
Received October 15, 2020, accepted November 3, 2020, date of publication November 6, 2020, date of current version November 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3036541

An Integrated Approach and Tool Support for the
Design of FPGA-Based Multi-Grain
Reconfigurable Systems
RAFAEL ZAMACOLA , ANDRÉS OTERO , (Member, IEEE),
ALBERTO GARCÍA , AND EDUARDO DE LA TORRE
Centro de Electrónica Industrial, Universidad Politécnica de Madrid, 28006 Madrid, Spain

Corresponding author: Rafael Zamacola (rafael.zamacola@upm.es)

This work was supported in part by the EU Horizon 2020 Research and Innovation Programme under Grant 732105(CERBERO Project),
and in part by the Spanish Ministry of Economy and Competitiveness under Project PLATINO under Grant TEC2017-86722-C4-2-R.

ABSTRACT Dynamic partial reconfiguration technique can be used to modify regions of an FPGA as large
as the whole reconfigurable fabric or as small as individual logic elements. However, FPGA manufacturers
have focused their efforts on designing tools that support the design ofmonolithic reconfigurable accelerators
spanning large regions of the device. Nevertheless, in some applications, it is enough to fine-tune the accel-
erators’ behavior instead of changing them entirely. In these cases, rather than allocating new accelerators,
it is possible to reconfigure individual logic elements of the circuit, such as look-up tables or flip-flops.
There is also an intermediate approach that targets the reconfigurability of accelerators composed of several
tightly interconnected modules, such as overlays. In those architectures, it is possible to reconfigure only
the modules that differ between the existing accelerator versions, thus reducing the reconfigurable footprint
granularity. This article proposes a classification of the approaches above, categorizing them as coarse, fine,
and medium grain, respectively. There are neither commercial nor academic tools supporting multi-grain
reconfiguration to take advantage of each granularity strength on commercial FPGAs. Differently, this
article proposes a tool called IMPRESS, that provides design-time and run-time support for multi-grain
reconfiguration in Xilinx 7 Series FPGAs. Specific criteria are provided to combine the different granularity
levels, trading off the benefits in terms of flexibility and performance, with different design and run-time
costs. Two use cases in the image processing and neural network domains have been implemented to show
how IMPRESS can build multi-grain reconfigurable systems.

INDEX TERMS FPGA, dynamic partial reconfiguration, multi-grain reconfiguration, IMPRESS.

I. INTRODUCTION
Reconfigurable computing has emerged as a paradigm
standing between Application-Specific Integrated Cir-
cuits (ASICs) and software programmable architectures, such
as Central Processing Units (CPUs) and Graphic Processing
Units (GPUs) [1], [2]. ASICs implement a custom circuit
tailored to solve a specific algorithm, while CPUs and GPUs
have a fixed data-path programmable via an instruction
set architecture. Differently, the underlying architecture in
reconfigurable computing consists of a reconfigurable fabric,

The associate editor coordinating the review of this manuscript and

approving it for publication was Li Minn Ang .

typically a Field-Programmable Gate Array (FPGA), where
the parallel sections of the applications can be implemented
as spatially distributed custom data-paths. FPGAs can be
coupled with CPUs where sequential, and control-intensive
application partitions can run more efficiently.

FPGAs may be conceived as dual-layered devices, with
a pool of reconfigurable logic resources distributed as a 2D
array, and a memory that controls the configuration of the
resources in the first layer. This memory holds the configu-
ration bitstream that describes every particular circuit imple-
mentation. For those cases when it is not possible to allocate
all the logic simultaneously in a single FPGA, a cost-effective
alternative to multi-FPGA systems is to swap different

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 202133

https://orcid.org/0000-0003-4984-9219
https://orcid.org/0000-0003-4995-7009
https://orcid.org/0000-0001-5740-1321
https://orcid.org/0000-0001-5697-0573
https://orcid.org/0000-0002-2402-7529


R. Zamacola et al.: Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems

configurations at run-time into the same FPGA. This process
is called dynamic reconfiguration and requires downloading
a new bitstream each time a new configuration is demanded.
Besides enabling logic reuse across applications, dynamic
reconfiguration constitutes a key technology for autonomous
self-adaptive hardware systems [3].

The main obstacle for adopting dynamic reconfiguration
of the entire FPGA is the latency overhead when switch-
ing contexts. Latency can be reduced using Dynamic Partial
Reconfiguration (DPR), which involves reconfiguring a sub-
set of the design instead of the whole FPGA [4]. Compared
to full device reconfiguration, DPR reduces both the recon-
figuration time and the memory footprint used to store partial
configuration files. The reconfigurable footprint granularity
can vary from large regions to individual logic elements of
the FPGA. Footprint granularity is an important property of
a reconfigurable system as it affects overhead, flexibility, and
architectural cost [5]. Given its importance, in this article, we
propose a classification for DPR systems based on the recon-
figurable footprint granularity with three different categories:
coarse, medium, and fine granularities. It must be highlighted
that our proposal differs from the traditional classification
of reconfiguration based on the underlying reconfigurable
architecture’s granularity. Reconfigurable architectures are
classified as coarse grain when they have interconnections
and reconfigurable processing elements (PEs) that implement
word-level operations. In contrast, fine grain architectures
consist of PEs and interconnections configured at bit level [6],
typically using commercial FPGAs. The work presented in
this article addresses FPGA-based reconfigurable systems.

DPR is mostly used to swap monolithic accelerators in
and out of the FPGA. We propose to classify this as coarse
grain reconfiguration as the accelerators usually span large
reconfigurable fabric regions. However, reconfiguration time
and memory footprint overhead can be improved by reducing
the elements’ granularity under reconfiguration. We classify
as fine grain reconfiguration to only changing the configura-
tion of specific logic elements of the FPGA fabric or routing
resources. There is another approach that uses DPR with an
intermediate reconfiguration granularity aiming at reconfig-
uring highly modular and regular hardware accelerators. This
happens in many architectures that can be overlaid on top
of the FPGA fabric, such as systolic arrays [7], wavefront
arrays [8], general-purpose overlays [9], or block-based neu-
ral networks [10], among others. All these architectures are
generated by replicating building modules from a preexist-
ing library. Therefore, it is possible to modify their func-
tionality or performance by replacing just a subset of these
modules. Moreover, some of these architectures can benefit
from scaling its size dynamically, adding or removing some
of the building blocks depending on the changing applica-
tion requirements. We propose to classify this technique as
medium grain reconfiguration.

There are different works in the literature targeting the
design of dynamically reconfigurable systems. However,
to the best of authors’ knowledge, none of them addresses

multiple reconfiguration granularities in a unified manner.
This article provides an integrated vision of multi-grain
reconfiguration, showing how coarse, medium, and fine grain
reconfiguration can be combined in a given design to leverage
each granularity strength. Moreover, we have extended the
IMPRESS design automation tool, initially proposed in [11]
and [12], with support for design and run-time manage-
ment of medium grain and fine grain reconfiguration. With
IMPRESS, it is now possible to combine all the three granu-
larities in the same system.

The main contributions of this article are:

• A classification of DPR based on their reconfiguration
granularity, including a discussion of each category’s
requirements.

• An integrated approach of multi-grain reconfiguration
that provides criteria for combining coarse, medium, and
fine granularity levels.

• An integrated design tool that offers design and
run-time support for multi-grain reconfiguration in Xil-
inx 7 Series FPGAs. Among its capabilities, it stands
out the support to build run-time scalable 2D overlays,
and to manage them using specialized Reconfiguration
Engines (REs).

The rest of the paper is organized as follows. Background
concepts on reconfiguration are explained in section II.
Section III details a classification of DPR based on the gran-
ularity level. Related work found in the literature is described
in Section IV. Section V presents IMPRESS, our proposal
for using multi-grain reconfiguration. Besides including
design-time support, IMPRESS also offers run-time capa-
bilities, described in Section VI, for working with multiple
granularities. A theoretical discussion on integrating mul-
tiple granularities in a system is presented in Section VII.
Section VIII presents experimental results to characterize
the performance of IMPRESS for each granularity level.
Section IX shows two different use cases, a streaming fil-
ter pipeline and a scalable BbNN, that show how different
granularities can be effectively combined in a design. Finally,
section X presents the conclusions and future work.

II. BACKGROUND CONCEPTS
This section introduces important concepts related to the
design and implementation of dynamically reconfigurable
systems, particularized to the Xilinx 7 Series FPGAs, which
are the target of the IMPRESS tool proposed in this work.
In order to improve the readability of the paper, we have
grouped some of the abbreviations used in this article
in Table 1.

A. INTERNAL STRUCTURE OF XILINX FPGAs
FPGAs are composed of multiple reconfigurable resources
such as Configurable Logic Blocks (CLBs), BRAMs, and
DSPs. Other specialized resources, such as PLLs and
GTX/GTH receivers, are also available on these devices.
Resources of the same type are grouped in columns, which are

202134 VOLUME 8, 2020



R. Zamacola et al.: Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems

TABLE 1. Main background reconfiguration concepts.

FIGURE 1. A clock region is divided into columns of logic elements.
In turn, the configuration memory divides each column into several
frames, as shown for the middle CLB column.

interleaved to compose clock regions. Clock region rows are
almost identical to each other, making the FPGA resources
highly regular along its vertical axis. The structure of the
device configuration memory is similar to the disposition of
the configurable elements in the logic layer. The minimum
addressable unit in the configuration memory is called a
frame [13]. Each frame contains part of the configuration of
the logic resources placed in a clock region column. Depend-
ing on the resource type of the column, a variable number of
frames is needed. Figure 1 depicts a clock region in the FPGA.
The clock region is divided into several columns, which
in turn are divided into several frames in the configuration
memory.

Since reconfiguring the device ultimately involves writing
to this configuration memory, it is necessary to know its
addressing scheme, that is, the relationship between each
frame and the column which configuration stores. Moreover,
for the specific case of fine grain reconfiguration, it is also
necessary to understand how the configuration memory con-
tent can be modified to alter particular logic primitives. This
information is partially included in the device’s configuration
guides, while further details have been released by academic
works, such as the SymbiFlow [14] open source tool.

Dynamic reconfiguration requires using device ports that
provide access to the configuration memory. Apart from the
external ports used for the device configuration during system
booting, internal ports grant access from the device’s logic
layer, so enabling self-adaptive systems. In Xilinx 7 Series
devices, the ICAP is the configuration port available from

FIGURE 2. Different VA floorplanning styles. A RR is marked in red in each
VA style. Blue rectangles represent RMs allocated inside one or multiple
RRs. Interfaces with the static system are not shown for clarity.

the programmable logic. In the particular case of the Xilinx
Zynq-7000 SoC devices, which includes a hard-core ARM
processor integrated with the 7 Series FPGA in the same
chip, another configuration port called PCAP is incorporated.
Both configuration ports are multiplexed and, therefore, they
cannot be used simultaneously.

