IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 21, 2020, accepted November 4, 2020, date of publication November 9, 2020, date of current version November 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3036650

Deep Neural Networks Based Key
Concealment Scheme

TAEHYUK KIM 12, TAEK YOUNG YOUN 3, (Member, IEEE),
AND DOOHO CHOI"“'2, (Member, IEEE)

! Department of Information Security Engineering, University of Science and Technology (UST), Daejeon 34113, South Korea
2Cyber Security Research Division, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, South Korea
3College of Software Convergence, Dankook University, Gyeonggi-do 16890, South Korea

Corresponding author: Dooho Choi (dhchoi@etri.re.kr)
This work was supported by Institute for Information & communications Technology Planning & Evaluation (IITP) grant funded by the

Korea government, Ministry of Science and ICT (MSIT) (<QICrypton>, No. 2019-0-00033, Study on Quantum Security Evaluation of
Cryptography based on Computational Quantum Complexity).

ABSTRACT To keep the Internet-of-things (IoT) environment secure, employing a cryptographic function
to various IoT devices has become vital. An important factor to consider is how to store a cryptographic key
(or passwords) securely. A popular method is to store the key in the storage protected by some hardware-
based security functions. This paper presents a novel concept to conceal cryptographic keys into deep neural
networks (DNNs), named DNNs-based key concealment scheme. In this scheme, a key can be concealed into
a proper deep neural network model which is trained with secret input data. We demonstrate the practical
applicability of our concept by presenting an instance and a use-case scenario of the DNNs-based key
concealment scheme and show its correctness. To prove its robustness, two fundamental security evaluation
methods are proposed for investigating the security of the instantiation. To the best of our knowledge, this is

the first attempt of its kind.

INDEX TERMS Key concealment, deep neural networks, key generation, noisy data.

I. INTRODUCTION
As the market for Internet-of-things (IoT) devices contin-
ues to grow, security issues have attracted much attention.
Cryptographic systems can be used to resolve such issues
within IoT environments. In a cryptographic system, a secure
cryptographic key storage is a critical issue. This is because,
according to Kerckhoffs’s principle, one of the most sig-
nificant principles in modern cryptography, a cryptographic
system should be secure regardless of whether everything
about the system except the key becomes public data. Many
methods can be used to store and use cryptographic keys
securely. One traditional method to store the key is to memo-
rize and recall it whenever required. However, a drawback
of this method is that it is difficult to recall various keys.
Accordingly, assuming that an identical key is employed in
numerous [oT devices, if any one key is compromised, then
all the systems using the key are at risk.

There are two popular ways to be secure cryptographic
keys without relying on the memory of people. One is using a

The associate editor coordinating the review of this manuscript and

approving it for publication was Ilsun You

secure storage, including trusted platform modules (TPM) or
hardware security modules (HSM), to store the cryptographic
keys. The disadvantage of using a hardware-based method
is that it is more expensive than software-based methods.
Therefore, implementing hardware-based modules in low-
cost devices within the IoT environment may be difficult.
Furthermore, there is a risk of losing the embedded secure
storage, which is the same as losing a key. The other method
uses secret information with noise, like biometric data, to reg-
ister and regenerate a key whenever necessary. Representative
methods include fuzzy commitment schemes [1] and fuzzy
extractor [2], [3], which use an error correction code (ECC)
as their chief idea.

Numerous key generation techniques include an ECC as
the main factor and employ strategies analogous to the con-
cept of the fuzzy extractor. Some authors, however, have
proven that it is possible to generate a key dynamically
without an ECC. For example, [4] provides a key generation
technique without using an ECC to bind and release a key
using fingerprints. Because an ECC is not employed, there is
no trade-off in the security performance between the size of
the registered key and the speed at which the key is generate.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

204214

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 8, 2020

https://orcid.org/0000-0003-0296-5351
https://orcid.org/0000-0002-3840-2254
https://orcid.org/0000-0001-5625-4067
https://orcid.org/0000-0002-0604-3445

T. Kim et al.: DNNs Based Key Concealment Scheme

IEEE Access

The authors register a bit of the key to a convertible authentic
fingerprint template (using the cancelable biometric tech-
nique), if a bit of the key is 1. Otherwise, the key bits are
registered to a synthetic template. If the converted cancelable
template of the query fingerprint matches well with the reg-
istered template, then the key generating system generates a
key bit of 1.

In order to extend the proposed design without the use of
an ECC, we ask the following research questions:

« Is it possible to conceal a key within a deep neural

networks (DNNs) using noisy data?

In this paper, we provide a new concept to hide a (crypto-)key
within DNNs, which is called DNN-based key concealment
scheme.

A. OUR CONTRIBUTIONS

Our contribution in this work is threefold: First, we define
a conceptual mechanism of DNNs-based key concealment
scheme to conceal a key within DNNs without any error cor-
rection. The DNNs-based key concealment scheme includes
two main stages as follows:

« Key Concealment

— Feature generation block generates features of
noisy data.

— Key concealment block binds a cryptographic key
to features generated using the above block and
generates neural networks for training the key con-
cealed features.

— Training the above two blocks to conceal the key.
Noisy data collected from IoT devices are used for
positive training, and synthetic data are used for
negative training.

« Key Reproduction

— Reproducing a concealed key from the trained
DNNs with the noisy data collected when the key
is needed.

