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ABSTRACT Nowadays, high-resolution DOA estimation techniques have been widely used in many fields
such as sonar, communication, radio astronomy and biomedicine etc. Unfortunately, conventional algorithms
cannot achieve high precision due to the limitation of the array aperture, and usually suffer from high
computational complexity. In this paper, we innovatively model the DOA estimation problem of incoherent
signals as a binary classification problem and greatly reduce physical complexity by virtue of sparse arrays.
We first propose a classification framework for DOA estimation by benefiting from one-bit quantification.
In this framework, any classification algorithm can be exploited to estimate DOA, such as logistic regression
used in this paper. And then, sparse array is considered to reduce the exceeding number of antennas.
Moreover, an iterative grid refinement procedure is presented to achieve more accurate DOA estimation and
further reduces the actual number of physical antennas. Simultaneously, we derive Cramer-Rao bound (CRB)
for the proposed algorithm. Finally, simulations are conducted for correctness and validation and the results
illustrate the significant performance and reduction of complexity in hardware and computation over the
existing methods.

INDEX TERMS DOA estimation, classification framework, one-bit quantification, logistic regression,
sparse array, grid refinement.

I. INTRODUCTION
Direction of arrival (DOA) estimation is a classic problem
in array signal processing, which exploits a specific array
to estimate angle of signals from the external environment.
Traditional DOA estimation algorithms employ the orthog-
onality of signal subspace and noise subspace to estimate
DOA, such as multiple signal classification (MUSIC) [1]
and estimation of signal parameters via rotational invariance
technique (ESPRIT) [2]. However, the subspace-based algo-
rithms usually require a large number of sampled data points
to obtain a more accurate estimate, and the performance
is usually not very satisfactory for the low signal-to-noise
ratio(SNR) case.

Due to spatial sparsity, compressed sensing(CS) has
attracted considerable interests in DOA estimation in recent
years. The inspiration of the CS-based DOA estimation algo-
rithm comes from that considering the extended array mani-
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fold matrix as a measurement matrix and the extended signal
as a sparse vector, then applying traditional CS recovery
algorithms for DOA estimation, such as convex optimiza-
tion algorithm [3], greedy algorithm [4], [5], and sparse
Bayesian algorithm [6]. However, these methods imply the
operation of grid division on the angles, which inevitably
leads to picket fence effect in DOA estimation. At present,
there are two kinds of ideas used to solve the picket fence
effect caused by discretization in angular coordinate. One is
modeling DOA in the discrete parameter space and utilizing
Taylor series expansion [6] or linear interpolation model [7]
to establish the relationship between angle correction and
observations, and finally employing sparse Bayesian learning
algorithm or other methods to estimate it. The second idea is
to model DOA directly in the continuous space. For instance,
the atomic norm defined in the continuous space [8], which
guarantees spatial continuity and sparsity of signal parame-
ters, and thereby avoids the picket fence effect.

In the future communication system, analog-to-digital con-
verter(ADC) is one of the key devices for digital signal
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processing. In order to reduce the computational complex-
ity caused by the ADC with large quantization bit number,
one-bit quantization has been gaining more momentum.
Especially in DOA estimation, it has proved that the loss
caused by one-bit quantization is relatively small [9], thus,
a series of one-bit DOA estimation algorithms have emerged.
For instance, Shalom and Weiss [10] derived the covari-
ance matrix of one-bit measurements by using the arcsine
theorem of statistical theory and then achieved accurate
DOA estimation. Other improved algorithms, can be found
in [11], [12] and [13]. Unfortunately, a massive number of
physical antennas is still need to obtain high estimation accu-
racy. To deal with this problem, Liu and Vaidyanathan [14]
proposed a one-bit sparse array DOA estimation method,
which shows that sparse arrays such as nested arrays [15] and
coprime arrays [16] are more robust to the deleterious effects
of one-bit quantization compared to uniform linear arrays
(ULAs). In [17], Chen et.al. introduced a compression matrix
to extend the receive array aperture and finally achieved DOA
estimation by using compressive one-bit measurements.

Actually, the result of one-bit quantization is producing
two types of samples such as+1 and−1. For a linear expres-
sion of one-bit measurement vector model q = sign(8t +
e) [18], we can obtain DOAs by the indexes of the non-zero
entries of the t, where q, 8, t and e represent the one-bit
measurement vector, the expended array manifold matrix,
the expended signal vector and the noise vector respectively.
Just change our perspective, each row of the dictionarymatrix
8 can be regarded as a sample input, the sparse vector t
can be seen as the weight vector and each quantized data
q can be regarded as the label to be classified. Then, this
sparse reconstruction problem is equivalent to a process of
training parameters for a linear classification problem. Once
we choose a suitable classification algorithm, the DOA esti-
mation problem will be well solved. Whereas, the algorithm
proposed in [18] suffers from massive antennas to achieve
high accuracy.