B. STATIC SYSTEM AND RECONFIGURABLE MODULES
Reconfigurable systems are divided into two parts: the static
and the reconfigurable subsystems. The former is composed
of all the circuits essential for the system’s correct behav-
ior and therefore remains unaltered during its whole life-
time. In turn, the reconfigurable subsystems contain the logic
elements that can be modified at run-time. In coarse and
medium grain reconfiguration, reconfigurable logic resources
are grouped in predefined areas of the device, called Recon-
figurable Regions (RRs). The modules that can be config-
ured in each RR are called Reconfigurable Modules (RMs).
The RM and RR concepts are only applicable in coarse
and medium granularities where modules are exchanged in
the device configuration memory. In fine grain reconfigu-
ration, the reconfigurable subsystem consists of individual
device primitives spread throughout the FPGA and inter-
leaved with the static logic. However, to speed-up the recon-
figuration process, fine grain components are usually stacked
in clock-region columns.

C. FLOORPLANNING
Efficient resource management in reconfigurable systems is
not possible without the virtualization of the reconfigurable
resources of the device. In this article, we will use the term
Virtual Architecture (VA) [15] to refer to the set of RRs
and their interconnections. The VA floorplanning can follow
different configuration styles, as shown in Figure 2: island,
slot, and grid [16].

The island-based style consists of several RRs isolated
from each other. Each RR can allocate only one RM at a
time. One of the main problems of this VA style is that
it suffers internal fragmentation (i.e., waste of resources)
when RMs of diverse sizes are implemented in the same
RR. Reconfigurable resources can be used more efficiently
by defining flexible VAs. Reconfigurable systems with flex-
ible VAs formally have several contiguous RRs that can be

VOLUME 8, 2020 202135



R. Zamacola et al.: Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems

grouped to allocate one or more RMs. Depending on how the
RRs are defined, flexible VAs can be classified as slot- and
grid-based.

The slot-based VA, shown in Figure 2b, entails a region of
the FPGA divided into multiple contiguous RRs, called slots.
If the defined slots are small enough, internal fragmentation
is avoided. However, this VA style can still lead to unused
resources due to external fragmentation, which appears when
there are enough free reconfigurable resources to allocate a
given RM, but these free resources are not contiguous, and so
themodule can not be configured. External fragmentation can
be minimized with efficient run-time allocation algorithms.
The grid-based VA can be considered a 2D generalization of
the slot-based style. In this case, the RR is divided into smaller
RRs arranged in a grid pattern. Each RM can span several
adjacent RRs of the grid in both dimensions. 2D grids further
minimize internal fragmentation.

D. COMMUNICATION INTERFACES
The communication interfaces define how the RMs are con-
nected to the static system and neighboring RMs. The most
efficient way to implement these interfaces is by using one
routing node with one endpoint in the static region and the
opposite endpoint in the reconfigurable region. This type of
interfaces has been designated as partition pins [17], virtual
interfaces [15] or direct wire binding [18] in the literature.
Other interface styles use logic resources (i.e., Lookup tables
(LUTs)) at one (e.g., proxy logic) or both ends (e.g., bus
macros) [16], introducing overhead both in terms of resources
and delay.

In the island-based VA, each region has its interface with
the static system. In the slot- and grid-based VAs, it is nec-
essary to define the connection with the static system along
with the interfaces between RMs. Three different approaches
can be used to interface these VAs. These approaches are
explained below for slot-based VAs, but the same concepts
apply to grid-based VAs:

• The simplest solution is to directly connect each slot
to the static system through one of the shared borders,
as shown in Figure 3a. This scheme does not allow RM
to RM direct communication.

• The second solution, shown in Figure 3b, relies on plac-
ing a communication infrastructure inside the RRs [19].
Every RM contains the communication infrastructure
in the same location, and thus, despite being reconfig-
ured each time, the communication infrastructure can be
considered part of the static system. RMs can use this
infrastructure to communicate with the static system or
with other RMs.

• In the last option, shown in Figure 3c, internal modules
use nets that belong to the RMs to connect to other adja-
cent RMs, and from there to the static system. We will
refer to these as flexible interfaces, since they are not
defined in the static system, and so they can be changed
at run-time.

FIGURE 3. Different methods to communicate slot-based virtual
architectures.

E. RELOCATION OF RECONFIGURABLE MODULES
The configuration of each RM is defined in a partial con-
figuration file, known as Partial Bitstream (PBS). When
using vendor tools for implementing reconfigurable systems,
the generated PBS includes relevant commands to allocate
the RM in the RR where it was originally implemented. This
approach prevents using a single PBS to relocate an RM
in an RR different from where it was generated. Therefore,
if multiple copies of the same RM are to be configured in
different RRs to increase flexibility at run-time, it would
be necessary to generate multiple copies of the same PBS.
Thus, if there were m RMs that can be allocated in n RRs,
it would be necessary to generate m*n partial bitstreams.
This approach entails a big memory footprint when stored
in the final system. However, it is possible to benefit from
the FPGA fabric regularity using only one PBS for all the
FPGA regions, whenever they have the same distribution
of logic resources inside. This feature, called relocation,
is of particular importance for slot- and grid-based VAs,
where RMs can be allocated in compositions of multiple
RRs. To enable relocation, VAs are usually floorplanned over
the device layout with slot and grid cells as homogeneous as
possible.

The requirements to implement relocatable RMs are:
• Logic primitives (CLBs, BRAMs, and DSPs) within a
reconfigurable region must be distributed in the same
manner, making the floorplanning compatible.

• Logic and routing resources of the RM need to be
completely isolated within the area of a reconfigurable
region. Therefore it is necessary to prevent the static
system’s routes entering the reconfigurable region.

• Physical interfaces in every relocatable region must be
equal, making module interconnections compatible.

As detailed in subsection II-A, the distribution of the log-
ical resources of the same type in columns makes Xilinx
FPGAs more homogeneous in the vertical axis, which has to
be taken into account when floorplanning the VA.

202136 VOLUME 8, 2020



R. Zamacola et al.: Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems

F. SUB-CLOCK REGION RECONFIGURATION
Sub-clock region reconfiguration involves reconfiguring
regions that do not span complete clock region columns while
leaving the rest of the logic in the column unaltered. This
reconfiguration requires special treatment as the organization
of the configuration memory in frames makes it mandatory
to reconfigure entire clock region columns. The sub-clock
region reconfiguration concept is relevant to all the recon-
figuration granularities. In coarse and medium granularities,
sub-clock reconfiguration must be taken into account when
there are multiple RMs stacked in the same clock region.
When using fine grain reconfiguration, it is necessary to
reconfigure the whole column where the fine grain reconfig-
urable elements are placed, so it is especially important when
there are fine grain components and other static components
located in the same column.

Sub-clock region reconfiguration requires specialized
run-time support, offered by a Reconfiguration Engine (RE).
The RE is a logicmodule integrated as part of the static design
devoted to downloading partial bitstreams in the FPGA con-
figuration memory. A RE supporting sub-clock region recon-
figuration has to perform a readback step to read all the
affected frames from the configurationmemory. Then, the RE
has to combine the previous configuration with the new
RM bitstream. It is possible to avoid the readback step by
maintaining a description of the modules configured in each
position of the FPGA. Then, during reconfiguration, the rest
of the frame which must remain unmodified is gathered from
external memory, according to this system description.

III. PROPOSED CLASSIFICATION FOR RECONFIGURABLE
SYSTEMS
This section provides a discussion on howwe propose to clas-
sify reconfigurable systems depending on the granularity of
their reconfigurable elements. The analysis is focused on the
most common design requirements in each case. Table 2 sum-
marizes the distinguishing feature for each category, together
with the typical features associated with each group.

A. COARSE GRANULARITY
Coarse grain reconfigurable systems include a monolithic
accelerator as the reconfigurable unit. This granularity is
usually applied with an island-based VA without relocation
capabilities. RMs are generally implemented in large recon-
figurable regions that can span whole clock regions. RMs
are often isolated from other RMs so direct interconnections
between RMs, without involving the static system, are typ-
ically not considered. This is the most common granularity
used in reconfigurable designs.

B. MEDIUM GRANULARITY
This granularity level is introduced in the proposed clas-
sification as a technique specifically tailored to build
highly regular and modular processing architectures, such
as systolic arrays [7], wavefront arrays [8], general-purpose

overlays [9] or block-based neural networks (BbNNs) [10].
All these architectural templates are composed of a set of
functional units distributed as 1D arrays or 2Dmeshes. Swap-
ping between variations of these architectures can be carried
out by only reconfiguring the modules that differ, leaving the
other common submodules unaltered. Variations may involve
changing the size of the processing architecture at run-time,
thus providing dynamic scalability [20]. It is essential to
notice that the main difference between coarse and medium
granularities is how the accelerator is composed, rather than
the size of the RM. While coarse-grain is used to reconfig-
ure monolithic accelerators, medium-grain reconfiguration is
used to reconfigure only specific accelerator sub-modules.

The most effective VA configuration styles are slot- or
grid-based VAs, depending on the reconfigurable architecture
pattern (i.e., 1D or 2D). In these VA RMs can be connected to
each other using direct RM to RM interfaces. Relocation and
sub-clock reconfiguration are also highly desirable features to
use with medium grain reconfiguration. Sub-clock reconfigu-
ration allows the user to reconfigure multiple relatively small
PEs in one clock region. In turn, relocation helps to allocate
one PE in multiple different locations of the VA using only
one PBS. While it is possible to use medium grain recon-
figuration with island-based VAs when the reconfigurable
architecture to implement is composed of a few modules, it is
not recommended. The reason is that, for a given application,
the RRs need a fixed interconnection between them, which
makes it difficult to reuse the VA to implement other acceler-
ators that may require different interconnections.

C. FINE GRANULARITY
We refer to fine grain reconfiguration to change specific
elements of an FPGA fabric (LUTs, FFs, or routing paths) as
an alternative to swapping entire RMs. Therefore, fine grain
reconfiguration, as opposed to the other two granularities,
cannot be implemented with reconfiguration tools based on
RMs. Fine grain reconfiguration allows tuning part of an
accelerator logic by modifying a reduced amount of frames.
Fine grain reconfiguration offers advantages in three different
levels:
• Reduce resource utilization. Circuit specialization by
reconfiguring particular LUTs is an alternative to cir-
cuits in which all possible functionalities are imple-
mented together from the beginning.

• Reduce reconfiguration time. The time needed for circuit
adaptation is reduced compared to coarse grain recon-
figuration since fewer frames need to be reconfigured.
To give some numbers, in Xilinx 7 series FPGAs there
are 400 LUTs in a single column, which can be recon-
figured individually. Each column can be reconfigured
with only eight frames, a minimal number compared
to the number of frames needed to configure an entire
clock region (e.g., 2536 frames per clock region in a
7z020 FPGA).