Second, we give a detailed example using this mecha-
nism to show its feasibility and propose a use-case scenario
applying our DNN-based key concealment scheme in the IoT
environment. In our example of Section III-B, images and
an International Mobile Equipment Identity (IMEI) number
which is a unique number for identifying a device on a mobile
network are employed as the secret input.

Finally, we give the experimental result to show that our
example of the DNNs-based key concealment scheme cor-
rectly reproduce the concealed key and two security evalu-
ation methods are provided for verifying the robustness of
the scheme. In the proposed scheme, the noisy data used in
the key concealment and reproduction stage are secret data
and trained DNNs that have optimized parameters are public
data. Therefore, it is an essential security evaluation that there
is no possibility of key exposure, even if the public data
are analyzed. This kind of leakage can be evaluated by our
security analysis methods. Furthermore, we show an evidence
that the partial key information can be leaked if inappropriate
data are used in the key concealment network for training.

VOLUME 8, 2020

Note that a preliminary version of this paper was pre-
sented at WISA2019 [5]. The main difference in this paper
is that we present a use-case scenario in IoT environments.
Also the results of correctness evaluation are improved by
initializing weight values of feature extraction in a normal
distribution.

B. ORGANIZATION OF THE PAPER

This paper is organized as follows. Section II discusses some
necessary preliminary concepts. Section III defines the novel
approach to conceal a key in DNNs. And, we propose an
example and a use-case scenario to prove the feasibility
of the scheme. Section IV, shows the correctness through
experiments and proposes two fundamental security evalu-
ation tools to confirm the robustness of the instantiation.
Section V describes various open issues regarding this novel
key concealment concept. Finally, Section VI concludes this

paper.

II. PRELIMINARIES

A. CONVOLUTIONAL NEURAL NETWORK

A convolutional neural network (CNN) [6], which is a type
of DNN, is typically used to process multiple layered images.
CNNs involve two stages: feature sampling and classifica-
tion. In the feature sampling stage, particular feature maps
of input data are extracted through convolutional and pool-
ing layers. The convolutional layer executes a convolutional
computation between images and a convolutional kernel set.
The computation generates feature maps of the image by
only activating the highlighted part of the kernel. The fea-
ture maps pass through a rectified linear unit (ReLU) [7].
The ReLU is a kind of activation functions which transform
the summed weighted input into the output defined by the
function. The feature maps from the ReL.U are scaled down
in the pooling layer. The most common pooling method,
max pooling, calculates the maximum value from each chunk
of the feature map. Through the above process, the fea-
ture maps are extracted and used in the classification stage.
This stage includes a fully connected layer and a loss layer.
In the fully connected layer, all neurons are fully connected
to the feature maps. Therefore, the activation of the fully
connected layer is computed by matrix multiplication and
transmitted to the loss layer. In the loss layer, the differ-
ence between the label and the predicted value is com-
puted. The weights are modified so as to minimize the
deviation.

B. LOGISTIC REGRESSION WITH NEURAL NETWORK

Logistic regression [8] is a statistical model in which binomial
dependent variables are modeled using logistic functions.
By using this model, we could measure the probability of
occurrence of a specific event. In machine learning, iterative
training produces an optimized linear equation between inde-

204215

IEEE Access

T. Kim et al.: DNNs Based Key Concealment Scheme

pendent and dependent variables.

wi
%)
h:(x1 Xy e x,-)

Wi
The sigmoid function yields a value y between 0 and 1
using the result of the linear equation 4. The weight values,
w;, are optimized to reduce the difference between the binary
input label and y.

Ill. DNN-BASED KEY CONCEALMENT SCHEME

This section defines the new key concealment mechanism
called the DNNs-based key concealment scheme and vali-
dates its feasibility through a detailed example and a use-case
scenario.

A. PROPOSED METHODOLOGY

We consider noisy data, for example images and fingerprints
that can be used for training a key concealment network and
reproducing the key using the key reproduction network. Let
k be a cryptographic key, which is chosen randomly. The
DNNs-based key concealment scheme includes two stages:
key concealment and key reproduction. They are described
in detail in the following sections.

dy —

Feature Key
Generation Concealment
Block Block
d, — d: noisy data
k ¥ k: key

FIGURE 1. Conceptual diagram of key concealment.

1) KEY CONCEALMENT

In Figure 1, d; is noisy data where 1 < i < n and n is the
number of noisy data types. We use two noisy data—image
data and the IMEI number—; therefore, n is 2. Although the
length of the IMEI number is 60 bits, it is used as noisy data by
adding 4 random bits to it. In Figure 1, the feature generation
block represents neural networks for generating features of
the noisy data dj, ..., d,. In the key concealment block,
a key k is bound to the features generated in the previous
block and concealed in the neural networks by training. The
key concealment network is trained using noisy data d; to
conceal k. Once the training phase is completed, the network
and its parameters are stored for use in the key reproduction
stage.

2) KEY REPRODUCTION

The key reproduction stage reproduces k concealed in the
trained DNNss if the noisy data d; is proper where 1 < i <n
(Figure 2). The feature generation and key reproduction
blocks are the same as those of the trained key concealment
network, except for the step that binds k to features.

204216

dy —

Feature Key
Generation Reproduction [—* k
Block Block

d, ——

FIGURE 2. Conceptual diagram of key reproduction.

In Section III-B, an instantiation of our DNNs-based key
concealment scheme is presented to demonstrate the feasibil-
ity of this novel approach.