In this paper, we propose a novel classification-based one-
bit DOA estimation framework for sparse array, which com-
bines the advantages of one-bit quantization and sparse array
together. The algorithm takes an arbitrary sparse array as the
receiver, then the degrees of freedom (DOFs) is expected to
get increased by exploiting the auto-correlation information.
Therefore, the number of the physical antennas can be signifi-
cantly reduced. Then, by considering the one-bit observations
as labels to be classified and applying classification algorithm
such as logistic regression algorithm(LR) to solve the linear
classifier q = sign(8t + e), in this way, we can get a rough
estimation of DOAs. Due to the unavoidable picket fence
effect introduced in the proposed structure, an iterative grid
refinement procedure is presented to achieve more accurate
DOA estimation and further reduce the number of antennas.

The main contributions of this paper are threefold as
follows. First, we propose a unified framework based on
classification for DOA estimation of incoherent signals
of sparse array, any classification algorithm is available

for the framework. Second, we have reduced physical
complexity without accuracy loss. By exploiting the
auto-correlation information of the observations from sparse
arrays, the degrees of freedom(DOF) is highly increased com-
pared to ULAs, and the robustness to the deleterious effects of
one-bit quantization is enhanced. Moreover, the iterative grid
refinement procedure proposed is under a low dimensional
convex optimization process, thus, the estimation accuracy is
further improved while reducing computational complexity
and dependence on array size. Third, we also discuss the
Cramer-Rao bound (CRB) for the algorithm, which provides
some insights into the unbiasedness of DOA estimation.
And a detailed analysis of complexity of the algorithm is
conducted in Section IV.

The rest of this paper is organized as follows. Section II
introduce classification-based DOA estimation unified
framework. Section III study logistic regression algorithm
in DOA estimation and then develop a classification-based
one-bit off-grid DOA estimation algorithm for sparse array.
Section IV presents the experimental results. Section V gives
the conclusions.

The notations used in this paper are as follows. We use
the lower-case letter (e.g., a), lower-case bold letter (e.g.,
a), upper-case bold letter (e.g., A) and upper-case letters in
blackboard boldface (e.g.,A) to represent the scalars, vectors,
matrices and sets respectively. The superscripts−1, T and H
denote the inverse, the transpose and the complex conjugate
transpose of a matrix respectively. In addition, we use vec (·),
sign (·) and E (·) to represent the vectorization, one-bit quan-
tization and expectation operations. We also use < (A) and
= (A) to represent the real and imaginary parts of matrix
A. The notation ⊗ and � represent the Kronecker product
and Khatri-Rao product (column-wise Kronecker product).
For instance, the Khatri-Rao product between two matrices
M = [m1,m2, . . . ,ma] andN = [n1,n2, . . . ,na] is given as
M�N = [m1⊗n1, . . . ,ma⊗na]. Moreover, tr (A) denotes
the trace of matrix A, I denotes the identity matrix. j =

√
−1

is the unit imaginary.

II. PROBLEM FORMULATION OF ONE-BIT DOA
ESTIMATION
Consider K uncorrelated far-field narrowband signals with
the directions of θ = {θ1, θ2, . . . , θK } impinging onto an
M -element sparse array with locations {d1d, d2d, . . . , dMd},
where d is half of the wavelength λ and S = {d1, d2, . . . , dM }
is an integer set indicating the physical antenna positions.
Without loss of generality, we set d1 = 0. Then, the received
signal vector under the l-th observation snapshot can be
expressed as

xS = [aS(θ1), aS(θ2), . . . , aS(θK )]sl + nl = ASsl + nl (1)

where aS(θk ) =
[
ej2πd1θk , . . . , ej2πdM θk

]T
is the steering

vector of the k−th incident signal and θk = (d/λ) sin θk
represents the normalized DOA of the k-th incident signal
with k = 1, 2, . . . ,K , AS denotes the manifold matrix in

204892 VOLUME 8, 2020



Y. Chen et al.: Classification-Based One-Bit DOA Estimation for Sparse Arrays

terms of S, sl ∈ CK denotes the complex amplitude vector of
the sources with power {σ12, σ22, . . . , σK 2

}. In addition, nl ∈
CM denotes the uncorrelated Gaussian noise with mean 0 and
variance σn2. The covariance matrix of xS can be expressed
as

RS = E[xSxSH ] =
K∑
i=1

σ 2
i aS(θ i)aS

H (θ i)+ σ 2
n I (2)

where σ 2
i represents the power of the i-th signal. It is noted

that nl is assumed to be uncorrelated at different antennas,
the yielding covariance matrix of nl is thus diagonal and is
described as σ 2

n I ∈ CM×M .
Then we can construct the correlation vector xD on the dif-

ference co-array by vectorizing and combining the duplicate
entries in (2)

xD = vec(RS)

=

K∑
i=1

σ 2
i aD(θ i)+ σ

2
n vec(I)

= JADp+ σ 2
n vec(I)

= [JAD vec(I)][pσ 2
n ]
T (3)

where p = [σ 2
1 , σ

2
2 , .., σ

2
K ], AD =

[
aD(θ1), . . . , aD(θK )

]T
denotes the corresponding manifold matrix of the difference
co-array, aD(θk ) = [ej2πd1θk , . . . , ej2πd|D|θk ] is the steering
vector of the co-array associated with the k-th source, |D|
represents the number of different elements in the difference
set D.
Definition 1 (Difference co-array) [17]: For an array spec-

ified by an integer set S, the difference set D is defined as

D = {n1 − n2 |∀n1, n2 ∈ S } (4)