• Increase placement flexibility. One of the main chal-
lenges when building grid-based reconfigurable systems

VOLUME 8, 2020 202137



R. Zamacola et al.: Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems

TABLE 2. Typical granularity configurations.

is how to connect RMs with the static system when
they are not placed in the boundaries of the grid. Fine
grain reconfiguration can be used to write and read the
contents of internal flip-flops, memories or LUTs of the
module from the static system, without using a direct
physical link.

IV. STATE OF THE ART
This section describes the main contributions existing in the
state-of-the-art related to the implementation of dynamically
reconfigurable systems. Since there are not integrated support
tools for multi-grain reconfiguration (i.e., tools that allow
combining multiple granularities in a design), each granular-
ity, together with relevant use cases, is tackled separately.

A. COARSE GRANULARITY
Most reconfigurable systems use coarse grain reconfigura-
tion. Therefore, reconfiguration design flows provided by
major FPGA vendors have focused their efforts on support-
ing this type of reconfiguration. However, Xilinx [17] and
Intel [21] reconfiguration flows, only allow building recon-
figurable systems following an island-based VAwithout relo-
cation. This lack of flexibility has induced the development of
several academic tools that tried to provide additional recon-
figuration capabilities. In the case of Xilinx devices, the first
tools appeared for the outdated ISE design environment, and
they focused mainly on relocation, such as the works in [22]
and [23]. Later on, more comprehensive tools appeared tar-
geting flexible VAs, such as Recobus [19], and more effi-
cient reconfigurable interfaces, such as Go Ahead [18] and
Dreams [15].

The launch of Vivado, the newer Xilinx design suite, made
the previous tools almost useless for new FPGA families.
The reason is that all of them were based on the proprietary
Xilinx Design Language (XDL) [24], which is no longer
supported in Vivado, to modify the design at the physical
level. Gradually, new tools have appeared for Vivado based
on its TCL command interface, instead of XDL. Table 3
presents a comparison between Xilinx and Intel commercial
reconfiguration flows and themain academic tools that can be
used in Vivado to enhance Xilinx reconfiguration flow. Most
academic tools enhance Vivado reconfiguration flow in only
one facet such as relocation (e.g., RePaBit [25], Reloc [26]
and the work of Oohmen et al. [27]), or implementing flex-
ible VA configuration styles (e.g., Amorphous DPR [28]).
However, some of the aforementioned tools use bus macros
or proxy logic to implement the interfaces; Thus, adding
resource and timing overhead to the interfaces. An updated

version of Go Ahead [18], combined with the BITMAN
tool [29] can implement overhead-less reconfigurable inter-
faces using flexible virtual architectures. An example of a
slot-based virtual architecture with coarse grain reconfigura-
tion using Go Ahead is shown in [30].

B. MEDIUM GRANULARITY
There are some reconfigurable designs in the litera-
ture that use DPR to implement modular processing
architectures. A first example is a general-purpose overlay
proposed in [31], which aims at implementing code written
in a domain-specific language. Each module features a func-
tional unit that can be reconfigured so that the overlay can
map the functionality desired at any given time. A variation
of this work was proposed in [32] for overlays running in
cloud accelerators. Real-time video pipelines can also benefit
from this type of reconfiguration, as shown in [33]. The
aforementioned applications used a reconfiguration style that
can be considered as medium grain, with only a few RRs
connected to each other through the static system. Therefore,
they could be implemented using commercial reconfiguration
tool flows using an island-based VAs. However, as explained
in subsection III-B, there are several features that are
highly desirable when using medium grain reconfiguration
with architectures with several processing elements, such as
RM relocation, sub-clock reconfiguration, flexible VA con-
figuration styles, and RM-to-RM direct communication.
An example of a reconfigurable system using medium grain
reconfiguration with relocatable RMs is [34], which imple-
ments a systolic array to accelerate multiple algorithms, such
as the extended Kalman filter and the discrete wavelet trans-
form. Moreover, there are also examples in the state of the art
of 2D architectures that leverage grid-based VAs and flexible
RM-to-RM communications to build a run-time scalable 2D
systolic array [35] and an evolvable hardware architecture
for video filtering [36]. Both applications were implemented
with the reconfiguration tool Dreams [15].

As shown in Table 3, most commercial and current aca-
demic tools lack the features necessary to use medium grain
reconfiguration effectively. The only tools that include all
the features to implement medium grain reconfiguration are
IMPRESS and the combination of Go Ahead [18] and BIT-
MAN [29]. The main difference between IMPRESS and Go
Ahead is the method used to connect RMs to each other
and to the static system. While IMPRESS uses flexible inter-
faces (see Figure 3c), Go Ahead uses a static communication

202138 VOLUME 8, 2020



R. Zamacola et al.: Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems

TABLE 3. Reconfiguration tools available for Xilinx Vivado and Intel Quartus Prime for coarse & medium reconfiguration granularities.

infrastructure (see Figure 3b). Placing a communication
infrastructure inside the reconfigurable regions forces to
decide the size of the grid at design-time. The designer has to
reach a trade-off between the grid granularity and the number
of resources utilized by the communication infrastructure
(i.e., the finer the granularity, the more resources are needed).
Moreover, the communication links among RMs offered by
this type of infrastructure is limited, which hinders the imple-
mentation of highly interconnected arrays which are the most
common applications that can be build using medium grain
reconfiguration. For these reasons, using flexible interfaces
is more efficient to build 2D architectures.

C. FINE GRANULARITY
Fine grain reconfiguration was partially supported in the
past by Xilinx with difference-based partial reconfigura-
tion [37]. Difference-based partial reconfiguration was the
first approach that Xilinx introduced to use partial reconfigu-
ration in their devices. This approach computed the difference
between two designs and generated a partial bitstream con-
taining the changing configuration bits. The main problem is
that this approach is not scalable to systems that needmultiple
different configurations as it is not practical to compute the
difference between all the possible combinations of different
configurations. Thus, Xilinx discontinued difference-based
partial reconfiguration in favor of module-based reconfigu-
ration flows that contained a static system with one or more
RRs [5].

Different application-specific fine grain reconfiguration
schemes have been proposed by the academic community,
to adapt both routing and functional units. In [38], a recon-
figurable crossbar switch made up of reconfigurable LUTs
is proposed, in which by reconfiguring the truth table of the
LUTs, the crossbar configuration is changed. Authors claim
an area-saving of up to 84% compared to other solutions
since the crossbar does not require control logic. In [39],
a crossbar using a specific reconfigurable architecture made
up of reconfigurable LUTs is implemented.

Going further, some authors have proposed the imple-
mentation of crossbars without using any logic element but
leveraging the low-level routing resources of the FPGA. This
is the case of [40], which introduces the concept of tunable
connections (TCONs), implemented in the routing resources

of a theoretical device architecture. A different approach is
the reconfigurable crossbar called ρ-P2P proposed in [41].
In this work, the authors proposed saving all the possible
routing configurations of the crossbar as PBS, in such a
way that routing can be modified by reconfiguring only the
frames containing routing resources, reducing the configu-
ration time. Authors in [42] propose a different approach,
consisting of changing the routing of arbitrarily designed
netlists by rerouting a given path at run-time without using
logic resources.

Fine grain reconfiguration can also be used to implement
LUT-based functional units. The functional unit’s behavior
depends on the LUTs’ configuration, which can be modi-
fied using fine grain reconfiguration. In this way, the same
functional unit can implement multiple functionalities. This
approach has been used in [43] to implement an evolvable
hardware system for video filtering, which can evaluate up
to 139,000 candidate circuits per second. Fine grain recon-
figurability can also be used to reduce resource usage as
done in [44], [45]. In these works, authors reduce the circuit
size by embedding some of the input values that do not
often change, as parameters inside special reconfigurable
LUTs, called TLUTs. In this way, when one of those input
changes, TLUTs are reconfigured to adapt the circuit to the
new functionality. Authors show a great reduction in LUTs
up to 39% in adaptive FIR filters and a 66% in ternary
content-addressable memories.

V. IMPRESS: A TOOL TO SUPPORT MULTI-GRAIN
RECONFIGURABLE SYSTEMS DESIGN
IMPRESS (IMplementation of Partial REconfigurable Sys-
temS) is an open-source tool for implementing multi-grain
reconfigurable systems [46]. It was proposed initially in [11]
for designing reconfigurable systems using flexible VAs and
relocatable reconfigurable modules. In this work, IMPRESS
has been extended to support multi-grain reconfiguration.
To that end, both the design-time and run-time support of
IMPRESS have been updated. The design-time support has
been extended to include different fine grain reconfiguration
components that can be instantiated in a design. In turn,
the run-time support has been extended to (1) reconfig-
ure fine-grain elements effectively using a specialized RE,
(2) use slot and grid VAs easily, and (3) to mix different

VOLUME 8, 2020 202139



R. Zamacola et al.: Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems

reconfiguration granularities in one design. In this way,
IMPRESS is the first tool (to the best of the authors’ knowl-
edge) that unifies the implementation of reconfigurable sys-
tems with the three granularity levels. IMPRESS currently
works with series 7 FPGAs. Making IMPRESS compati-
ble with other Xilinx devices as the Ultrascale+ FPGAs is
planned as future work. Moreover, as IMPRESS relies on
Vivado TCL commands and low-level bitstream configura-
tion details, it cannot be compatible with FPGAs of other
manufacturers (e.g., Intel).

IMPRESS tries to simplify the design of complex recon-
figurable systems, hiding as much as possible the low-level
device-dependent details. To accomplish a reconfigurable
design with IMPRESS, the user only has to provide three
files with the system’s specification. With the information
in these files, IMPRESS automatically carries out all the
subsequent steps to provide the full and partial bitstreams.
In the first file, the user must provide the design sources’ path
and the selected FPGA. The design sources corresponding
to the static system and the reconfigurable modules can be
provided as HDL files or design checkpoints. In the second
file, the user has to define the RRs’ coordinates within the
FPGA layout. In the last file, the user has to specify the
interface of the RRs. This means, to assign which RR border
has to be used for each RM port. Further details on the
physical interfaces are defined below.

In the case of fine grain reconfiguration, the user only has
to instantiate in their HDL designs specific HDL components
from a predefined library, as discussed in the corresponding
subsection.

A. COARSE GRAIN AND MEDIUM GRAIN
RECONFIGURATION WITH IMPRESS
IMPRESS enables the implementation of each RM and the
static system in fully decoupled runs. This way, new RMs can
be added to the system without generating all the modules
from scratch. Since Vivado requires having a static parti-
tion and at least one RM in the project, IMPRESS auto-
matically introduces dummy logic modules. Thus, during
the implementation of the static part, IMPRESS generates
and instantiates one dummy RM for each RR, while in the
case of the RM’s implementation, it uses a dummy static
system.