B. INSTANTIATION

Here, we present a detailed instance for the DNNs-based
key concealment scheme proposed in Section III-A. Our
instantiation is shown in Figure 3. First, we prepare images
of size 16 x 16 and 64-bit IMEI numbers as noisy data d;
and d;. Note that di and dp are secret information; however,
the DNNs and its parameters are public information.

1) KEY CONCEALMENT

The feature generation block, the first block in the key con-
cealment stage, consists of the feature sampling part of the
CNN and an IMEI binding layer. The key concealment block
consists of a key binding layer and sk logistic regressions
where sk is the key bit size. Let img and imei represent the
image and the IMEI number used as input data in the layers,
respectively.

The feature generation block works as follows:

1) Convolutional layer Let wcoyy be a kernel of size
7 x 7 x sk and a stride of 2. img passes through the
kernel and the ReLU function.

2) Max pooling layer Calculate the maximum value for
each 2 x 2 patch of the output from the convolutional
layer. Then, feature maps {mi}‘l?k | are generated where
the size of m; is 8 x 8.

3) IMEI binding Let m; = [f],....f4], imei = pi pa
...DPe4, and pm; = [pf{, ..., pfg,] be an output of this
layer where 1 < i < sk. Determinep];.’ = (== s
where the sign of f; is changed if the j-th bit of the IMEI
number is 0. Then, modified feature maps {pm,-}f.i |
are generated. The IMEI number imei could be bound
in many different ways; we use simple sign changing,
which showed excellent outcomes in the experiments
described in Section IV-A.

The key concealment block works as follows:

1) Key binding Let {km,'}fi | be an output of this layer.
Compute km; = [(—1)1 k) .pfli, o (=DURD 'pf6i4]
for each 1 < i < sk. This means that the sign of every
component p];i inpm; is changedif k;isOfor 1 <i < sk
and 1 <j < 64.

2) Logistic regression Logistic regressions {LR,'}fk1 are
generated. Each logistic regression has weight values
WER where 1 < i < sk, a sigmoid function, and cross-
entropy. The feature map km; from the key binding

VOLUME 8, 2020

T. Kim et al.: DNNs Based Key Concealment Scheme

IEEE Access

a
@ Feature Generation Block Key Concealment Block
———————————————————— -\ -——————————————————————————————-..\
V/]
‘ y 1! ‘ ; 1
) =" | :) =N rrrrr 1
img | || _ 1
m [| U) e < iSen=
1 1
1! 1X 64 Xsk 1xX1xsk
16 X 16 8% 8 x sk 8x8xsk 11 8x8Xxsk 8% 8 xsk s 1
st 64% 1 X sk y
____________________ - - - ——— = = = - - - - - — - —————
Convolutional Pooling IMEI binding Key binding Resize Logistic
layer layer layer layer regression
(b) : .
Feature Generation Block Key Reproduction Block
———————————————————— \ ———————————————————————x\
v/ 1
1l 1
! —
. | 1
img —
w | U Gn < - &
1 1X 64 Xsk 1x1xskl
16 X 16 8x 8 X sk 8x8xsk 1| Bx8xsk ¢ 1
A 64 x 1 x5k 7
Convolutional Pooling IMEI binding Resize Logistic
layer layer layer regression

FIGURE 3. Graphical description of our instantiation: (a) key concealment and (b) key reproduction.

layer is an input of the logistic regression LR;. Let
h; be an output of km; x WZR and y; be an output of
sigmoid (h;).
Now, we explain the two types of training used to conceal a
key in the DNNs.

« Positive training is the training step with the label 1.
The weight {wiR}fi o in the logistic regression are
changed to reduce the difference between y; and the
label. The data employed for positive training are as
follows:

— Authentic images: images dj collected from IoT
devices (see (a) in Figure 4).

— Authentic IMEI numbers: IMEI numbers d, with
4 random bits added.

— Authentic key: key k.

« negative training is the training step with the label
0 in sk logistic regressions, and it is very important in
the security of our example. If inappropriate data are

FIGURE 4. Images used in (a) positive training and (b) negative training.

VOLUME 8, 2020

employed in this process, a serious security problem
could occur (see Section IV). The data employed for

negative training are as follows:
— Synthetic images: images generated by converting

authentic images to binary representations and then
reversing each bit (see (b) in Figure 4).
— Synthetic IMEI numbers: modified values by
reversing all bits of the authentic IMEI numbers d.
— Synthetic Key: modified value by reversing all bits
of the authentic key.

2) KEY REPRODUCTION

The key reproduction stage includes the feature generation
and key reproduction blocks. The sk logistic regression part
of the key reproduction block predicts a key using features
{pm,-}fi | that are generated from the feature generation block
and optimized weight values wjp in the logistic regression.
Let y; be the result of sigmoid(pm; x wig) for 1 < i < sk.
Then, y; has a value between 0 and 1. We apply a key deter-
mination rule whereby if y; > 0.5, the i-th bit of akey k" is 1;
otherwise, it is 0. Finally, a predicted iikey k' is reproduced.
If a proper image and an IMEI number are produced, k" and
k are the same (see Algorithm 1).

