however,
thin and low-intensity rain streaks remain, as shown in Fig-
ure 8 (i1-i2, k1-k2). The method used in [28] tends to remove
even some image details, and rain artifacts remain and the
color is also degraded, as observed in Figure 8 (el—e2).
They may be caused by the insufficient learning ability of
parameter layers.

The method used in [27] achieves good deraining results,
but some thick and spotted rain streaks cannot be removed in
the background, as shown in Figure 8 (d1-d2). The method
used in [13] tends to blur image details, as shown in Figure 8
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(ii)

FIGURE 7. Rain removal results on real-world images: (a1-a2) rainy images, (b1-b2) pseudo groundtruth, (c1-c2) results using the method in
[29], (d1-d2) results using the method in [27], (e1-e2) results using the method in [28], (f1-f2) results using the method in [30], (g1-g2) results
using the method in [33], (h1-h2) results using the method in [13], (i1-i2) results using the method in [21], (j1-j2) results using the method in
[32], (k1-k2) results using the method in [31], and (I11-12) results using our proposed method.

(h1, h2), as the rain-density levels of input rainy images are E. PROGRESSIVE RAIN REMOVAL

difficult to determine. In contrast to the nine methods, our Our progressive rain images have a strong correlation of rain
proposed method is capable of removing more rain streaks streaks between neighboring input images. It is expected that
while preserving image details. the correlation contributes to better removal of rain streaks.
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(i2)

FIGURE 8. Rain removal results on synthetic images: (a1-a2) rainy images, (b1-b2) groundtruth, (c1-c2) results
using the method in [29], (d1-d2) results using the method in [27], (e1-e2) results using the method in [28], (f1-f2)
results using the method in [30], (g1-g2) results using the method in [33], (h1-h2) results using the method in [13],
(i1-i2) results using the method in [21], (j1-j2) results using the method in [32], (k1-k2) results using the method in
[31], and (11-12) results using our proposed method.
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FIGURE 9. Comparison of the two different ways of generating progressive inputs. (a) is the method of generating rain correlated inputs in the proposed
method; (c) generates rain non-correlated inputs. The red solid box indicates a target frame. (b) and (d) show the residuals between the input images for

the methods (a) and (c), respectively, for correlation comparison.

This is easily confirmed by comparing it with the result of
uncorrelated progressive rain inputs.

Figures 9 (a) and (c) illustrate the generations of two types
of input images. Figure 9 (a) shows the generation of the pro-
posed method, as already shown in Section III. Meanwhile,
Figure 9 (c) shows the generation of uncorrelated progressive
inputs, indicating ‘“‘no-correlation of rain streaks” between
neighboring inputs. In the case of (a), the temporal filtering
window of “inputi” is a subset of “input i+-/”. This indicates
that the rain streaks of “input i”’ probably belong to those of
“input i+1”’. Conversely, in the case of (c), temporal filtering
was performed on a separate window for the generation of
four inputs so that there is no correlation between neighboring
inputs. For this experiment, the rainy image sequence was
synthetically generated by repeating a static image with ran-
dom rain streaks.

Figures 9 (b) and (d) show the residuals between the input
images of (a) and (c), respectively. In (b), the intensity of rain
streaks progressively increases from light to heavy, and the
lighter rainy inputs are a subset of the heavier rainy input,
thereby increasing the correlation. Thus, the progressive
reduction of rain streaks is learned, and this more effectively
removes rain streaks. Meanwhile, in Figure 9 (d), rain streaks
in each input image gradually increase, but the rain streaks in
each image are independent and have a low correlation.

Subsequently, we evaluated the capability of the proposed
RNN to gradually improve rain removal as rainy inputs
increase. Figure 10 shows the decoding result of each subnet
feature map, corresponding to F,, (n = 4, 3, 2, 1) in Figure 3.
In Figure 10, dc indicates decoded feature maps. For a visu-
alization of feature maps, decoders were installed on each
feature map. As shown in Figure 10, more inputs can lead
to further enhance the performance of rain removal.
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FJ,dc FI,dc

FIGURE 10. Example of the proposed RNN capability to progressively
reduce rain streaks. For visualization, we attached decoders on feature
maps (F4 - Fq) to the bottom of Figure 3.