To ensure compatibility among the static system and the
RMs, both must share the same physical interface. IMPRESS
leverages the partition pins available in the Xilinx recon-
figuration flow to ensure this compliance. Partition pins
are nodes that have one endpoint in the static region and
the other one inside the reconfigurable part. Differently to
Vivado, IMPRESS limits partition pins to one-hop nodes
located at bordering interconnection blocks (see Figure 4a).
This approach increases compatibility for module relocation.
Moreover, the user can specify which borders are used for
each of the interface nets. It is also possible to define inter-
faces that only use some interconnection blocks of the edge
(i.e., south_0:3 specifies that a net can only use the first

FIGURE 4. (a) One-hop nodes that can be used as valid interfaces
(b) example of IMPRESS virtual interface file.

four south interconnection blocks, see Figure 4b). In coarse
grain reconfigurable systems, the interface is generated auto-
matically by IMPRESS during the implementation of the
static system. A description of the reconfigurable interface,
including which partition pins are used for each crossing
net, can be saved and applied during the implementation of
compatible reconfigurable modules.

The decoupling of the static system and the RMs, com-
bined with the definition of one-hop interfaces, allows
IMPRESS to build efficient VAs. Instead of defining the
VA layout at design-time, it is possible to define a single flex-
ible RR that can allocate either one RM using an island-style
or multiple RMs following a slot or grid VA style. The RR
is connected to the static system using a fixed set of nodes
placed at the RR border. In contrast, internal connections
between RMs are not fixed and are defined by the inter-
faces of the RMs. Whenever two RMs share a border and
have a compatible interface, they are effectively connected.
In this way, the RMs can be connected to each other using
any VA style (e.g., slot or grid). Moreover, as the RR does
not contain internal static communication resources, the size
and number of the grid/slots are not predefined and can
be modified at run-time, adapting them to the application
requirements.

Figure 5 shows how an empty RR can adopt different
VA styles at run-time by allocating different RMs. On the
left side of Figure 5, the RR allocates two coarse RMs in
a slot-based fashion. In contrast, on the right side the RR
allocates six medium grain RMs in a grid-based style using
direct RM-to-RM interfaces.

IMPRESS provides support for module relocation.
As stated in Section II, relocatable designs must comply
with three requirements. The first one is that regions must
have the same distribution of logic resources. IMPRESS
run-time software library includes a function to check if
two regions are compatible. The second requirement is to
ensure that the static routing cannot enter the RR. As Vivado
does not have any directive to guarantee this, IMPRESS
generates a blocker net, such as the one proposed in [18],
that is used as a fence during the routing phase to ensure
that the static system does not enter inside the RR. The third
requirement is to apply the same physical interface to each
region. IMPRESS automatically applies these interfaces in
island-based VAs. However, in slot/grid VAs, where RMs can

202140 VOLUME 8, 2020



R. Zamacola et al.: Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems

FIGURE 5. Example of how IMPRESS can generate an empty RR that can
adopt different VA styles at run-time.

be arranged in different positions and interconnections are
highly flexible, it is the user’s responsibility to ensure that an
RMs is compatible with other RMs and the static system, as it
would be computationally expensive to check at run-time that
interfaces are compatible. The downside of using relocation is
that due to the extra design constraints (e.g., same interfaces
and blocker net) the maximum frequency of the system can
diminish, as already shown in [11].

B. FINE GRAIN COMPONENTS WITH IMPRESS
The IMPRESS fine grain reconfiguration proposal is based
on the definition of a set of parameterized HDL compo-
nents that users can instantiate either in the static system
or within a RM (i.e., mixing fine grain reconfiguration with
coarse/medium reconfiguration). These fine grain compo-
nents have built-in features that make them reconfigurable at
run-time.

Three different types of fine grain reconfigurable compo-
nents are proposed: parameters, multiplexers, and Functional
Units (FU). The user can take advantage of reconfigurable
parameters to tune hardwired settings of an accelerator with-
out the need to connect them to the static system. Similarly,
multiplexers can change the data-path of a module without
using selection lines. In turn, functional units can implement
different logic and arithmetic operations that can be recon-
figured by changing their truth tables through the reconfig-
uration interface. All the fine grain components that have
been proposed are based on the reconfiguration of LUT equa-
tions. Fine grain reconfiguration depends heavily on certain
device particularities. InXilinx 7 series devices, a device LUT
primitive is comprised of two 5-input LUTs, resulting in a
6-input LUT with two outputs (Figure 6a). Configurable
Logic Blocks (CLB) contain two slices with four LUTs
each. The truth tables of the four LUTs that compose the slice
are distributed over four consecutive frames [29] in such a
way that even if a single LUT needs to be reconfigured, all
the four frames must be changed. However, if inputs A1 and
A4 are not used, it is possible to reconfigure the four LUTs
with a single frame, thus achieving a fourfold decrease in
reconfiguration time.

FIGURE 6. a) 6-input look-up table b) n-input 1-bit multiplexer.

The design of optimized fine grain components is as fol-
lows. LUT-based parameters leverage the two 5-input LUT
configuration of a 6-input LUT (Figure 6a) to use the two
available outputs (O5 and O6). This way, for an n-bit param-
eter, only dn/2e LUTs are needed. In turn, multiplexers are
defined by two parameters: the number of inputs and max-
imum input width. To allow an arbitrary number of inputs,
they are chained as shown in Figure 6b. To allowm-bits width
input multiplexers, the chain in Figure 6b is replicated m
times. It is worth noting that the multiplexer in Figure 6b does
not contain selector lines as they are embedded in the LUT’s
truth table. The selected input can be changed by modifying
the LUT equations using DPR. The design of both elements
avoids inputs A1 andA4 so that they can be reconfigured with
only one frame, hence speeding up reconfiguration. How-
ever, in resource-constrained designs, the multiplexer can be
adapted to use their six inputs, but increasing reconfiguration
time.

The last component provided is a fine grain reconfigurable
functional unit, extended here from the original proposal
targeting image processing in [43]. Figure 7 shows the FU
structure for one bit. The FU has two stages, the first one
is made up of the LUT in the left and the carry operator,
while the LUT in the right forms the second stage. The
first stage can perform an addition/subtraction operation or
compare the two inputs or one of the inputs and any arbitrary
constant. The second stage is used as a multiplexer to select
any of its inputs using the carry out from the first stage as
the input selector. It is also possible to skip step one and
perform a logical operation involving the two inputs and an
arbitrary constant in the second stage. Table 4 shows some of
the arithmetic and logic functions that can be performed by
modifying both LUT configuration bitstreams. The FU does
not use the A4 input, and therefore it can be reconfigured with
only two frames. The presented FU was initially conceived
to implement a set of functions used in the image processing

VOLUME 8, 2020 202141



R. Zamacola et al.: Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems

FIGURE 7. Fine grain Reconfigurable Functional Unit structure.

TABLE 4. Functions implemented by the fine grain reconfigurable
functional unit.

domain. However, extending the catalog by adding new FUs
featuring a different set of functions is possible.

The main advantage of fine grain parameters and multi-
plexers is that they can be changed without using specific
connections to the static system. The main application of
these components is to generate scalable architectures com-
bining medium and fine granularities, as will be explained
later. Thus, these components have been designed so that
they can be reconfigured by rewriting only one frame, thus
reducing the reconfiguration time. Fine grain reconfiguration
can also contribute to reducing resource occupancy in two
different ways. First, a fine grain reconfigurable FU can
substitute multiple non-reconfigurable FUs, followed by a
selection multiplexer. Second, fine grain components allow
circuit configuration without bus interfaces (e.g., AXI inter-
faces), reducing logic resources and routing congestion in a
design. This approach has bandwidth limitations, which will
be evaluated as part of the experimental results.

IMPRESS facilitates the use of fine grain reconfigurable
components by automatically applying placement constraints
so that all the dynamically reconfigurable LUTs occupy the
minimum number of columns without user intervention. If a
column is not filled with fine grain LUTs or any other fine
grain component type, then IMPRESS automatically instan-
tiates dummy LUTs (i.e., LUTs not used in the design). This
way, it is ensured that the clock region column only contains
reconfigurable LUTs of a unique component type (i.e., not
mixing parameter, multiplexer, and FULUTs). Packing LUTs
in columns reduces the number of frames to be changed,
and therefore reconfiguration time when compared to the
random placement of the LUTs throughout the FPGA fabric.
Fine grain components can be instantiated inside coarse and

FIGURE 8. This figure shows how different RMs with fine grain
components can be stacked in the same clock region. The typical
scenarios are to use either clock-height RMs or homogeneous RMs. The
most complicated scenario is mixing heterogeneous RMs, making it
necessary to configure the fine grain components stacked in the same
column.

medium grain reconfigurable modules, so all the reconfigura-
tion granularities can coexist in multi-grain designs. Figure 8
shows different scenarios that can occur when mixing fine
grain components inside the RMs. The most complicated
scenario occurs when using heterogeneous sub-clock region
RMs. To ensure that fine grain components are stacked in the
same column, the user can specify the CLB column where to
place the fine grain components.

VI. RUN-TIME SUPPORT FOR MULTI-GRAIN
RECONFIGURATION
Besides including design-time support to generate reconfig-
urable systems, IMPRESS also includes run-time support to
manage and download coarse, medium, and fine grain recon-
figurable components into the FPGA. Two different reconfig-
uration engines tailored for each type of reconfiguration and
a system management library are provided with this aim.

A. COARSE AND MEDIUM GRAIN RECONFIGURATION
ENGINE
The coarse and medium grain RE is implemented as a
software component that uses the PCAP configuration port
available as a peripheral in the ARM hard-core processor of
the Xilinx Zynq SoPC [17]. As the RE is implemented in
software it does not use any reconfigurable logic resources.

The RE plays an essential role in relocating systems as
it has to generate the configuration commands at run-time
to indicate to the internal configuration logic of the FPGA
the final position where the RM is going to be configured.
The RE also has a significant function in sub-clock region
reconfiguration as it has to ensure that the reconfigurable
regions above and below the area under reconfiguration are
left unchanged.

The process of downloading a PBS is as follows: the
reconfiguration engine identifies all the clock rows occupied
by the reconfigurable region. For each row, the RE reads the

202142 VOLUME 8, 2020



R. Zamacola et al.: Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems

FIGURE 9. Coarse and medium grain RE procedure.

initial content of the configuration memory and combines
it with the information in the PBS generated with the tool
(affecting only the targeted RR), forming the new content of
the configuration memory. Once the bitstream composition
finishes, the reconfiguration engine adds a header, includ-
ing the FPGA location, where the PBS will be configured,
together with the configuration commands. The composed
PBS is finally downloaded into the FPGA. This process is
outlined in Figure 9.

When using the medium reconfiguration granularity, it is
common to reconfigure several RMs stacked in the same
clock region. If all the RMs are reconfigured individually,
the RE repeats the same readback and bitstream download
operations for each RM. For this reason, the RE includes an
option to perform one readback for the first RM and down-
loads the bitstream only when the last RM has been com-
bined with the previous configuration. Thus, enhancing the
performance of the reconfigurable system using the medium
reconfiguration granularity.