Here, we describe how the concealed key k could be repro-
duced for a proper image and an IMEI number. Note that,
we change the sign of every element pfi of the feature pm;
when the i-th bit of k is 0. Additionally, all the features in
{kmi}‘l?i | are trained using label I in positive training. Assum-
ing that weyy and wj, where 1 < i < sk are optimized,
let pm{ and pm; denote the i-th feature from the feature
generation block that are generated in the key concealment

204217

IEEE Access

T. Kim et al.: DNNs Based Key Concealment Scheme

Algorithm 1 Key Reproduction

input : img’, imei’ = p\ p, ... pg,
output: &’

Restore wenn, WZR
/ * feature generation block */
img. = ConvolutionalLayer(img)
m = MaxPoolingLayer(img.)
for i = 0 to sk do
for j = 0 to 64 do
if pj’. = 0 then
=
else

=5

/ * key reproduction block */
for i = 0 to sk do

hi = pm; X WZR

y; = sigmoid(h;)

if y; > 0.5 then

\ kl.’ =1
else
L ki’ =0
r;turn k'

08

06

04

02

00 4==

N
B (pm] X wig, sigmoid(pm; X wig))

Q (km; X wigp, sigmoid(km; X wip))

FIGURE 5. Outputs of sigmoid function for k; = 0.

and key reproduction stages, respectively, and k; be i-th bit of
the k where 1 < i < sk.

o ki = 0: the sign of every component of pm; is changed
so that km; = —pm{ and sigmoid (km; x w 5) ~ 1. How-
ever, as the step for changing the sign of the feature map
pm; is not included, the absolute values of pm; x wiR
and kmj x wy p are approximately identical, but the signs
are opposite. Accordingly, sigmoid (pm] x w}) is near to
0. Following the key determination rule, the reproduced
bit of the key is O (see Figure 5).

e ki = 1: opposed to 0, the signs of every component
of pml? are not altered; accordingly, km; = pmf and
sigmoid(km; x wjp) ~ 1. In key reproduction, the

204218

08

06

0.4

0.2

00 +==

N A
B (pm! X wig,sigmoid(pm! X wig))

@ (om; x wig, sigmoid(km; X wjp))

FIGURE 6. Outputs of sigmoid function for k; = 1.

absolute values of pm! x wiR and km; x WiR are iden-
tical. Furthermore, their signs are also almost identical.
Therefore, sigmoid(pm; x wiR) is close to 1. Following
the key determination rule, the reproduced bit of the key
is 1 (see Figure 6).

C. USE-CASE SCENARIO

In this section, we show the manner in which the DNNs-
based key concealment scheme could be applied in an IoT
environment. The example IoT environment contains a server
and IoT devices. We assume that the IoT devices used in our
scenario were produced with the server’s public key in the
manufacturing process. The detailed use-case scenario is as
follows:

1) The IoT devices are installed at specific places.

2) The noisy data collected from the IoT devices are
encrypted with the server’s public key and transmitted
to the server.

3) The server decrypts the encrypted noisy data from each
of the IoT devices and trains a key with the two noisy
data. The training method follows the one detailed in
Section III-B 1. After the training is complete, the archi-
tecture and parameters of the DNN are transmitted to
each IoT device.

4) The IoT devices can reproduce a concealed key using
the architecture and parameters of the DNN if valid
noisy data are produced. The reproduction method is
described in Section III-B2.

Although adversaries obtain the architecture and parame-
ters of the DNN in 3), they cannot reproduce the concealed
key with the data. Because we employ the steady training to
prevent an adversary reproduce the concealed key. A detail
explanation is in Sec IV-B.

Remark: In this scenario, the server generates the crypto-
graphic keys for the IoT devices. However, this means that
the server could be the single point of failure. If the server is
attacked, it would put the IoT environment at a serious risk,
because the server generates all the keys used for the IoT
devices. If the learning process does not need to be delegated

VOLUME 8, 2020

T. Kim et al.: DNNs Based Key Concealment Scheme

IEEE Access

to the server, the cryptographic keys are generated by the loT
devices, and therefore the server is not the single point of
failure.

To show that the scenario can be applied to the real
world, we run the key concealment scheme on IoT envi-
ronment and measure the execution time. We only mea-
sure the key reproduction time which are performed on IoT
devices, not a server. Samsung Galaxy S20 is employed for
an IoT device. The execution time of the key reproduction is
0.003, 0.007 and 0.016 seconds for each key size—64, 128,
and 256—.

IV. ANALYSIS

A. CORRECTNESS

In this section, we show that the DNNs-based key conceal-
ment scheme can reliably reproduce a concealed key regard-
less of the key size and does not reproduce a concealed
key when improper data are entered. In this experiment,

we employ the following data:
o proper images: almost equal images as the images

employed for concealing the key k.

« improper images: images dissimilar to the images used
to conceal a key. They are collected randomly in
Pixabay [9].

« proper IMEI numbers: IMEI numbers employed to con-
ceal the key k.

« improper IMEI numbers: a set of arbitrary bit strings.
Each set contains 1,000 data. The DNNs-based key con-

cealment scheme is implemented using TensorFlow [10].
And 3000 images, 3000 IMEI numbers and one key are
used for training the key concealment network. The exper-
imental results are presented in Table 1. We use the false
negative ratio (FNR) and the false positive rate (FPR) for
measuring the correctness. In our experiments, the FNR rep-
resents the probability of not reproducing a concealed key for
proper data. Additionally, the FPR shows the probability of
reproducing a concealed key in the case of improper data.
In case 1 presented in Table 1, the FNR is 0%,, thereby
implying that concealed key is reproduced reliable when
proper images and IMEI numbers are used. Furthermore,
the FNR for each key size—64, 128, and 256—shows a
same value, thereby implying that our instantiation can sta-
bly reproduce the concealed key regardless of the key size.
In cases 2,3 and 4, the FPR is 0%. It shows that our instan-
tiation does not reproduce the concealed key with improper