It is worth noting that in the Definition 1, it allows repe-
tition of its elements. Assume that the set Du consists of the
distinct elements of the difference set D, then the elements in
the difference co-arrayDu directly decides the distinct values
of the cross correlation terms in the covariance matrix of the
observations. Specifically, the relationship between AS and
AD can be expressed as

A∗S � AS = JAD (5)

where the binary matrix J is defined as:
Definition 2 (The binary matrix): The binary matrix J ∈

C|S|2×|D|, and the i-th column of J satisfy

〈J〉:,i = vec (I (i)) , i ∈ D (6)

〈I (i)〉n1,n2 =

{
1, if n1 − n2 = i
0, otherwise

(7)

Then the model for xD form a ULA of higher DOFs, which
executes like a series of the ‘‘virtual sensors’’ (given by Du).
Then we can apply traditional DOA estimation algorithms,
such as SS-MUSIC in [15], [16], to solve DOA estimation
problem in case of more sources than the number of arrays.

In our algorithm, we only use a part of the ‘‘virtual sen-
sors’’ which consists of the non-negative elements of Du.
For instance, if a nested array has N1 + N2 sensors whose
locations is Sne = {1, . . . ,N1, (N1 + 1) ,N2 (N1 + 1)},
the difference co-array Du can be expressed as Du =

{0,±1, . . . ,± (N2 (N1 + 1)− 1)} [15], then the locations of
virtual array in our algorithm can be described as U =

{0, 1, . . . , (N2 (N1 + 1)− 1)}, and the observation is corre-
sponding to xU. More discussion on the performance of
sparse arrays will be conducted in Section IV.

Usually, the observation result of the ‘‘virtual sensors’’
under L snapshots can be expressed as

XU = vec[
1
L

L∑
l=1

xSxSH ] (8)

Note that XU is the high-dimensional single snapshot
data and the steering matrix AD contains a series of sin-
gle frequency complex sinusoid signal, we can construct an
over-complete dictionary F to further express (8) as

XU = FP+ N (9)

where F ∈ CN×N whose (i, k) th element is ej(i−1)(k−1)2π/N ,
P ∈ CN denotes the zero-padded expansion of the original
signal power, N ∈ CN denotes the noisy vector, and N is the
number of the virtual array. Formulation (9) implies that once
we recover the sparse vector P, we can index the spatial angle
and obtain DOAs on grid.

Only reserving the sign information of the measurements,
the data model based on one-bit quantization under the sparse
array can be expressed as

R̂S = csgn(< {XU})+ jcsgn(= {XU}) (10)

where

csgn(x) =

{
1, x > 0
0, x 6 0

(11)

We convert the quantized data model into a real-number
case by constructing several real-number matrices

q =
[
<
{
R̂S
}

=
{
R̂S
} ] 8 =

[
< {F} −= {F}
= {F} < {F}

]
t =

[
< {P}
= {P}

]
e =

[
< {N}
= {N}

]
(12)

where q ∈ {0, 1}2N , 8 ∈ R2N×2N , t ∈ R2N and e ∈ R2N

denote the measurements, the measurement matrix, the signal
power and the noise respectively. Finally, the classification-
based one-bit DOA estimation data model can be expressed
as

q = csgn(8t+ e) (13)
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FIGURE 1. Supervised learning problem.

III. THE DESCRIPTION OF THE PROPOSED METHOD
A. DOA ESTIMATION BASED ON CLASSIFICATION
Classification is a core issue in supervised learning prob-
lem. As shown in Fig.1, classic classification problem
usually involves two processes, namely, learning and
classification. During the learning process, an effective
learning method is used to learn a classifier (Y =

f̂ (X) or P̂ (Y |X )) based on the training set Ttrain ={(
x(1), y(1)

)
,
(
x(2), y(2)

)
, . . . ,

(
x(N ), y(N )

)}
, then the learned

classifier is used to predict and classify the new
samples(x(N+1)) during the classification process. Percep-
tron, as a special classifier, is a two-class linear classification
model. Assume the feature space of the sample is X ∈ RN ,
the output space is Y = {+1,−1}, the mode of a perceptron
can be described as

f (x) = sign (ω · x + b) (14)

where ω ∈ RN and b ∈ R denote the weight and bias
respectively, x ∈ X denotes the feature vector of the sample,
and the symbolic function sign (x) can be described as

sign (x) =

{
+1, x > 0
−1, x < 0

(15)

It can be found that the one-bit DOA estimation data
model (13) and classification model (14) are mathematically
quite similar. Actually, (13) is a linear expression where the
measurement in each array element has been quantized as
+1 or 0. Each quantized data can be regarded as an outcome
from the linear classifier and each array element corresponds
to two training samples containing the real and imaginary
part information of the array measurements. In this way,
by solving the optimal classification coefficient t, that is,
the sparse signal vector t, the source signals location can be
ascertained from the position of the non-zero elements in t,
which also helps keep a basis for the subspace to estimate
what sparse combinations of columns of F form it. Just take
LR algorithm in machine learning as an example to solve this
binary classification problem, which is described in detail as
follows.
Prior : Classic logistic regression model is usually defined

as the following conditional probability distribution

P(Y = 0|x) =
1

1+ eω·x+b
(16)