F. ABLATION STUDIES

We investigated the architecture of our proposed method and
validated the importance of individual components in the
overall performance. Figure 11 shows the visual results of
our proposed method and its baseline variants. Figure 11 (b)
shows the derained result without the DFRB module in our
proposed method. As can be observed, rain streaks have

VOLUME 8, 2020



K.-H. Lee et al.: Progressive Rain Removal via a Recurrent Convolutional Network for Real Rain Videos

IEEE Access

FIGURE 11. Visual results of the proposed method and its baseline
variants: (a) rainy image, (b) without DFRB modaule, (c) use four input
images with random picks in image sequence, and (d) the result of the
proposed method with full architecture.

FIGURE 12. Visual results of the proposed method and its limited number
of input images. (a)-(c) network architecture with 3-to-1 input, and
(d) the result of the proposed method with full architecture.

been removed from many regions, including the floor in the
image, but the rain streaks in the front of the building remain.
Figure 11 (c) shows the result of using randomly selected
four input images in the image sequence. As can be observed,
the proposed RNN could not be effectively trained, and rain
streaks could not be properly removed. Figures 12 (a—c) show
the results of limiting the number of input images to 3, 2,
and 1 in our overall network structure. The input images
were sequentially removed from heavy input (R4 in Figure
3) to light. Even if the number of input modules is reduced,
it demonstrates good rain removal performance; however,
compared to our proposed method with full architecture,
many rain streaks remain.

Figure 13 visualizes some feature maps of Fs-to-F; in
Figure 3. As shown in Figure 13 (a), the feature maps of
F4 extracted from the first input show the mixture between
rain streaks and objects. The second input further enhances
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FIGURE 13. (a) ~ (d) are the visualizations of some feature maps at
F4 ~ F; in Figure 3, respectively.

(@

(b

FIGURE 14. Visual quality of the proposed method to jointly remove rain
streaks and hazy effects. (a) rainy images and (b) results of the proposed
method.

the separation of rain streaks from objects as shown in
Figure 13 (b). Thus, it can be confirmed from the feature
maps at F4 ~ F that we could gradually separate rain streaks
with progressive rainy inputs. Some of conventional methods
remove rain streaks by separating a rain layer from a rainy
image. However, the proposed method attempts to remove
rain streaks by utilizing the changing behaviors of rain streaks
between progressive rain images. This is the key difference,
compared to conventional approaches.

VI. CONCLUSION AND DISCUSSION

In this article, we proposed a new deep learning method
to remove rain streaks from real rain videos. For super-
vised learning, we generated pseudo groundtruth from real
rainy video sequences via temporal filtering. Several conven-
tional methods attempted to extract rain streaks and subse-
quently remove them. However, while such methods require
groundtruth for learning, it is practically not available in real
rainy videos. This prevents a neural network from effectively
learning rain removal. In this article, we focused on the
learning of rain decreasing behaviors using RNN. Progressive
rain streak images were obtained from a real rain video
and were sequentially fed to the network in a decreasing
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rain order. The experiments on both real-world and synthetic
images demonstrate that our proposed method can handle rain
removal in a supervised learning manner without groundtruth.

However, some limitations of the proposed method are
existed. One of the limitations is that it is weak for fast
camera moving scenes. Producing suitable progressive rain
images would be difficult as moving regions are wider in
the image. Another limitation of the proposed method is
that it is not suitable for hazy effect caused by rains. The
hazy effect occurs when raindrops are captured close to the
camera as particles or very far away from the camera as mist.
Figure 14 shows the rainy scenes with occurred hazy effects.
Middle and bottom images of Figure 14 (a), small raindrop
particles in close to the camera captured as hazy effect. These
slight changes of small rain particles could capture in rain
image sequence, so the hazy effect occurred by particles is
reduced by the proposed method. However, the hazy effect
such as mist existing in the far distance as shown in top of
Figure 14 (a), cannot be removed by the proposed method
because the mist far from the camera is not changed in the
image sequence. These limitations would be addressed in a
future study.
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