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ABSTRACT With the development and expansion of smart grid systems, vehicle-to-grid (V2G) has
become a new type of energy interaction based on Internet of Electric Vehicles (IoEVs). By leveraging the
charging/discharging capabilities of EVs, V2G can be implemented in smart grid to enable intelligent energy
transactions and reduce the unbalance of supply and demand. However, the implementation of interaction
between the existing V2G technology and IoEVs faces the problems of high-complexity energy transaction
management, insufficient computing capability, poor scalability, and lack of incentive mechanisms. The
three-tier bi-directional energy transaction management strategies based on game and contract theory
have been proposed. Firstly, the optimal pricing and EV discharging strategy is obtained based on the
non-cooperative Stackelberg game and the energy-price equilibrium. Secondly, in order to optimize the
utility of EAG, the information asymmetry incentive mechanism based on contract theory is proposed.
This mechanism can effectively stimulate EVs to contribute to V2G energy transaction and further improve
social benefits considering the energy transmission loss and battery life cycle degradation. To reduce the
communication as well as processing latency and improve the efficiency of energy transaction management,
edge computing has been incorporated. Simulation results show that the performance of the proposed scheme
significantly outperforms other existing schemes under various scenarios.

INDEX TERMS Smart grid, V2G energy management optimization, Stackelberg game, contract theory,
edge computing.

I. INTRODUCTION
Energy has been playing an increasing function in the tech-
nological development and growth of human beings. The
world-wide electrical energy demand is observed to be grow-
ing and evolving in recent years, and it is anticipated to double
in the coming 20 years [1]. In addition, with the development
of smart grid and the popularity of renewable energy genera-
tion, the demand for power storage has also increased. Smart
energy management is an active, equipped, and systematic
coordination of power generation, transformation, distribu-
tion, and consumption to meet the balance of supply and
demand, taking into account environmental and monetary
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objectives [2], [3]. Vehicle-to-grid (V2G) has evolved into a
feasible smart energy management technology by leveraging
the bi-directional energy transaction capacity of Internet of
electric vehicles (IoEVs) [4]. In V2G, electric vehicles (EVs)
contribute to the demand-supply balance by charging as well
as storing the excessive energy during the off-peak time as
energy consumers, and discharging during the peak time
as energy providers [5], [6]. The bi-directional energy flow
between EVs and the grid copes with the time-varying storage
and supply requirements, while avoiding the overhead asso-
ciated with the extra infrastructure deployment.

Despite the above mentioned advantages, the extensive
application of V2G technology in smart grid still faces severe
challenges. First, the energy management based on the inter-
action between V2G and IoEVs is extremely complex due
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to the participation of multiple entities as well as the game
and decision coupling among them, such as the grid, energy
aggregator (EAG), and EVs. Second, considering the battery
consumption and other costs caused by discharging behav-
iors, EVs are reluctant to participate in energy transaction
without adequate compensation. On the other hand, paying
excessive rewards for EVs will lead to a loss of the EAG’s
utility. In addition, the EV-side information is unknown to
EAG due to the signaling overhead and privacy concern. Last
but not least, a large number of computational-intensive tasks
are generated during the bi-directional energy transaction
management process. However, the traditional cloud com-
puting architecture results in high latency and low network
scalability due to the remote nature and lack of spectrum
resources. Therefore, it is urgent to design the low-complex
energy transaction strategy and efficient incentivemechanism
for the energy management in V2G.

The studies on energy management in smart grid have
received considerable attentions from academia. In [7],
Wu et al. considered the energy transaction between the
energy consumers and local trading centers (LTC), and
proposed the optimal pricing and energy scheduling strate-
gies for both nonprofit-oriented LTC and profit-oriented
LTC by analyzing the properties of the formulated opti-
mization problem. In [8], considering the volatility of
the grid caused by the dynamic nature of renewable
generation and EV charging behaviors, Zhou et al.
proposed a robust energy scheduling scheme to adjustably
cope with the over-conservatism problem by leveraging
chance-constrained methods. In [9], Sun et al. considered a
fog-computing based real-time energy transaction system for
plug-in hybrid EVs, and proposed the charging/discharging
optimization solutions by leveraging and improving the non-
dominated sorting genetic algorithm. However, the above
mentioned works have assumed that the global information
is available to the energy transaction entities, and do not take
into account the unequal status and information asymmetry
between every providers and consumers. They cannot directly
applied to the energy management in V2G, where the EAG
has a dominate energy transaction status over EVs, and the
private information of EVs is unknown to EAG.