P(Y = 1|x) =
eω·x+b

1+ eω·x+b
(17)

where x and b denote the parameter of input sample and
bias, ω denotes weighting factor. For a given training set
Ttrain =

{(
x(1), y(1)

)
,
(
x(2), y(2)

)
, . . . ,

(
x(N ), y(N )

)}
, LR is

actually a parameter estimation algorithm based on the max-
imum likelihood criterion. Assume P(Y = 1|x) = π (x),
P(Y = 0|x) = 1− π (x), the likelihood function of the input
samples can be expressed as

N∏
i=1

[
π
(
x(i)
)]y(i)[

1− π
(
x(i)
)]1−y(i)

(18)

By taking the logarithm of (18), we can get the corresponding
log-likelihood function

L(ω)

=

N∑
i=1

[
y(i) logπ

(
x(i)
)
+

(
1− y(i)

)
log

(
1− π

(
x(i)
))]

=

N∑
i=1

[
y(i) log

π
(
x(i)
)

1− π
(
x(i)
) + log

(
1− π

(
x(i)
))]

=

N∑
i=1

[
y(i)
(
ω · x(i) + b

)
− log

(
1+ exp

(
ω · x(i) + b

))]
(19)

We also introduce the concept of loss function in machine
learning, just take a negative sign for (19), that is, Lloss(ω) =
N∑
i=1

[
log

(
1+ exp

(
ω · x(i) + b

))
− y(i)

(
ω · x(i) + b

)]
is used

to represent the loss in the training process, then maximizing
L(ω) is equivalent to minimizing Lloss(ω), i.e.

min
ω,b

N∑
i=1

[
log

(
1+ exp

(
ω · x(i) + b

))
− y(i)

(
ω · x(i) + b

)]
(20)

which is a convex optimization problem so that we can update
the weight coefficient by gradient descent. The process of
parameters updated can be described as

ωi = ωi − η
∂Lloss (ωi)
∂ωi

(21)

where η represents the step size of each iteration.
Specially, ∂Lloss(ω)

∂ωi
can be calculated as follows.

∂Lloss(ω)
∂ωi

= −

N∑
i=1

[

(
y(i)

1

π
(
x(i)
) − (1− y(i)) 1

1− π
(
x(i)
))

×
∂π

(
x(i)
)

∂ωj
]

= −

N∑
i=1

[

(
y(i)

1

π
(
x(i)
) − (1− y(i)) 1

1− π
(
x(i)
))

×π
(
x(i)
) (

1− π
(
x(i)
)) ∂(b+ ω · x(i))

∂ωj
]
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= −

N∑
i=1

(
y(i)
(
1− π

(
x(i)
))
−

(
1− y(i)

)
π
(
x(i)
))
x(i)j

= −

N∑
i=1

(
y(i) − π

(
x(i)
))
x(i)j

Therefore, (21) can be rewritten as

ωi← ωi + η
∑
j

x(i)j
(
y(j) − P

(
y(j) = 1|xj

))
(22)

In our algorithm, we first construct a training set T based
on the system model in Section II, which can be described as

T =
{(
ϕ(1), q(1)

)
,
(
ϕ(2), q(2)

)
, . . . ,

(
ϕ(i), q(i)

)}
(23)

where i = 1, . . . , 2N , ϕ(i) denotes the i-th sample from the
i-th row vector in 8, q(i) ∈ {1, 0} denotes the classification
label of the i-th sample. It is worth noting that each row
vector of 8 is regarded as a sample, and the corresponding
q is regarded as the label. Thus, the size of matrix 8 and
q determines the size of the training set. Since the received
complex-valued data of N virtual antennas are divided into
real and imaginary parts, the size of8 and q are 2N×2N and
2N ×1 respectively, and the total number of training samples
is 2N .

Just input the training set T into a basic LR model, and
then we can get the following optimization problem to train
the parameter t

min
t,t0

2N∑
i=1

[
log

(
1+ exp

(
t0 + t · ϕ(i)

))
− q(i)

(
t0 + t · ϕ(i)

)]
(24)

where t0 is the initial classification coefficient vector, ϕ(i)

is the input of the i-th sample and t is the classification
coefficient to be optimized. The process of the coefficient
updated by gradient descent method can be described as

ti← ti + η
∑
j

8ji

(
q(j) − P

(
q(j) = 1|8j

))
(25)

where ti denotes the i-th component of the coefficient vector
t, η denotes the step size of each optimization update, 8ji
denotes the element in the j-th row and i-th column of8, q(j)

denotes the j-th measurement and 8j denotes the j-th row of
8 (also the j-th training sample).
In logistic regression, training is completed when the loss

function is less than a certain threshold. Then we can get
an optimal classification coefficient vector t based on the
training set T and can easily index the DOAs on grid by the
position of K non-zero elements of the sparse vector t. The
power spectrum of the recovered signal can be described as

‖P‖i =
√
t2i + t

2
i+N , i = 1, 2, . . . ,N (26)

The largest K elements in ‖P‖ correspond to the K DOAs on
grid, which can be described as

θ̂i = arcsin(2ni
/
N ), i = 1, . . . ,K (27)

where ni denotes the subscript value corresponding to the i-th
largest component in ‖P‖.