B. FINE GRAIN RECONFIGURATION ENGINE
Coarse and medium grain module reconfiguration is typically
carried out as part of a preparation stage before the accelerator
starts computing. Differently, fine grain reconfiguration is
often interleaved with computation, and so it needs to be
fast to be effective. For that reason, a specialized RE adapted
from the one proposed in [43] is provided in IMPRESS. The
fine grain RE has been implemented in two different ways.
The first implementation is a hardware component inside the
FPGA that uses the ICAP configuration port embedded in
the programmable logic of the SoPC. In contrast, the sec-
ond implementation does not use FPGA resources as it is
implemented as a software component that uses the PCAP
configuration port.

As mentioned in Section V-B, the placement constraints
that IMPRESS applies for stacking fine grained components
in columns make it possible to skip the readback step in the
reconfiguration process. To that end, the configuration of all
the columns that contain fine grain components is stored in
the DDR memory so that the hardened ARM core can access
it without having to read the FPGA configuration memory.

FIGURE 10. Fine grain reconfiguration engine schematic.

In this regard, IMPRESS run-time uses compressed repre-
sentations of the columns to reduce the required memory.
This approach avoids saving the four frames (i.e., 404 words,
with 101 words per frame) that comprise a column of LUTs
in 7 series devices. For reconfigurable parameters and mul-
tiplexers, each LUT is adequately represented with two bits
(a LUT parameter has two bits, and a LUT multiplexer uses
four inputs which can be selected with two bits). As there
are 200 LUTs in a column (50 slice/column * 4 LUTs/slice),
it is possible to represent a column filled with parame-
ters/multiplexers with 400 bits grouped in 13 32-bit words.
Differently, the minimum size of IMPRESS fine granularity
FUs is 4-bit blocks, which contains 8 LUTs. Therefore a
column can hold 25 FU blocks. It is possible to represent
each FU block with 5 bits (an FU can implement 32 different
functions). Therefore, an FU column can be represented with
125 bits (5 bits/FU * 25 FU/column) that can be packaged
in 4 words.

In the hardware implementation, the reconfiguration pro-
cess starts when the processor sends the compact repre-
sentation of the new configuration of the column to the
RE. The RE divides the received information into blocks
of bits, each one representing the configuration of a fine
grain reconfigurable element (e.g., 4 bits for parameters and
multiplexers and 5 bits for FU). This compact representation
has to be translated into the corresponding configuration
frames before sending it through the ICAP. The translation
is carried out by reading from a BRAM memory in the
position encoded by the packaged bits, where the expanded
frame words (i.e., partial bitstream) are stored. Therefore,
the BRAMmemory embedded in the RE stores the equivalent
full frames for each packaged configuration. The software
implementation follows a similar process, but the conversion
from column configuration to FPGA configuration is done
in the processor, without occupying logic resources in the
device. Figure 10 depicts the schematic of the fine grain
RE.

C. MULTI-GRAIN RECONFIGURABLE SYSTEM
MANAGEMENT LIBRARY
IMPRESS includes a software library that runs on the
hardened ARM core to manage multi-grain reconfigurable

VOLUME 8, 2020 202143



R. Zamacola et al.: Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems

FIGURE 11. This figure shows the main components of the software
library that support the run-time management of the multi-grain
reconfiguration and how these components are connected to the FPGA
fabric and the FPGA configuration memory.

systems at run-time. The library provides a set of primitives
to handle any VA with coarse or medium grain RMs con-
taining fine grain elements if required. Figure 11 shows the
relation between the software library, the FPGA fabric, and
its configuration memory. The library contains the following
elements: a user RM catalog, a representation of the VA,
and a description of the columns that include fine grain
components.

The RM catalog has to be created by the user after imple-
menting the RMs and the static system. It is a file with data
structures in C describing each RM available. It contains an
array in which each element is a structure that describes one
RM, including its size, PBS file name, and a description of
its fine grain components.

TheVA’s internal representation is a two-dimensional array
where each element corresponds to a location inside the RR.
At run-time, the user can select which RM has to be allo-
cated in each VA element. Then, IMPRESS uses the coarse
and medium grain RE to reconfigure the RM in the desired
location without user intervention.

Once all the RMs have been placed inside the VA, it is
possible to adapt each RM using fine grain reconfigura-
tion. The library includes functions that can be used to
change the value of specific fine grain components of a
given RM. The user only has to specify the new value for
the element and IMPRESS automatically searches which
column is affected and changes its configuration automati-
cally. The user can change the value of multiple fine grain
components before IMPRESS transfers the new configu-
ration data to the fine grain RE. In this way, it is possi-
ble to modify several fine grain components and perform
only one reconfiguration process, speeding up the whole
process.

FIGURE 12. Coarse and medium granularities combined. Blue rectangles
represent coarse grain RMs while green rectangles represent medium
grain RMs.

VII. AN INTEGRATED APPROACH TO MULTI-GRAIN
RECONFIGURATION
This section provides a critical analysis of how different
granularity levels can be combined and the more convenient
setup depending on the system requirements.

A. COARSE AND MEDIUM GRANULARITIES
This scenario is convenient when accelerators using highly
regular architectures (e.g., systolic arrays or overlays) must
share reconfigurable resources with monolithic accelerators.
One option to combine both granularity levels is to use a
flexible VA, as shown in Figure 12a. A second option is to
define an island-based VA, where each island can be used
as a grid-based VA if necessary, as shown in 12b. The latter
provides benefits when it is needed to have more than one
RR in the FPGA, for example, to provide access from some
of these RRs to specific device resources, such as I/O pins.

B. COARSE AND FINE GRANULARITIES
With this combination, coarse grain reconfiguration can be
used to swap RMs in and out of the system, while fine grain
reconfiguration is useful to adapt the internal behavior of each
RM, without reconfiguring it completely. Figure 13 shows an
island-based VA with coarse and fine grain reconfiguration.
The vertical lines crossing the reconfigurable region in orange
represent fine grain components stacked in the same column.
As explained in Section III, fine grain reconfiguration reduces
the number of resources occupied by the system, so it allows
reducing the size of each RM. Another benefit when using
fine grain reconfiguration is to exploit its fast reconfiguration
time if frequent changes are needed inside a given accelerator.
Fine grain reconfiguration also allows reducing the cost of the
interface between the static system and the RM. Instead of
using a bus to change parameters within an RM, fine grain
reconfiguration can be used to reconfigure those elements
without a dedicated interface.

C. MEDIUM AND FINE GRANULARITIES
The main problem that restricts the usage of medium grain
reconfigurable architectures built on grid-based VAs with

202144 VOLUME 8, 2020



R. Zamacola et al.: Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems

FIGURE 13. (a) Fine and coarse granularities combined (b) fine and
medium granularities combined. In both cases the yellow lines represent
fine grain components (e.g., LUTs) stacked in one clock-region column.

flexible, reconfigurable interfaces is how internal submodules
in the grid can exchange data with the static system without
sharing a common physical border. Fine grain reconfigurable
parameters, used as an alternative to memory-mapped buses
for data supply to internal modules in medium grain reconfig-
urable architectures, constitute a convenient solution to this
problem. Figure 13b shows a grid-basedVAwith twomedium
grain accelerators that contain fine grain elements inside.

Furthermore, combining medium and fine grain reconfigu-
ration enables run-time scalable 2D processing architectures
where only the minimum necessary resources of the RR are
used at any time, leaving the unused area available for other
applications. On the one hand, medium grain reconfigura-
tion is used to change the architecture’s submodules or to
change its size by adding or removing submodules at run-
time. On the other hand, fine grain reconfiguration allows
configuring the RM’s behavior in a fast and centralized way
without the need for a direct connection between the static
system and every RM in the architecture.Moreover, fine grain
reconfiguration can be used to feed input data to the archi-
tecture. This approach solves one of the main problems of
scalable architectures, that is the fact that the inputs’ position
varies with the size of the architecture changes, which hinders
a direct connection to the static system. An example of a
scalable architecture using fine and medium granularities is
shown in Figure 14. There are two types of RMs: an input
module and a PE, both of them using fine-grain components.
In the case of the PE, the fine-grain components allow to
change the configuration of each PE while in the case of the
input module, it is possible to feed the inputs using fine-grain
reconfiguration. As shown in Figure 14c, the outputs of the
architecture are fixed at the right border of the RR. In contrast,
the location of the inputs varies according to the size of the
architecture; therefore, it is not possible to connect them to
the static system using a physical interface. In this scenario,
the input modules with fine-grain components can be used to
feed the inputs independently of the size of the architecture.

There are applications where the throughput provided
by fine-grain reconfiguration might not be enough. In this

FIGURE 14. Input (a) and PE (b) are reconfigurable modules with
fine-grain components that are used to build a run-time scalable 2D
architecture (c).

FIGURE 15. Using communication RMs to distribute the input/outputs to
all the PEs in a scalable 2D architecture.

case, it is possible to use another alternative where all the
input/outputs are fixed in one corner of the RR and distributed
to the PEs using specialized communication RMs, as shown
in Figure 15. The main drawback of this solution is an over-
head in reconfigurable resources, especially when the size of
the architecture is small. Notice that even in this scenario,
fine-grain reconfiguration is still needed to configure the PEs.
IMPRESS supports both approaches for building run-time
scalable 2D architectures.

D. COARSE, MEDIUM AND FINE GRANULARITY
Finally, it is possible to combine all the reconfiguration gran-
ularities and use each one for a specific purpose. Coarse
grain reconfiguration is used to swap monolithic accelerators
and to replicate accelerators for redundancy and acceleration
purposes. Medium grain reconfiguration provides support for

VOLUME 8, 2020 202145



R. Zamacola et al.: Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems

TABLE 5. Coarse grain RE performance.

composing modular accelerators. Lastly, fine grain recon-
figuration allows saving resources in RMs or to provide a
connection of the static part with each RM.

VIII. EXPERIMENTAL RESULTS
This section evaluates the performance of IMPRESS for each
granularity level.

A. COARSE GRAIN
The performance of coarse grain reconfiguration depends on
the size of the FPGA region to reconfigure. As a reference,
Table 5 shows the time needed to reconfigure a whole clock
region in a Xilinx Zynq-7020 SoPC using a PBS of 412.8 kB.
As shown in Table 5, the time spent in the reconfiguration pro-
cess is divided into three different phases. The readback pro-
cess where the previous configuration is read takes 3351 µs.
The previous configuration is combined with the new partial
bitstream in 1542 µs to compose the configuration sequence,
which is finally sent through the PCAP configuration port
in 4128 µs.

Regarding the implementation time to build a reconfig-
urable system, this metric is highly dependent on the tar-
get application. The use case designs included in the next
section of this article cannot be implemented with Xilinx
reconfiguration flow. For that reason, it is not possible to com-
pare the implementation time of both reconfiguration flows.
We refer the reader to the original paper of IMPRESS [11]
that compared the implementation time to build an image
filter architecture using an island VA with IMPRESS and
with Xilinx reconfiguration flow. In the case of Xilinx recon-
figuration flow it took 131 seconds to implement the static
system and 100 seconds to implement each RM. In contrast,
IMPRESS spent 229 seconds to implement the static system
and 75 seconds in each RM.