TABLE 1. Correctness.

input data key size
image IMEI 64 128 256
casel Proper images Proper IMEIL FNR 00 00 00
case2 Proper images Improper IMEI 0.0 0.0 0.0
case3 Improper images Proper IMEI FPR 00 0.0 0.0
case4 Improper images Improper IMEI 00 00 0.0

FNR(%): False Negative Ratio
FPR(%): False Positive Ratio

VOLUME 8, 2020

data. In the experiments of [5], the FNR of case 1 was 0.1%,
0.6%, and 0.2% for 64, 128 and 256 key, respectively. And the
FPR of case 3 was 4.1%, 2%, and 0.8%. For the other cases,
the FPR was all zero. However, we obtain better results by
initializing weight values of feature extraction in a normal
distribution; in [5], the weight values are initialized in a
uniform distribution.

B. ROBUSTNESS
In Section IV-A, we showed that the instantiation conceals
a key and stably reproduces it for appropriate data. Here,
we present two security evaluation methods for verifying
the robustness of the scheme and our experimental results.
As described earlier, the secret and public data of our scheme
are as follows:
« secret data: proper noisy data employed for reproducing
the concealed key during key reproduction.
o public data: key reproduction mechanism including
building blocks of DNNs and its optimized parameters.
The two potential attack mechanisms are proposed for
guessing the concealed key using the public data.
1) An adversary can examine the possibility of key expo-
sure from the parameters in the key reproduction stage.
2) An adversary can use random inputs to gather a con-
siderable amount of results from the key reproduction
stage, and then employ statistical methods to reveal the
information of the concealed key.
Based on the two above-mentioned attack mechanisms,
we present two security evaluation methods.

1) WEIGHTS AGGREGATE EVALUATION
In this analysis, an attacker investigates the optimized param-
eters in the key reproduction stage and tries to identify infor-
mation of the concealed key. In the instantiation described in
Section III-B, the public parameters are weyy and wrg. wenn
is not related to the key; however, the weight of the key con-
cealment block, wyg, is closely related to the concealed key.
Therefore, the adversary can exploit the weight values. Let
WQR = (w’i, wé, e, wé4) be the weight value related to the i-
th key bit reproduction in (b) in Figure 3 for 1 < i < sk. Now,
we simply aggregate all the components (w’i , wé, e wg4) in
S sk

each weight value in {wiR}l:1 , and obtain {weightAgg;};

the result.

T, as

weightAgg) = (wi 4+ wh 4+ ... +wiy)
weightAggy = (W3 + w3 + ...+ w%4)

weightAggg = (wslk + wik +...+ WEIZ)

Finally, the adversary determines the key bits as follows
(also refer to Algorithm 2):
« the i-th bit of the guessed key is determined as 1 if
weightAgg; > 0
« the otherwise, the i-th bit of the guessed key is deter-
mined as 0

204219

IEEE Access

T. Kim et al.: DNNs Based Key Concealment Scheme

Algorithm 2 Weight Values Aggregate Evaluation

input : {wiR}fil
output: An guessed key k'

for i = 0 to sk do
weightAgg = 0
for j = 0 to 64 do
‘ weightAgg = weightAgg + w}

end
if weightAgg > 0 then
‘ ki =1
else
‘ ki =0
end
end
return k’

We evaluate our instantiation with the images and IMEI
numbers to validate its correctness. We compare two cases in
which steady negative training or unsteady negative training
is employed using the Pearson correlation. The factors of a
steady negative training are described in Section III-B. Addi-
tionally, we show that if someone does not use the factors of
steady negative training, the information of the concealed key
can be partially exposed from the analysis of Algorithms 2.
The unsteady negative training data are generated carelessly
as follows:

« Factors of an unsteady negative training

— Authentic images: images identical to the ones
employed for positive training.

— Synthetic IMEI numbers: values reversing each bit
of the authentic IMEI numbers employed for posi-
tive training.

— Authentic key: a key identical to the one employed
for positive training

The Appendix A details the results of the experiment for
the concealed key size 64. In the Table 2, the aggregate of
weights weightAgg;, guessed key bit and Pearson correla-
tion coefficient are presented for both steady and unsteady
negative training. In the case of steady negative training,
the Pearson correlation coefficient is approximately 0.09
between the concealed key and guessed key. It implies that
the guessed key is analogous to the randomly generated bit
strings, and therefore, there is no exposure of information
regarding the concealed key. In the case of unsteady negative
training, however, the Pearson correlation coefficient is 0.84.
This means that the guessed key contains a significant amount
of information regarding the concealed key.

2) STATISTICAL EVALUATION

Fredrikson et al. [11] presented an inversion attack that infers
training data by analyzing the outputs of machine learning
algorithms. Furthermore, they succeeded in regenerating face

204220

images using APIs of facial recognition service. In the instan-
tiation we presented, there is a potential risk that an adversary
can infer the training data including images, IMEI numbers
and a key using the inversion attack. There are two ways of
extracting the concealed key using the inferred data. First,
by inferring the concealed key directly from the key repro-
duction outputs. Second, by inferring the training images
and IMEI numbers using the inversion attack and extracting
the key with key reproduction. In this evaluation, we focus
on the first scenario and regard the second scenario as an
open issue.