It is worth pointing out that in this paper, the machine
learning algorithm we use does not act like traditional super-
vised learning algorithms including training stage and testing
stage. As we have explained in the introduction, the one-bit
quantized DOA estimation problem based on CS framework
can be regarded as the coefficient solving process of a binary
classification problem. Once the training process is over,
a set of classification coefficients can be obtained, which is a
sparse vector, and we can index the coarse position of DOAs
through its sparse position. On the other hand, the scenario
we consider in is wireless communication whose DOA range
is between 0 degrees and 90 degrees. Equation (27) implies
that the grid allocation is limited by the number of virtual
antenna elements essentially. For an array in which the ele-
ment spacing is half wavelength and the number of elements
is N , the number of meshing angle is N

2 in the range between
0 degrees and 90 degrees, thus, the number of virtual antennas
determines the resolution for the dataset.

B. MULTI-RESOLUTION GRID REFINEMENT
It is worth noting that (27) implements a rough estimate of
DOAs, in other words, the estimated DOAs lie on the prede-
finedN grid. Actually, the application of LR algorithm in this
paper plays a pivotal role in dimensionality reduction, which
helps obtain the main component of the incident signals and
determine which column vectors in F should be retained.
Instead of having a universally sophisticated grid, we make
the grid fine only around the regions where the sources exist,
that is, we perform a more complete division around the
column vector of F retained previously. Assume that we have
only one source signal in the re-divided area, then the more
accurate spatial angles can be obtained through the following
optimization problem, which can be constructed as

min ‖P‖1
s.t. ‖XU −9P‖2 6 β2 (28)

where XU ∈ CN here is unquantized measurements of the
virtual array, 9 is partial steering matrix around the coarse
position. We introduce a penalty factor λ to eliminate the
inequality constraint in (28), which can be described as

min ‖XU −9P‖2 + λ‖P‖1 (29)

where ‖P‖1 =
k∑

i=1

√
<(P)2 + =(P)2, and the optimization

result has a more ideal sparsity with the increase of λ, noise
effect occupies a very small percentage with low λ. The
former in (29) reflects the degree of mismatch while the latter
restricts the requirement for sparsity. We adopt second order
core programming to convert (29) as

min p+ λq

s.t. ‖XU −9P‖2 6 p

‖P‖1 6 q (30)
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Algorithm 1 Logistic Regression Algorithm for DOA Esti-
mation
Input: input training set T
Output: Power spectrum ‖̂P‖ and DOAs θ̂ .
1: Generate a training set T by (8), (10), (11) and (12);
2: Initialize the classification coefficient vector t = 02N

and the optimize step size η;Set the number of iterations
Touter ;

3: for i = 1, . . . ,Touter do
4: Update the coefficient vector ti by (25);
5: end for
6: Compute the power spectrum ‖P‖ by (26), the coarse

DOAs θ (0) = [θ1(0), θ2(0), . . . , θK (0)] by (27) and set
r = 0;

7: Form the refined grids ψ (r)
θ around the locations of the

coarse DOAs. Use the optimization (30) to obtain more
accurate source locations θ (r) and set r = r + 1;

8: Back to Step 7. until the grid is fine enough or iteration
reaches a certain number of times;

9: return Accurate power spectrum ‖̂P‖ and DOAs θ̂ .

FIGURE 2. Process of grid refinement.

As depicted in Fig.2, we can get the spatial angles closer to
its real location through continuous iteration and refinement.
So far, the proposed algorithm is summarized as follows.

C. THE CRB EXPRESSION OF THE PROPOSED METHOD
In this subsection, we mainly discuss the Cramer-Rao
bound (CRB) for the proposedmethod based on sparse arrays,
which offers a lower bound on the variances of unbiased
estimates of parameters. For a random vector x ∈ Rn with a
complex normal distribution with mean zero and covariance
matrix C ∈ Rn×n, the probability density function(pdf) can
be described as

p(x;α) =
1

(2π )
n
2
√
det (C (α))

exp
(
−
1
2
xTC(α)−1x

)
(31)

where α is a real-valued parameter vector. For dimensional
random variables X = [x1,x2, . . . ,xm], the optimal asymp-
totic unbiased estimator α̂ (X) is obtained by maximizing the
likelihood [19]

α̂(X) = argmax ln p(X; θ )

= argmax
m∑
i=1

lnp (xi; θ) (32)

Since the maximum likelihood estimator is consistent and
effective, its asymptotic performance can be analytically
characterized by the CRB, which is defined as the inverse
matrix of Fisher information matrix (FIM) [20]

CRB (α) = FIM−1 (α) (33)

where FIM is guaranteed to be positive semidefinite, and the
(p, l) th entry of the FIM can be expressed as [20]

FIM(α)p,` = tr
(
C−1(α)

∂C(α)
∂αp

C−1(α)
∂C(α)
∂α`

)
(34)