B. MEDIUM GRAIN
This subsection evaluates the performance of medium grain
reconfiguration in two different scenarios: reconfiguring a
modular accelerator and scaling a 2D architecture.

In the first scenario, we compare the difference between
reconfiguring a monolithic accelerator versus dividing it into
different modules. To do so, we divide a clock region of
the Xilinx Zynq-7020 SoPC into five slots that can allocate
a module of the accelerator. The slots can be arranged in
two configurations: one top of the other (i.e., vertical con-
figuration) or side by side (i.e., horizontal configuration).
When using coarse grain reconfiguration, it is necessary
to use a PBS of 412.8 kB requiring 9021 µs. In contrast,
when using medium grain reconfiguration, it is necessary to
change only the number of slots that differ from the previous

TABLE 6. Medium grain performance.

TABLE 7. Reconfiguration performance in 2D scalable architectures.

accelerator. To reconfigure one slot of approximately 84.5 kB
takes 1853 µs when the slots follow a horizontal configura-
tion and 7953 µs when the slots are placed on top of each
using a vertical configuration, as shown in Table 6. The results
show that dividing the slots in a vertical style is inefficient
regarding reconfiguration time with respect to the horizontal
configuration. However, it has the advantage of making the
PBS relocatable in all the slots. In conclusion, in this scenario,
medium-grain reconfiguration improves reconfiguration time
up to 4.8×.

In the second scenario, we assess the performance of
medium grain reconfiguration to build a scalable 2D archi-
tecture. We compare it to a solution where all the possible
architecture sizes are pre-implemented using coarse grain
reconfiguration in an island-based VA. The theoretical archi-
tecture has only one PE that is replicated in all the locations.
The architecture is implemented in a clock region of the the
Xilinx Zynq-7020 SoPC. When using coarse grain reconfigu-
ration, the whole RR is used. In contrast, when using medium
grain reconfiguration, the RR is virtually divided into a 5× 5
grid, where we allocate only the necessary PEs.

The time needed to reconfigure the architecture with coarse
grain reconfiguration is 9021 µs.In contrast, when building a
scalable architecture, the reconfiguration time depends on the
number of PEs that have to be reconfigured. Table 7 shows
the reconfiguration time required to increase the size of the
2D architecture for different configurations. The results show
that, in this scenario, using medium grain reconfiguration is
more efficient.

Using the medium reconfiguration granularity also reduces
the memory footprint and the time required to implement
all the RMs. Using medium grain reconfiguration reduces
the total number of RMs from 25 (one for each architecture
size) to 5 (one PE for each column). The memory is reduced
from 10320 (25 x 412.8) kB to 83 (5 x 16.6) kB, a 124×
reduction. Similarly, the time required for implementing the
RMs is significantly reduced, although the actual reduction is
application dependent.

202146 VOLUME 8, 2020



R. Zamacola et al.: Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems

TABLE 8. Performance comparison of different REs.

TABLE 9. Resource utilization of different REs.

C. FINE GRAIN
The fine grain RE is specialized in modifying the fine grain
reconfigurable parameters, multiplexers, and FUs supported
by IMPRESS. It has been designed in two different flavors: as
a software component and as a hardwaremodule. Both deliver
the same functionality, with different resource/performance
metrics. Table 8 shows a comparison of the performance of
both implementations (i.e., hardware and software) of the
IMPRESSfine grain RE compared to other REs found in state
of the art. The IMPRESS RE outperforms up to 3.8 times
the reconfiguration time for multiplexers and parameters,
and up to 4.4 times for FUs. This results from using the
compressed representation for LUT’s columns, the design of
the components which require modifying a reduced num-
ber of frames and the avoidance of a readback step due
to IMPRESS placement constraints. It must be noted that
data in Table 8 has been obtained with the REs working
at 100 MHz. However, as shown in [47], it is still possi-
ble to reduce the reconfiguration time by overclocking the
ICAP.

Regarding the resource utilization, Table 9 shows a com-
parison with existing solutions in the literature. It can be seen
that the hardware implementation of the RE uses 2.35 times
more logic than the HWICAP (available in Xilinx IP library),
whereas the MiCAP-Pro consumes 3x more logic than the
HWICAP [48].

The performance offered by fine grain parameters to
substitute bus infrastructures as a mechanism to exchange
data with the hardware accelerators configured in the pro-
grammable logic is discussed next. Since theminimum recon-
figurable unit spans a whole clock region in Xilinx FPGAs,
fine grain reconfiguration is highly dependent on the col-
umn’s occupation with fine grain elements. Each frame can
contain up to 12 32-bit parameters, which can be recon-
figured simultaneously. Table 10 shows the time needed to
reconfigure a different number of 32-bit parameters with fine
grain reconfiguration, compared to data writing operations in
memory-mapped registers using an AXI lite bus. When using
the AXI bus, the time to change the parameters is proportional
to the total number of parameters, needing approximately

TABLE 10. Performance of fine grain reconfiguration and AXI lite for
different number of parameters.

0.21 (µs) per each one. In contrast, when using fine grain
reconfiguration, the time is spent in two phases. When a
user changes a fine grain parameter, the IMPRESS run-time
software has to find the parameter’s location and modify its
internal configuration. Once the user has selected the new
value for all the parameters, the new configuration is sent
to the fine grain RE that reconfigures the selected frames.
The time spent in the first phase is proportional to the num-
ber of parameters changed (i.e., approximately 0.06 µs per
parameter). However, the time spent by the RE depends on
the number of frames that have to be reconfigured. In this
case, for each group of 12 parameters, a single frame has to
be reconfigured. In the software implementation of the RE,
the time to reconfigure multiple frames is proportional to
the total number of frames (approximately 7.5 µ per frame).
Differently, the hardware version has been designed to be
more efficient when reconfiguring multiple frames. Thus,
the time to reconfigure the first frame is higher than the
subsequent frames (i.e., the first frame is reconfigured in 6µs
while the following frames are reconfigured 3 µs).

Finally, we carried out a comparison between the resource
occupancy in fine grain reconfigurable FUs compared to a
non-reconfigurable alternative, in which all the required func-
tions are implemented simultaneously as a single Functional
Unit, and the functionality is configured by using a multi-
plexer which connects the output of the FU with the results
produced by the selected function. Taking the list of functions
in Table 4 as a reference, the number of resources used would
amount to 528 LUTs for a 32-bit non-reconfigurable FU
while the area occupancy for a fine grain FU with the same
functionality os reduced to 64 LUTs.

IX. USE CASES
Two different use cases have been implemented in a Xilinx
Zynq-7020 SoPC to show how IMPRESS can be used to build
reconfigurable systems with multiple granularity levels. The
first scenario combines the three different granularities in an
image-processing pipeline. The second use case combines
medium and fine granularity levels for implementing a scal-
able block-based neural network (BbNN).

A. IMAGE PROCESSING PIPELINE
Coarse, medium and fine grain levels have been combined
to design a reconfigurable architecture based on a streaming
pipeline for image processing. The static system is composed
of the Zynq Processing System (i.e., the integrated ARM

VOLUME 8, 2020 202147



R. Zamacola et al.: Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems

TABLE 11. Filter reconfiguration times.

TABLE 12. Filter resource utilization.

processor), a Video Direct Memory Access (VDMA) block
to move images from and to the memory RAM and an
empty black-box cell that represents the RR where differ-
ent image filters will be allocated. The filters have an AXI
stream interface for the transference of the image pixels.
The filter settings (e.g., image size and start/stop signals)
have been implemented with fine-grain parameters avoiding
the utilization of AXI lite interfaces. Using AXI interfaces
can limit the maximum number of filters that can be con-
figured in this architecture since this number cannot exceed
the number of AXI lite interfaces that have been instanti-
ated in the static system at design-time. In contrast, when
using fine grain reconfiguration, the number of filters that
can be allocated in the RR is only limited by the number
of reconfigurable resources available in the region. There-
fore, achieving a more flexible usage of the reconfigurable
area.

The implementation of the static system is shown
in Figure 16a, for which three filters have been designed:
the fast corner, the dilate and sobel filters. There is only one
RR in the static system that can be used to allocate one RM
that occupies the whole RR, such as the fast corner filter
shown in Figure 16b. The RR can also be used to allocate
several filters connected, without using static resources, in a
pipeline style, such as the dilate and sobel filters shown
in Figures 16c and 16d.

The PBS size of the fast corner filter is 244.8 kbytes, which
is approximately two times bigger than the sobel (121 kbytes)
and dilate (123.8 kbytes) filters. As shown in Table 11 it takes
6105 µs to download the fast corner, of which 2434 µs are
for the readback, 867 µs for the bitstream recombination and
finally, 2804 µs to write the contents in the configuration
memory. In contrast, when reconfiguring the sobel filters
it takes 2851 µs (1101 µs in the readback, 315 µs in the
bitstream recombination and 1435 µs to write the contents
in the configuration memory) to download the PBS. Table 12
shows the resource utilization of each filter.

This example shows how IMPRESS can be used to build
an image filter application where a RR can allocate one
filter using coarse grain reconfiguration or several filters in a
pipeline style using medium grain reconfiguration. The main
benefit of using medium grain reconfiguration in an image

FIGURE 16. These figures show the implementation in Vivado of (a) the
static system and different RMs implemented in different RRs: (b) fast
corner filter (c) dilate filter and (d) sobel filter. Orange lines represent the
interface of the RR while the green lines represent the routes between
logic components.

filter pipeline arises when multiple filters can be combined in
multiple configurations. Using coarse grain reconfiguration
would require implementing a different RM for each pipeline

202148 VOLUME 8, 2020



R. Zamacola et al.: Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems

configuration. In contrast, when using medium grain recon-
figuration, the user only has to design an RM for each filter
and then combine them at run-time. Therefore, using medium
grain reconfiguration simplifies the design and reduces the
implementation time and the partial bitstreams’memory foot-
print. Moreover, if the user wants to change the filter pipeline
to another combination, only the filters that differ have to
be reconfigured, thus reducing the reconfiguration time. It is
important to notice that the filters that are shared can vary
between different pipeline combinations. Using fine grain
parameters allows controlling the filters without needing a
bus infrastructure for each filter. This allows changing the
number of filters in the pipeline without being limited by the
number of bus interfaces allocated at design time.

B. BLOCK-BASED NEURAL NETWORK
A BbNN is a particular type of artificial neural network,
initially proposed in [51], in which neurons are arranged in
a 2D grid of processing elements (PEs). An Evolutionary
Algorithm (EA) conducts the training process of the BbNN.
The EA tries to optimize the weights, bias, and topology
of the network, as part of an iterative process in which a
considerable amount of candidate circuits are evaluated. For
this reason, reconfiguration time is a critical factor in this
application. The reader is referred to the work in [51] for
further information on the training process.