Based on [11], in the second evaluation, we assume that
an adversary uses the outputs of the key reproduction stage
to statistically extract a concealed key. The adversary can
randomly select the input data and perform key reproduc-
tion to produce the bit strings. Assuming that they collect
numerous random input data and execute key reproduction
several times, they can construct a set of keys. From this
set, they can count the number of 0 and 1 values at the
i-th bit of the entire key, with zeroNum and oneNum as the
results. Then they can set a key determination rule whereby
if zeroNum > oneNum, the i-th key bit is conjectured to be 0;
otherwise, it is conjectured to be 1. This statistical analysis is
described in algorithm 3.

Algorithm 3 Statistical Evaluation

input : Random images and IMEI numbers
output: An inferred key k'

{zeroNumi}‘l?i] =0
{oneNum,-}fil =0
while i < iteration do
candKey = keyReproduction(img;, imei;)
for i = 0 to sk do
if candKey; = 0 then
| zeroNum; = zeroNum; + 1

else
| oneNum; = oneNum; + 1
end
end
end
for i = 0 to sk do

if zeroNum; > oneNum; then

| ki=0
else
‘ ki’ =1
end
end
return &’

Once again, the instantiation from Section III-B is ana-
lyzed using the images and IMEI numbers to confirm its
correctness. We now compare the two cases using the Pearson
correlation and show a potential risk of key exposure. The

VOLUME 8, 2020

T. Kim et al.: DNNs Based Key Concealment Scheme

IEEE Access

unsteady negative training data are generated carelessly as
follows:
« Factors of an unsteady negative training
— Authentic images: images identical to the ones
employed for positive training.
— Synthetic IMEI numbers: bit strings generated ran-
domly
— Authentic key: a key same as the one employed for
positive training
The Appendix B details the results of the experiment for
the concealed key size 64. In the experiment, we assume that
the attacker has 1000 arbitrary images and IMEI numbers.
In the Table 3, the number of 0 zeroNum, number of 1
oneNum, guessed key bit and Pearson correlation coefficient
are presented for both steady and unsteady negative training.
In steady negative training, the Pearson correlation coeffi-
cient is 0.1 between the concealed key and guessed key. This
implies that the guessed key is analogous to the randomly
generated bit strings, such there is no potential risk of key
exposure. In unsteady negative training, however, the Pearson
correlation coefficient is 0.58. This implies that the guessed
key includes a significant amount of information of the con-
cealed key.

V. OPEN ISSUES
To the best of our knowledge, this is the first attempt
to conceal a cryptographic key within a DNN. The
following unsolved questions remain require further
research.

« Networks architecture issues

— In instantiation, we employ a feature extraction of
CNN for extracting feature maps from images, and
a logistic regression to conceal the key. Notably,
the neural network architecture can be varied
depending on the noisy data used.

— We employ the method of sign flipping to bind a key
with the output. This results in the best performance
in terms of correctness and robustness. However,
other methods could be more efficient in some cases
when instantiation is not used.

« Noisy data issues

— We use images and outputs for concealing a key.
In IoT environments, numerous types of noisy data
could be collected from IoT devices.

— In biometric cryptosystems, noisy data including
fingerprints, faces and irises are used to generate
cryptographic keys. The noisy data can also be
employed in our scheme.

o Security evaluation issues

— There are four attack methods that are gener-
ally used in machine learning (ML); an inversion
attack [11], a poisoning attack [12], an evasion
attack [13] and a model extraction attack [14]. The
inversion attack (the model extraction, respectively)
tries to reverse the input data (extract the model
parameters, respectively) of a machine learning

VOLUME 8, 2020

training model by analyzing a deployed ML model.
The poisoning attack attempts to make misclassifi-
cation on training phase by compromising the data
collection, and the evasion attacker tries to generate
input data of an ML system not to make a correct
decision.

— Firstly, the threat analysis for the model extraction
is not necessary for our key reproduction, since the
involved parameters are public information. Instead
of this attack model, we have introduced the weight
aggregate security analysis to evaluate the key leak-
age possibility in the weight parameters of the key
reproduction.

— In our concept, the input data for training of the
key concealment is the noisy data (image and value
in the example of Section III) and the key to be
concealed. Our statistical security evaluation of
Section IV only focuses on the key leakage possi-
bility by analyzing the output of key reproduction
for random input. Therefore, the threat analysis for
the inversion attack of the noisy data still remain an
open issue.

— Because the training of the key concealment is
securely performed in the given use-case scenario
of Section III, and so it is unclear that the poi-
soning attack model should be considered. There-
fore, the further study to find a poisoning attack
scenario for our key concealment can be an open
issue.

— Lastly, in our key reproduction phase, the evasion
attack means that an attacker attempts to obstruct
the correct key extraction from the key reproduction
by modifying the environment obtaining the noisy
data, even if they don’t know this noisy input data
(this attack is a kind of the denial of service attack).
In our example of Section III, an IoT device uses
the outside image as its noisy input data of our
key concealment and key reproduction. Therefore,
the attacker may obstruct the key reproduction of
the device by physically add small thing within
the place around the device. Concrete attack sce-
nario and experimental proof can be a good further
study.

VI. CONCLUSION

In this paper, we propose a new DNNs-based key con-
cealment scheme for concealing cryptographic keys within
DNNs. To prove the feasibility of this approach, we present an
instantiation and a use-case scenario of the proposed scheme
and validate its correctness. We also present two fundamen-
tal security evaluation tools to check its robustness. Finally,
we state several open issues that require further study. To the
best of our knowledge, this is the first attempt at such an
approach.