For the system model described in section II, we define

α =
[
θ̄1, . . . , θ̄K , p1, . . . , pK , pn

]T (35)

Under the assumptions in Section II, each snapshot of the
signal vector xS follows the Gaussian distribution with mean
zero and covariance matrix RS. For L snapshots of the obser-
vation, we have the following complex Gaussian distribution[
xS(1)T , xS(2)T , . . . , xS(L)T

]T
∼ CN (0, IL ⊗ RS) (36)

By substituting (36) into (34), the (p, l) th entry of FIM under
L snapshots can be further expressed as

[FIM(α)]p,l = L tr
(
R−1S

∂RS
∂αp

R−1S
∂RS
∂αl

)
(37)

Since tr (XY) =
(
vec(X)H

)H
vec (Y) and vec (XYZ) =(

ZT ⊗ X
)
vec (Y), (37) can be further simplified as

FIM(α)p,`

= LvecH
(
∂RS
∂αp

)(
R−TS ⊗ R−1S

)
vec

(
∂RS
∂α`

)
= L

[(
RT
S ⊗ RS

)− 1
2 ∂rS
∂αp

]H [(
RT
S ⊗ RS

)− 1
2 ∂rS
∂αl

]
(38)

where rS = vec(RS). We are interested in the information
of DOAs in the parameter vector, then α can be divided into
α =

[
θ̄1, . . . , θ̄K |p1, . . . , pK , pn

]T . Hence, (38) is finally
expressed as

FIM(α) = L
[
G 1

]H [G 1
]

(39)

where G and 1 are defined as

G =
(
RT
S ⊗ RS

)− 1
2
[
∂rS
∂θ̄1

, . . . ,
∂rS
∂θ̄K

]

1 =
(
RT
S ⊗ RS

)− 1
2
[
∂rS
∂p1

, . . . ,
∂rS
∂pK

,
∂rS
∂pn

] (40)

If FIM(α) is invertible, the CRB for the normalized DOAs
θ = [θ̄1, . . . , θ̄K ]T can be given as the inverse of the Schur
complement of the block 1H1 of FIM(α) [21]

CRB(θ̄ ) =
1
L

(
GH5⊥1G

)−1
(41)

where 5⊥1 = I − 1
(
1H1

)−1
1H denotes the orthogonal

projection onto the null space of 1H .
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Specifically, the proposed classification-based DOA esti-
mation algorithm performs one-bit quantization on some
items in RS, i.e., the elements at the positive position in
the co-array is quantized as +1 or 0. The effect of this
operation is that the terms in the lower triangle of RS are
quantized as +1 or 0 by (11), accordingly, rS also contains
quantized elements. Since RS with no element quantized is
an Hermite matrix with conjugate symmetry, the quantization
of the lower triangle of RS will not affect its rank. From the
previous discussion, the existence of the CRB is equivalent to
the nonsigularity of FIM(α). To further discuss the existence
of CRB, we define a augmented coarray manifold(ACM)
matrix VD
Definition 3 (ACM matrix) [17]: The augmented co-array

manifold (ACM) matrix is defined as

VD = [Jdiag (D)AD WD] (42)

where WD = [JAD vec(I)], AD =
[
aD(θ1), . . . , aD(θK )

]T
,

D and J are defined in Definition 1 and Definition 2 respec-
tively.

If and only if VD has full column rank, FIM(α) is non-
singular [21], then the CRB for the normalized DOAs θ =[
θ1, θ2, . . . , θK

]
can be expressed as

CRB(θ̄ ) =
1

4π2L

(
GH

0 5
⊥

M0WD
G0

)−1
(43)

where

G0 = M0J diag(D)AD diag ([p1, . . . , pK ]) (44)

M0 =

(
R̃
T
S ⊗ R̃S

)− 1
2

(45)

WD = [JAD vec(I)] (46)

RS = ASRssAH
S + pnI (47)

AD =
[
aD(θ1), aD(θ2), . . . , aD(θK )

]T
(48)

Here, pk is the power of the k-th source, k = 1, 2, . . . ,K ,
pn = σn2 is the power of noise, R̃S is the covariance matrix
whose elements in the lower triangle are quantized as +1 or
0 by(11).

IV. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed
algorithm from various perspectives including themean abso-
lute error (MAE) and measurement success rate (MSR). SNR
is defined in terms of the signal power ps and noise power pn
as

SNR = 10 log
(
ps
pn

)
(49)

All sources are assumed to have the same power. In addition,
the MAE and MSR of the estimated DOAs are defined as

MAEθ =
1
RK

R∑
r=1

K∑
k=1

∣∣∣θk − θ̃ (r)k

∣∣∣ (50)

MSRθi =
mk
R

(51)

respectively, where R is the number of Monte Carlo trials and
θ̃
(i)
k is the estimated angle of the k-th source in the r-th trial.
mk denotes the number of successful trails of the k-th source
in R Monte Carlo trials, where mk is effective if and only if∣∣∣θk − θ̃k ∣∣∣ 6 0.2◦.