The second use case showing IMPRESS features is a
scalable BbNN, originally published by the authors in [52],
whose network size can be used by the EA as a configura-
tion parameter during training. To build an scalable BbNN,
we have combined medium and fine granularities. Medium
grain reconfiguration is exploited to allocate individual PEs
inside the RR. This technique allows adding or removing
PEs from the structure at run-time. Therefore, the number
of reconfigurable resources that the BbNN utilizes is propor-
tional to its size; Leaving unused reconfigurable resources
free to be used by other RMs. Fine grain is applied to change
the internal settings of each PE in the network (so provid-
ing fast adaptivity during training), as well as to provide
input data to the BbNN. Using fine grain reconfiguration
to change the configuration of the PEs avoids having to
implement direct connections from each PE to the static
system. Additionally, the BbNN input modules’ position
depends on the BbNN size (see subsection VII-C), so there
is no guarantee that they are located in the region border.
Differently, output PEs are fixed at the west RR border,
so an AXI interface is directly used to gather the processed
results.

The static system is composed of the Zynq PS, the coarse
and medium grain RE, a BbNN controller, and an empty RR
used to allocate the BbNN. The whole system operates at
100 MHz, except the RE, which works at 175 MHz. The RR
can allocate up to 3 × 5 PEs. The static system’s implemen-
tation is shown in Figure 17, with the BbNN outputs placed
in the west border of the RR.

FIGURE 17. Layout of the BbNN static system implementation. We have
depicted on top of the empty RR the grid where the PEs are allocated at
run-time to build the scalable BbNN.

FIGURE 18. BbNN PE structure. Fine-grain parameters are represented as
yellow rectangles.

The internal structure of the PEs has been modified com-
pared to the proposal in [51]. We have reduced the number of
DSPs per PE to one by reutilizing it through the seven clock
cycles required for processing each input data. The weight
values, bias values, and the PE configuration are imple-
mented using fine grain reconfigurable parameters, as shown
in Figure 18. The layout of the PE is shown in Figure 19, and
its resource utilization in Table 13.
Table 14 shows the time needed to reconfigure the entire

PE of the BbNN using medium grain reconfiguration. The
total time is 2104µs (887µs for readback, 50µs for bitstream
recombination, and 1167 µs to write the contents in the
configuration memory).

Table 15 shows the time needed to change the parameters
of a 3× 3 and a 3× 5 BbNN with fine grain reconfiguration
using the hardware-based fine grain RE, compared to the
use of an AXI lite interface in a non-reconfigurable BbNN
working at 100 MHz (the non-reconfigurable BbNN cannot
work at higher frequencies). In this example, it must be
noticed that scaling the BbNN from 3×3 to a 3×5 size does
not havemuch impact on the reconfiguration time. The reason
is that the number of LUT columns to be reconfigured is not

VOLUME 8, 2020 202149



R. Zamacola et al.: Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems

FIGURE 19. BbNN PE layout in Vivado.

TABLE 13. BbNN processing element resource utilization.

TABLE 14. PE reconfiguration time.

TABLE 15. Performance comparison for different BbNN sizes using fine
grain and AXI lite.

increased, and so the number of frames remains the same.
The time difference is due to the execution of the software
routine in charge of finding in which device column each
network parameter is located. Table 15 shows that the AXI
lite is more efficient. However, when using larger sizes in the
BbNN, the fine grain reconfiguration performance increases.

X. CONCLUSION AND FUTURE WORK
In this article, we propose an integrated view of multi-grain
reconfigurable systems, complemented with a critical anal-
ysis of how to combine effectively coarse, medium, and
fine grain reconfigurable components in real systems. This
discussion is presented in multiple scenarios, in which coarse
grain reconfiguration is proposed to swap monolithic recon-
figurable accelerators, fine grain reconfiguration is used
to change individual elements of a circuit when fast and
low overhead reconfiguration is required, and medium grain
reconfiguration is the preferred option when accelerators are
2D regular architectures that can be reconfigured or scaled at
run-time by changing specific building modules. Each granu-
larity level has different implementation requirements, which
have been implemented in IMPRESS, an automated tool pro-
posed for the design of multi-grain reconfigurable systems.
In the particular case of fine grain reconfiguration, different
parameterized HDL components with built-in reconfigurable
features are provided so that the users can instantiate them
in their design. Apart from the provided design features,
IMPRESS provides two different run-time reconfiguration

mechanisms tailored for each type of granularity, a software
version for the coarse and medium grains, and a specialized
reconfiguration engine for fast fine grain reconfiguration
implemented both as a hardware and a software component.
Two different use cases have been implemented in a commer-
cial SoPC to show how IMPRESS can be successfully used to
build reconfigurable systems with these multiple granularity
levels in the neural network and video processing domains.
These use cases show how the granularity selected affects the
flexibility, reconfiguration time, and the memory footprint of
the system under design.

Future work involves improving the fine grain capabili-
ties of IMPRESS. In particular, we aim to investigate the
possibility of reading the internal state of flip-flops, writing
and reading the content of Block RAMs, as well as on the
implementation of new domain-specific functional units.

REFERENCES
[1] R. Tessier, K. Pocek, and A. DeHon, ‘‘Reconfigurable computing architec-

tures,’’ Proc. IEEE, vol. 103, no. 3, pp. 332–354, Mar. 2015.
[2] T. J. Todman, G. A. Constantinides, S. J. E.Wilton, O.Mencer,W. Luk, and

P. Y. K. Cheung, ‘‘Reconfigurable computing: Architectures and design
methods,’’ IEE Proc.-Comput. Digit. Techn., vol. 152, no. 2, pp. 193–207,
Mar. 2005.

[3] M. D. Santambrogio, ‘‘From reconfigurable architectures to self-adaptive
autonomic systems,’’ in Proc. Int. Conf. Comput. Sci. Eng., vol. 2,
Aug. 2009, pp. 926–931.

[4] K. Papadimitriou, A. Dollas, and S. Hauck, ‘‘Performance of partial
reconfiguration in FPGA systems: A survey and a cost model,’’ ACM
Trans. Reconfigurable Technol. Syst., vol. 4, no. 4, pp. 1–24, Dec. 2011,
doi: 10.1145/2068716.2068722.

[5] K. Vipin and S. A. Fahmy, ‘‘FPGA dynamic and partial reconfiguration: A
survey of architectures, methods, and applications,’’ ACM Comput. Surv.,
vol. 51, no. 4, pp. 1–39, Sep. 2018, doi: 10.1145/3193827.

[6] S. Vassiliadis and D. Soudris, Fine-and Coarse-Grain Reconfigurable
Computing, vol. 16. New York, NY, USA: Springer, 2007.

[7] S. Kung, ‘‘VLSI array processors,’’ IEEE ASSP Mag., vol. 2, no. 3,
pp. 4–22, Jul. 1985.

[8] S.-Y. Kung, Arun, Gal-Ezer, and B. Rao, ‘‘Wavefront array proces-
sor: Language, architecture, and applications,’’ IEEE Trans. Comput.,
vol. C-31, no. 11, pp. 1054–1066, Nov. 1982.

[9] G. Stitt and J. Coole, ‘‘Intermediate fabrics: Virtual architectures for near-
instant FPGA compilation,’’ IEEE Embedded Syst. Lett., vol. 3, no. 3,
pp. 81–84, Sep. 2011.

[10] S. G. Merchant and G. D. Peterson, ‘‘Evolvable block-based neural
network design for applications in dynamic environments,’’ VLSI Des.,
vol. 2010, p. 4, Feb. 2010, doi: 10.1155/2010/251210.

[11] R. Zamacola, A. Garcia Martinez, J. Mora, A. Otero, and E. de La Torre,
‘‘IMPRESS: Automated tool for the implementation of highly flexible
partial reconfigurable systems with Xilinx Vivado,’’ in Proc. Int. Conf.
ReConFigurable Comput. FPGAs (ReConFig), Dec. 2018, pp. 1–8.

[12] R. Zamacola, A. Garcia Martinez, J. Mora, A. Otero, and E. de la Torre,
‘‘Automated tool and runtime support for fine-grain reconfiguration in
highly flexible reconfigurable systems,’’ in Proc. IEEE 27th Annu. Int.
Symp. Field-Program. CustomComput. Mach. (FCCM), Apr. 2019, p. 307.

[13] Xilinx, ‘‘7 series FPGAs configuration user guide,’’ Xilinx, San Jose, CA,
USA, Tech. Rep. UG470, Aug. 2018.

[14] (2020). SymbiFlow Prjxray. [Online]. Available: https://github.com/
SymbiFlow/prjxray

[15] A. Otero, E. de la Torre, and T. Riesgo, ‘‘Dreams: A tool for the design of
dynamically reconfigurable embedded and modular systems,’’ in Proc. Int.
Conf. Reconfigurable Comput. FPGAs, Dec. 2012, pp. 1–8.

[16] D. Koch, J. Torresen, C. Beckhoff, D. Ziener, C. Dennl, V. Breuer,
J. Teich, M. Feilen, and W. Stechele, ‘‘Partial reconfiguration on FPGAs
in practice—Tools and applications,’’ in Proc. ARCS, Feb. 2012, pp. 1–12.

[17] Xilinx, ‘‘Partial reconfiguration user guide,’’ Xilinx, San Jose, CA, USA,
Tech. Rep. UG909, Apr. 2018.

202150 VOLUME 8, 2020

http://dx.doi.org/10.1145/2068716.2068722
http://dx.doi.org/10.1145/3193827
http://dx.doi.org/10.1155/2010/251210


R. Zamacola et al.: Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems

[18] C. Beckhoff, D. Koch, and J. Torresen, ‘‘Go ahead: A partial reconfigura-
tion framework,’’ in Proc. IEEE 20th Int. Symp. Field-Program. Custom
Comput. Mach., Apr. 2012, pp. 37–44.

[19] D. Koch, C. Beckhoff, and J. Teich, ‘‘Recobus-builder—A novel tool
and technique to build statically and dynamically reconfigurable systems
for FPGAs,’’ in Proc. Int. Conf. Field Program. Log. Appl., Sep. 2008,
pp. 119–124.

[20] A. Otero, E. De La Torre, T. Riesgo, T. Cervero, S. Lopez, G. Callico, and
R. Sarmiento, ‘‘Run-time scalable architecture for deblocking filtering in
H.264/AVC-SVC video codecs,’’ in Proc. 21st Int. Conf. Field Program.
Log. Appl., Sep. 2011, pp. 369–375.

[21] Intel, ‘‘Partial reconfiguration user guide,’’ Intel, Santa Clara, CA, USA,
Tech. Rep. UG-20136, Nov. 2019.

[22] T. Drahonovsky, M. Rozkovec, and O. Novak, ‘‘Relocation of reconfig-
urable modules on Xilinx FPGA,’’ in Proc. IEEE 16th Int. Symp. Design
Diag. Electron. Circuits Syst. (DDECS), Apr. 2013, pp. 175–180.