204221

IEEE Access

T. Kim et al.: DNNs Based Key Concealment Scheme

APPENDIX A

WEIGHT VALUES AGGREGATE EVALUATION OF UNSTEADY AND STEADY NEGATIVE TRAINING

TABLE 2. A comparison of unsteady and steady negative training in weight aggregate evaluation.

Unsteady training

Steady training

i-th bit weight agg | inferred key concealed key inferred key | weight agg
I 0.56 1 1 0 4.2
2 -0.58 0 0 1 0.72
3 1.12 1 1 1 02
4 0.62 1 1 1 224
5 134 0 0 1 1.24
6 1.01 1 1 0 -1.59
7 0.81 | 1 1 1.52
8 -0.78 0 0 0 3.18
9 0.84 1 1 1 0.33
10 -1.04 0 0 1 0.52
1 0.77 1 1 0 -0.14
12 0.87 0 0 1 0.2
13 137 0 0 1 0.31
14 0.88 0 0 1 0.47
15 -0.43 0 0 0 -0.49
16 1.36 I 1 1 2.15
17 -0.71 0 0 0 -0.13
18 0.37 I 1 1 1.0
19 0.72 1 1 0 -0.54
20 1.24 1 1 0 -0.58
21 0.75 1 1 1 0.76
22 -1.01 0 0 1 1.0
23 0.17 1 0 0 -0.85
24 041 0 0 0 -1.08
25 0.17 0 1 0 -2.12
26 -0.39 0 0 1 0.37
27 -0.46 0 0 0 -1.6
28 0.9 1 1 0 227
29 -1.47 0 0 1 0.5
30 -0.95 0 0 0 1.0
31 0.7 1 1 1 1.77
32 -0.44 0 0 0 -0.02
33 -0.96 0 0 0 -0.91
9 0,69 0 0 1 0.29
35 0.49 1 1 0 -0.62
36 0.64 1 I 0 -0.59
37 0.61 1 I 0 -0.65
38 0.49 1 1 1 0.65
39 0.63 1 1 0 -0.13
41 0.77 1 1 1 1.89
42 0.16 0 1 1 0.41
43 0.89 1 1 1 0.49
44 0.57 1 1 0 -3.43
45 0.23 1 1 1 0.54
46 -0.66 0 0 0 -1.56
47 0.13 0 0 0 -0.54
48 0.37 1 1 0 -0.8
49 1.1 1 1 0 -0.87
50 043 0 0 1 0.03
p 0.86 0 0 1 0.94

204222

VOLUME 8, 2020

T. Kim et al.: DNNs Based Key Concealment Scheme

IEEE Access

APPENDIX B

1-th bit weight agg | inferred key | concealed key | inferred key | weight agg

52 -0.36 0 0 1 0.25
53 0.01 1 0 1 0.4

54 0.96 1 1 1 0.68
55 -0.64 0 0 0 -0.39
56 -0.48 0 0 0 -0.49
57 -0.5 0 0 1 0.69
58 0.68 1 0 0 -1.09
59 0.3 1 1 1 0.76
60 -0.58 0 0 1 2.04
61 0.76 1 1 0 -0.84
62 -1.18 0 0 1 0.16
63 0.98 1 1 0 -3.04
64 -0.42 0 0 1 0.05

Correlation 0.84416 0.09379

STATISTICAL EVALUATION OF UNSTEADY AND STEADY NEGATIVE TRAINING

TABLE 3. A comparison of unsteady and steady negative training in statistical evaluation.

VOLUME 8, 2020

Unsteady training

Steady training

i-th bit 1 0 | inferred key concealed key inferred key | O 1

1 487 | 513 0 1 0 514 | 486
2 510 | 490 1 0 0 505 | 495
3 480 | 520 0 1 0 514 | 486
4 485 | 515 0 1 0 522 | 478
5 496 | 504 0 0 1 495 | 505
6 484 | 516 0 1 0 501 | 499
7 488 | 512 0 1 0 511 | 489
8 503 | 497 1 0 0 500 | 500
9 490 | 510 0 1 1 489 | 511
10 494 | 506 0 0 0 505 | 495
11 500 | 500 0 1 0 500 | 500
12 495 | 505 0 0 1 492 | 508
13 513 | 487 1 0 0 526 | 474
14 524 | 476 1 0 0 500 | 500
15 501 | 499 1 0 0 508 | 492
16 485 | 515 0 1 0 527 | 473
17 520 | 480 1 0 1 499 | 501
18 506 | 494 1 1 0 505 | 495
19 498 | 502 0 1 0 513 | 487
20 490 | 510 0 1 1 486 | 514
21 511 | 489 1 1 1 495 | 505
22 534 | 466 1 0 0 505 | 495
23 531 | 469 1 0 0 502 | 498
24 510 | 490 1 0 0 502 | 498
25 499 | 501 0 1 0 525 | 475
26 521 | 479 1 0 0 506 | 494
27 501 | 499 1 0 1 499 | 501
28 471 | 529 0 1 1 490 | 510
29 501 | 499 1 0 0 516 | 484
30 531 | 469 1 0 1 490 | 510
31 481 | 519 0 1 0 524 | 476
32 504 | 496 1 0 1 499 | 501
33 477 | 523 0 0 0 515 | 485
34 513 | 487 1 0 0 508 | 492
35 512 | 488 1 1 1 468 | 532