It is worth noting that the proposed algorithm based on CS
adopts classification algorithm in machine learning to solve
the sparse recovery problem of DOA. Hence, when com-
paring the performance of the proposed algorithm and other
algorithms, we choose the classic CS-based DOA estimation
algorithms such as OMP [5], SBL [6]. On the other hand,
an over-complete dictionary is constructed in our algorithm,
which implies the angle division. Thus, L1-SVD [3] is also
taken into account due to the similar operation.

A. NUMBER OF DOFs
In this subsection, we mainly discuss two types of sparse
arrays, coprime array [16] and nested array [15]. A coprime
array is comprised of two ULAs with M and N antenna
elements, whileM and N (N > M without loss of generality)
are coprime, as shown in Fig. 3(b). The total number of a
coprime array is (N + 2M − 1) whose locations is given
by Scoprime = {0,M , . . . ., (N − 1)M ,N , . . . , (2M − 1)N }.
Similarly, a two-level nested array is also a series of two
ULAs with locations Snested =

{
1, . . . ,N1, (N1 + 1) , . . . ,

N2 (N1 + 1)
}
, as depicted in Fig. 3(c), the total number of

a nested array is (N1 + N2). Accordingly, the locations of
the virtual array of the coprime array and nested array can
be excessed as Dcoprime = {0,±1, . . . .,± (MN +M − 1)}
and Dnested = {0,±d, . . . ,± (N2 (N1 + 1)− 1)} respec-
tively, where Dcoprime and Dnested are given by Definition 1
respectively. Ucoprime = {0, 1, . . . ., (MN +M − 1)} and
Unested = {0, 1, . . . , (N2 (N1 + 1)− 1)} are the non-negative
part of Dcoprime and Dnested respectively. We select a certain
number of antennas to observe the expansion of sparse arrays
which is actually caused by the second-order statistics of the
measurements, as shown in Fig.4. It can be seen that a nested
array will expand more DOFs under the same number of
physical antennas, also, the co-array is a continuous ULA.
However, there are some holes of the co-array of a coprime
array. Just take nested arrays as an example in subsequent
simulations.

Next, we consider the effect of the number of antennas on
the MSR. We select θ from the range 10◦ ∼ 60◦ randomly
with 500 independent Monte Carlo trails under each number
of antennas. As shown in Fig.5, the process of grid refinement
can highly increase the MSR of the estimated DOAs and
further reduce the dependence on the array size. Especially,
the MSR with grid refinement is up to 100% when N > 16,
while the rough estimation only comes to 50%.

B. ESTIMATION ACCURACY
In this subsection, we first examine the DOA estimation
accuracy between the proposed algorithm and other methods,
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FIGURE 3. The array configurations for (a) ULA with 10 sensors, (b) a
coprime array with M = 3 and N = 5, and (c) a nested array with
N1 = N2 = 5. Here red squares denote physical antennas, white squares
represent extended virtual antennas, × denotes hole of the co-array with
no physical or virtual antennas.

FIGURE 4. The number of virtual antennas versus the number of physical
antennas.The array configurations for a coprime array with
M = [3 5 5 5 5 5 5 7 7 11 11 13] and
N = [3 3 7 11 13 17 19 17 19 17 19 19], and a nested array with
N1 = N2 = [4 6 8 10 11 13 14 15 16 19 20 22].

including MUSIC [1], OMP [5], SBL [6] and L1-SVD [3].
Two configurations are taken into account, namely, the pro-
posed algorithm with 19 antennas, other methods with
100 antennas and both the proposed algorithm and other
methods with 19 antennas. For the proposedmethod, 19 phys-
ical antennas can expend 100 virtual antennas. Only one
source is considered with the direction 47.555◦ and 10 snap-
shots, SNR is set from −5 to 4 dB and 500 independent
Monte Carlo trails are conducted to calculate the MAE.
Then the MAE of the two configurations versus SNR are

FIGURE 5. The MSR versus the number of attennas. SNR is 0dB and the
number of snapshots is 128.

FIGURE 6. The MAE versus SNR. The proposed algorithm is equipped with
19 antennas, other methods are equipped with 100 antennas and the
number of snapshots is 10.

plotted in Fig. 6 and Fig. 7. It can be observed from
Fig.6 that under the first configuration, the proposed method
can achieve lower MAE than SBL [6] when SNR 6 −2dB
and lower than MUSIC [1], OMP [5] and L1-SVD [3] when
SNR > 2dB. Interestingly, the proposed method outper-
forms other methods mentioned in this paper on the estimate
accuracy when the numbers of physical antennas are the
same.

Then we consider the MSR and MAE versus different
snapshots. First, three configurations are taken into account,
one source with the direction of 47.5◦, two sources with the
direction of 47.5◦, 32.4◦ and three sources with the direction
of 47.5◦, 32.4◦, 10.2◦. The number of snapshots is set from
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FIGURE 7. The MAE versus SNR. Both the proposed algorithm and other
methods are equipped with 19 antennas, and the number of snapshots
is 10.

FIGURE 8. MSR versus different snapshots. SNR is set 0dB and the
number of antennas is 30.