[23] L. Gantel, M. E. A. Benkhelifa, F. Lemonnier, and F. Verdier, ‘‘Module
relocation in heterogeneous reconfigurable Systems-on-Chip using the
Xilinx isolation design flow,’’ in Proc. Int. Conf. Reconfigurable Comput.
FPGAs, Dec. 2012, pp. 1–6.

[24] C. Beckhoff, D. Koch, and J. Torresen, ‘‘The xilinx design language
(XDL): Tutorial and use cases,’’ in Proc. 6th Int. Workshop Reconfigurable
Commun.-Centric Syst.–Chip (ReCoSoC), Jun. 2011, pp. 1–8.

[25] J. Rettkowski, K. Friesen, andD. Gohringer, ‘‘RePaBit: Automated genera-
tion of relocatable partial bitstreams for Xilinx Zynq FPGAs,’’ in Proc. Int.
Conf. ReConFigurable Comput. FPGAs (ReConFig), Nov. 2016, pp. 1–8.

[26] B. Gottschall, T. Preußer, and A. Kumar, ‘‘Reloc—An open-source Vivado
workflow for generating relocatable end-user configuration tiles,’’ in Proc.
IEEE 26th Annu. Int. Symp. Field-Program. Custom Comput. Mach.
(FCCM), Apr./May 2018, p. 211.

[27] R. Oomen, T. Nguyen, A. Kumar, and H. Corporaal, ‘‘An automated
technique to generate relocatable partial bitstreams for xilinx FPGAs,’’ in
Proc. 25th Int. Conf. Field Program. Log. Appl. (FPL), Sep. 2015, pp. 1–4.

[28] M. Nguyen and J. C. Hoe, ‘‘Amorphous dynamic partial recon-
figuration with flexible boundaries to remove fragmentation,’’ 2017,
arXiv:1710.08270. [Online]. Available: http://arxiv.org/abs/1710.08270

[29] K. Dang Pham, E. Horta, and D. Koch, ‘‘BITMAN: A tool and API for
FPGA bitstream manipulations,’’ in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Mar. 2017, pp. 894–897.

[30] A. Vaishnav, K. D. Pham, D. Koch, and J. Garside, ‘‘Resource elastic
virtualization for FPGAs using OpenCL,’’ in Proc. 28th Int. Conf. Field
Program. Log. Appl. (FPL), Aug. 2018, pp. 111–1117.

[31] S. Ma, Z. Aklah, and D. Andrews, ‘‘A run time interpretation approach for
creating custom accelerators,’’ in Proc. 25th Int. Conf. Field Program. Log.
Appl. (FPL), Sep. 2015, pp. 1–4.

[32] S. Ma, D. Andrews, S. Gao, and J. Cummins, ‘‘Breeze computing: A just
in time (JIT) approach for virtualizing FPGAs in the cloud,’’ in Proc. Int.
Conf. ReConFigurable Comput. FPGAs (ReConFig), Nov. 2016, pp. 1–6.

[33] M. Nguyen and J. C. Hoe, ‘‘Time-shared execution of realtime computer
vision pipelines by dynamic partial reconfiguration,’’ in Proc. 28th Int.
Conf. Field Program. Log. Appl. (FPL), Aug. 2018, pp. 230–2304.

[34] A. Sudarsanam, A. Dasu, R. Kallam, J. Carver, and R. Barnes, ‘‘Dynami-
cally reconfigurable systolic array accelerators: A case studywith extended
Kalman filter and discrete wavelet transform algorithms,’’ IET Comput.
Digit. Techn., vol. 4, no. 2, pp. 126–142, Mar. 2010.

[35] A. Otero, E. de la Torre, T. Riesgo, and Y. E. Krasteva, ‘‘Run-time scalable
systolic coprocessors for flexible multimedia SoPCs,’’ in Proc. Int. Conf.
Field Program. Log. Appl., Aug. 2010, pp. 70–76.

[36] A. Gallego, J. Mora, A. Otero, R. Salvador, E. de la Torre, and T. Riesgo,
‘‘A novel FPGA-based evolvable hardware system based on multiple
processing arrays,’’ in Proc. IEEE Int. Symp. Parallel Distrib. Process.,
Workshops Phd Forum, May 2013, pp. 182–191.

[37] E. Eto, ‘‘Difference-based partial reconfiguration,’’ Xilinx, San Jose, CA,
USA, Tech. Rep. XAPP290, Dec. 2007.

[38] C. H. Hoo and A. Kumar, ‘‘An area-efficient partially reconfigurable
crossbar switch with low reconfiguration delay,’’ in Proc. 22nd Int. Conf.
Field Program. Log. Appl. (FPL), Aug. 2012, pp. 400–406.

[39] R. Backasch and C. Hochberger, ‘‘Custom reconfigurable architecture
based on Virtex 5 lookup tables,’’ in Architecture of Computing Systems–
ARCS, H. Kubátová, C. Hochberger, M. Daněk, and B. Sick, Eds. Berlin,
Germany: Springer, 2013, pp. 183–194.

[40] E. Vansteenkiste, K. Bruneel, and D. Stroobandt, ‘‘Maximizing the reuse of
routing resources in a reconfiguration-aware connection router,’’ in Proc.
22nd Int. Conf. Field Program. Log. Appl. (FPL), Aug. 2012, pp. 322–329.

[41] E. M. Abdali, M. Pelcat, F. Berry, J.-P. Diguet, and F. Palumbo, ‘‘Exploring
the performance of partially reconfigurable point-to-point interconnects,’’
in Proc. 12th Int. Symp. Reconfigurable Commun.-Centric Syst.–Chip
(ReCoSoC), Jul. 2017, pp. 1–6.

[42] L. Bozzoli and L. Sterpone, ‘‘Self rerouting of dynamically reconfigurable
SRAM-based FPGAs,’’ in Proc. NASA/ESA Conf. Adapt. Hardw. Syst.
(AHS), Jul. 2017, pp. 77–84.

[43] J. Mora and E. de la Torre, ‘‘Accelerating the evolution of a
systolic array-based evolvable hardware system,’’ Microprocessors
Microsyst., vol. 56, pp. 144–156, Feb. 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0141933117305483

[44] K. Bruneel, W. Heirman, and D. Stroobandt, ‘‘Dynamic data folding with
parameterizable FPGA configurations,’’ ACM Trans. Des. Automat. Elec-
tron. Syst., vol. 16, no. 4, p. 43, Oct. 2011, doi: 10.1145/2003695.2003703.

[45] F. Abouelella, T. Davidson, W. Meeus, K. Bruneel, and D. Stroobandt,
‘‘How to efficiently implement dynamic circuit specialization systems,’’
ACM Trans. Des. Automat. Electron. Syst., vol. 18, no. 3, p. 35, Jul. 2013,
doi: 10.1145/2491477.2491479.

[46] (2020). IMPRESS Tool. [Online]. Available: https://des-cei.github.
io/tools/impress

[47] S. G. Hansen, D. Koch, and J. Torresen, ‘‘High speed partial run-
time reconfiguration using enhanced ICAP hard macro,’’ in Proc. IEEE
Int. Symp. Parallel Distrib. Process. Workshops Phd Forum, May 2011,
pp. 174–180.

[48] A. Kulkarni and D. Stroobandt, ‘‘How to efficiently reconfigure tunable
lookup tables for dynamic circuit specialization,’’ Int. J. Reconfigurable
Comput., vol. 2016, pp. 1–12, 2016.

[49] Xilinx, ‘‘AXI HWICAP LogiCORE IP product guide,’’ Xilinx, San Jose,
CA, USA, Tech. Rep. PG134, Oct. 2016.

[50] A. Kulkarni, V. Kizheppatt, and D. Stroobandt, ‘‘MiCAP: A custom recon-
figuration controller for dynamic circuit specialization,’’ in Proc. Int. Conf.
ReConFigurable Comput. FPGAs (ReConFig), Dec. 2015, pp. 1–6.

[51] S.-W.Moon and S.-G. Kong, ‘‘Block-based neural networks,’’ IEEE Trans.
Neural Netw., vol. 12, no. 2, pp. 307–317, Mar. 2001.

[52] A. García, R. Zamacola, A. Otero, and E. de la Torre, ‘‘A dynamically
reconfigurable BbNN architecture for scalable neuroevolution in hard-
ware,’’ Electronics, vol. 9, no. 5, p. 803, May 2020.

RAFAEL ZAMACOLA received the M.Sc. degree
in industrial engineering from the Universidad
Politécnica de Madrid (UPM), Spain, in 2014,
where he is currently pursuing the Ph.D. degree.
He has worked three years as a Research and
Development Engineer of developing electromed-
ical devices. His research interests include recon-
figurable tools and architectures on FPGAs and
evolvable hardware.

ANDRÉS OTERO (Member, IEEE) received the
M.Sc. degree (Hons.) in telecommunication engi-
neering from the University of Vigo, in 2007, and
theMaster of Research and Ph.D. degrees in indus-
trial electronics from the Universidad Politécnica
de Madrid (UPM), in 2009 and 2014, respectively.
He is currently an Assistant Professor of electron-
ics with UPM and a Researcher with the Centro de
Electrónica Industrial (CEI). His current research
interests include embedded system design, recon-

figurable systems on FPGAs, evolvable hardware, and embedded machine
learning. During the last years, he has been involved in different research
projects in these areas. He is the author of more than 30 papers published in
international conferences and journals. He has served as the Program Com-
mittee Member of different international conferences in the field of recon-
figurable systems, such as SPL, ERSA, ReConFig, DASIP and ReCoSoC.

VOLUME 8, 2020 202151

http://dx.doi.org/10.1145/2003695.2003703
http://dx.doi.org/10.1145/2491477.2491479


R. Zamacola et al.: Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems

ALBERTO GARCÍA received the M.Sc. degree
in industrial engineering from the Universidad
Politécnica de Madrid (UPM), Spain, in 2019,
where he is currently pursuing the Ph.D. degree.
He was on an internship with the Centro de Elec-
trónica Industrial (CEI) during the last year of
his studies. His research interests include develop-
ment of neural networks on FPGAs and evolution-
ary algorithms.

EDUARDO DE LA TORRE received the Ph.D.
degree in electrical engineering from UPM,
in 2000. He is currently an Associate Professor
of electronics with the Universidad Politécnica de
Madrid (UPM), Spain, doing his research with the
Centre of Industrial Electronics. His main exper-
tise is in FPGA design, embedded systems design,
HW acceleration, signal processing, and partial
and dynamic reconfiguration of digital systems.
He has participated in more than 40 projects,

eleven of them being EU funded projects and, overall, in nine funded
projects related with reconfigurable systems. He has been a Program Chair
of ReConFig, the General Chair of ReCoSoC, two conferences with strong
interest in hardware reconfiguration.

202152 VOLUME 8, 2020