204223

IEEE Access

T. Kim et al.: DNNs Based Key Concealment Scheme

i-th bit 1 0 | inferred key | concealed key | inferredkey | 0 1
36 485 | 515 0 1 1 491 | 509
37 504 | 496 1 1 0 536 | 464
38 480 | 520 0 1 1 499 | 501
39 488 | 512 0 1 1 495 | 505
40 481 | 519 0 1 1 487 | 513
41 506 | 494 1 1 0 507 | 493
42 456 | 544 0 1 0 504 | 496
43 511 | 489 1 1 1 499 | 501
44 509 | 491 1 1 0 519 | 481
45 507 | 493 1 1 1 494 | 506
46 506 | 494 1 0 1 490 | 510
47 526 | 474 1 0 1 480 | 520
48 510 | 490 1 1 0 520 | 480
49 499 | 501 0 1 0 512 | 488
50 506 | 494 1 0 1 497 | 503
51 520 | 480 1 0 1 487 | 513
52 521 | 479 1 0 0 518 | 482
53 514 | 486 1 0 1 476 | 524
54 473 | 527 0 1 1 488 | 512
55 495 | 505 0 0 0 507 | 493
56 516 | 484 1 0 0 503 | 497
57 511 | 489 1 0 0 533 | 467
58 528 | 472 1 0 1 481 | 519
59 498 | 502 0 1 1 497 | 503
60 507 | 493 1 0 0 503 | 497
61 489 | 511 0 1 0 506 | 494
62 511 | 489 1 0 1 498 | 502
63 493 | 507 0 1 1 491 | 509
64 508 | 492 1 0 1 496 | 504

Correlation 0.58134 0.10171

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]
[9]

[10]

A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” in Proc. 6th
ACM Conf. Comput. Commun. Secur. CCS, 1999, pp. 28-36.

Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to gen-
erate strong keys from biometrics and other noisy data,” in Advances
in Cryptology—EUROCRYPT) (Lecture Notes in Computer Science),
vol. 3027, 2004, pp. 523-540.

Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, ‘“Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data,” SIAM J.
Comput., vol. 38, no. 1, pp. 97-139, Jan. 2008.

Z. Jin, A. B. J. Teoh, B.-M. Goi, and Y.-H. Tay, “Biometric cryptosys-
tems: A new biometric key binding and its implementation for fingerprint
minutiae-based representation,” Pattern Recognit., vol. 56, pp. 50-62,
Aug. 2016.

K. Taehyuk, Y. Taek-Young, and C. Dooho, “Is it possible to hide my key
into deep neural network,” in Proc. Int. Workshop Inf. Secur. Appl., 2019,
259-272.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097-1105.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltz-
mann machines,” in Proc. 27th Int. Conf. Mach. Learn. ICML, 2010,
pp. 807-814.

P. Harrington, Machine Learning in Action. Greenwich, CT, USA:
Manning, 2012.

H. Braxmeier, S. Steinberger, A. Thiemermann, and O. Foma. (2017).
Pixabay. Accessed: Jan. 8, 2019. [Online]. Available: https://pixabay.com/
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, and M. Kudlur, ““TensorFlow: A system
for large-scale machine learning,” in Proc. 12th USENIX Symp. Operating
Syst. Design Implement. (OSDI), 2016, pp. 265-283.

204224

(11]

[12]

[13]

(14]

M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in Proc.
22nd ACM SIGSAC Conf. Comput. Commun. Secur. - CCS, 2015,
pp. 1322-1333.

B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against sup-
port vector machines,” 2012, arXiv:1206.6389. [Online]. Available:
http://arxiv.org/abs/1206.6389

B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. §rndic, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning at test
time,” in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery Databases,
2013, pp. 387-402.

F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, ““Stealing
machine learning models via prediction apis,” in Proc. 25th USENIX Secur.
Symp. (USENIX) Secur., 2016, pp. 601-618.

TAEHYUK KIM received the B.S. degree from
Incheon University, in 2016. He is currently pursu-
ing the Ph.D. degree with the University of Science
and Technology (UST), South Korea. His current
research interests include security technologies of
IoT, cryptography, and quantum crypto analysis.

VOLUME 8, 2020

T. Kim et al.: DNNs Based Key Concealment Scheme

IEEE Access

TAEK YOUNG YOUN (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees from Korea
University, in 2003, 2005, and 2009, respectively.
From 2010 to 2020, he has worked as a Senior
Researcher with the Electronics and Telecommu-
nications Research Institute (ETRI), South Korea.
From 2016 to 2020, he was an Associate Pro-
fessor with the University of Science and Tech-
nology (UST), South Korea. Since 2020, he has

e been an Assistant Professor with Dankook Uni-
versity, South Korea. His research interests include cryptography, informa-
tion security, authentication, data privacy, and security issues in various
communications.

VOLUME 8, 2020

DOOHO CHOI (Member, IEEE) received the
B.S. degree in mathematics from Sungkyunkwan
University, South Korea, in 1994, and the M.S.
and Ph.D. degrees in mathematics from the Korea
Advanced Institute of Science and Technology
(KAIST), South Korea, in 1996 and 2002, respec-
tively. Since 2002, he has been a Principal
Researcher with Electronics and Telecommunica-
tions Research Institute (ETRI). Since 2015, he has
been a Professor with the University of Science
and Technology (UST). From 2016 to 2017, he was a Visiting Research
Fellow with Queens University Belfast, U.K. His main research interests
include side channel analysis and its countermeasure design, quantum crypto
analysis, and security technologies of IoT.

204225