1 to 64 and 500 independent Monte Carlo trails are conducted
to calculate the MSR. The result of MSR versus different
snapshots is plotted in Fig.8. It is clear that the number of
snapshots is needed to be guaranteed for extending effective
measurements of virtual antennas. Next, one source is con-
sidered with the direction 32.485◦, 19-antenna for the pro-
posed method and 100-antenna for other methods are given
to evaluate the estimation accuracy. The number of snapshots
is set from 1 to 11 and 500 independent Monte Carlo trails
are conducted to calculate the MAE. As depicted in Fig.9,
the estimate accuracy of the proposed method is second
only to L1-SVD under one snapshot, meanwhile, the pro-
posed method performs better with the increasement of
snapshots.

FIGURE 9. MAE versus different snapshots. The proposed algorithm is
equipped with 19 antennas, other methods are equipped with
100 antennas and SNR is 0dB.

C. PREDICTION OF RESOLVABILITY
In this section, we mainly explore the estimated perfor-
mance between the proposed algorithm and L1-SVD algo-
rithm when the incident signals are quite close to each other.
The simulation configurations are set as follows. Suppose that
the direction of arrival of the incident signals are from 14◦,
14.5◦, 16◦ and 17◦. SNR is set to 0dB and 256 snapshots are
taken into account. For the proposed method, 20 antennas-
nested array and 30 antennas-nested array are considered
separately, whose simulation results are shown in Fig. 10(a)
and Fig. 10(b) respectively. For L1-SVD algorithm, we adopt
30 antennas-ULA array and 100 antennas-ULA array sep-
arately, whose simulation results are shown in Fig. 10(c)
and Fig. 10(d) respectively. As depicted in Fig.10, when the
incident signals are close to each other (i.e, the angle interval
is 0.5◦ or 1◦), the proposedmethod can distinguish them fairly
accurately with fewer physical antennas comparing with L1-
SVD algorithm (L1-SVD algorithm even failed when the
number of antennas is 30). It is noting that the initial angle
grid allocation is essentially limited by the number of virtual
array. For an extend virtual array which has M virtual anten-
nas, the number ofmeshing angle is M2 , whereM is increasing
fast with the number of physical antennas. Thus, more phys-
ical antennas means more meshing grids, and it can be found
that the proposed method has better resolution performance
for extremely close two signals with the increasing number
of physical antennas.

D. ANALYSIS ON THE COMPLEXITY
In some applications such as massive MIMO communi-
cations, a large array is usually equipped and complexity
reduction is always of great significance. To deal with this
challenge, we take two effective measures in the proposed
algorithm, the sparse arrays and one-bit quantization. The
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FIGURE 10. The prediction of resolvability between the proposed method
and L1-SVD algorithm.The direction of the incident signals are 14◦, 14.5◦,
16◦, 17◦.

TABLE 1. Computation time.

former has the advantage that it greatly reduces the physical
antennas of the system and meanwhile expand the measure-
ments with virtual array. Since the subsequent operations
of one-bit quantization only retains the symbol information
of the extended measurements, it will be more efficient in
digital signal processing. In addition, the logistic regression
algorithm applied in our algorithm actually played a role of
finding themain components of the signals, so the subsequent
grid refinement is working with a convex optimization prob-
lem of low-dimensional data.

To further compare the computational complexity of
the proposed algorithm with other methods including SS-
MUSIC [15], OMP [5], SBL [6] and L1-SVD [3], the com-
putation time calculated by the MATLAB profiler under the
environment of Intel CPU I5-6300HQ with the processor
frequency 2.30 GHz and 8GBRAM is listed in Table 1. In the
simulation, SS-MUSIC and the proposed method is equipped
with 19 physical antennas, i.e., 100 virtual antennas, other
methods are equipped with 100 physical antennas. SNR is
set to 0dB and three configurations are taken into account,
one source with direction of 10◦, two sources with direction
of 10◦, 30◦ and three sources with direction of 10◦, 30◦, 50◦.
It is clear that the running time of the proposed algorithm is
roughly the same as that of SS-MUSIC [15] under the same
conditions, whose running time are significantly less than that
of SBL [6] and L1-SVD [3]. Although the running time of
the proposed algorithm is longer than that of OMP, it can be
seen from Fig.7 that the estimation accuracy of the proposed
algorithm is higher than that of OMP, and it can be seen
from Fig.8 that the performance of the proposed algorithm
is also better at low snapshots. Thus, the increased running
time compared with OMP is acceptable.

V. CONCLUSION
In this paper, we developed a generalized framework of
sparse array for classification-based one-bit DOA estima-
tion. DOA estimation is divided into two steps including
finding the main components of the signals with classifi-
cation algorithms, and then a valid grid refinement process
is adopted to alleviate the grid effect. We also derive the
Cramer-Rao bound for the algorithm under the proposed
structure. By analysing the number of DOFs and estimation
accuracy, it is revealed that given the same number of physical
antennas, the proposed method outperforms the traditional
CS-based DOA estimation algorithm. The superiority of the
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proposed algorithm is that both the hardware complexity and
computational complexity are lower with the application of
sparse arrays and one-bit quantization. It is worth noting that
the classification algorithm in the proposed method plays a
role in dimensionality reduction and achieves rough estima-
tion of DOAs.
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