Motivated by the above challenges, we propose a three-tier
bi-directional V2G competitive energy transaction manage-
ment model, which consists of three key components: energy
grid as an energy supplier, EAG as an energy distributer,
and EVs as energy providers. Two V2G energy transaction
management strategies are proposed. First, considering the
conflicting objectives and unequal status of EVs and EAG,
we formulated a Stackelberg game to solve the optimal pric-
ing and EV discharging problem by achieving energy-price
game-equilibrium. Second, under the scenarios with and
without information asymmetry, contract-theory based incen-
tive mechanisms are proposed to motivate the EVs to partici-
pate in the energy transaction and discharge electricity during
peak time, while maximizing the utility of EAG. In addition,

FIGURE 1. The architecture of the proposed three-tier bi-directional V2G
energy transaction management.

edge severs are deployed with the EAG to provide sufficient
computing resources and improve the efficiency of the energy
transaction management.

The reminder of this paper is organized as follows. The
proposed three-tier bi-directional V2G system model is pre-
sented in section II. The optimal pricing and EV discharg-
ing strategy based on Stackelberg game is provided in
section III. Section IV elaborates the incentive mechanisms
based on contract theory. The simulation result is illustrated
in section V. Finally, this paper is concluded in section VI.

II. SYSTEM MODEL
The system model of the proposed three-tier bi-directional
V2G energy transaction management is shown in Fig. 1,
which consists of three key components: the energy grid
as an energy supplier, EAG as an energy distributor, and
several EVs as energy providers. The specific capability and
functionality of each component are elaborated as follows.

A. ENERGY GRID (ENERGY SUPPLIER)
The energy grid is responsible for generating electricity and
supplying it to the energy customers. As energy supplier,
the energy grid integrates the computation, communication,
and storage resources to provide energy services to EAGs.
In addition, the overloaded energy grid needs to obtain elec-
tricity from the EAG during peak time, which is the focus
of this paper. The details of how to design the optimal
price strategy for the energy grid and how to model and
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formulate the interactions between the energy grid and EVs
based on game theory and contract theory are illustrated in
section III and IV, respectively.

B. EAG (ENERGY DISTRIBUTER)
EAG can coordinate the energy flow and energy transaction
process between EVs and the energy grid with integration of
IoEVs, including information collection, status monitoring,
and discharging scheduling. Specifically, as shown in Fig. 1,
the EAG plays an important role in solving the urgent energy
demand of the energy grid by purchasing electricity fromEVs
and selling it back to the energy grid. In addition, EAG is
equipped with edge servers to provide sufficient computation
resources, relieve network burden and reduce transmission
delay. The strategy optimization and decision making can be
performed at the network edge, which improves the efficiency
of energy transaction management.

C. EVs (ENERGY PROVIDERS)
In the bi-directional V2G energy transaction, EVs can act
as energy providers to supply electricity for the overloaded
energy grid by discharging its battery during the peak time,
while they can also act as energy consumers by charging its
battery with cheaper electricity and help to absorb the extra
energy during the off-peak time.

III. V2G ENERGY TRANSACTION MANAGEMENT
STRATEGY BASED ON GAME-THEORY
In this section, we use Stackelberg game to solve the optimal
pricing and EV discharging problem considering the domi-
nate position of EAG over EVs.

A. GAME DESCRIPTION
Stackelberg game involves players with unequal status which
are classified into leader and follower. The leader first makes
a decision, and then the follower chooses a policy based on the
leader’s decision to optimize its goal. The leader estimates the
optimal policy of the follower and chooses the corresponding
possible optimal strategy [10].

The V2G energy transaction management can be modeled
as a Stackelberg game, which includes four inputs:
Players: The entities who interact in the game are regarded

as players, where EAG acts as a leader and all EVs act as
followers.
Players’ Strategy: The leader’s strategy is defined as a

series of price vectors and each follower’s strategy is con-
sidered as the discharging policy under certain constraints.
Utility Functions: The utility functions are defined for both

leader and followers, to quantify the cost that the leader/EAG
spends on purchasing electricity from the followers/EVs (cost
minimization) and the benefit of each follower that sells its
surplus electricity to the leader (benefit maximization).
Information: The information includes what players know

about the situation and each other, and what actions they
would follow before making a decision.

Stackelberg equilibrium (SE) is defined as a game-
theoretic solution for this type of game. At the SE, the
leader minimizes its cost function based on the identi-
fied best response strategies of all the followers. Subse-
quently, each follower maximizes its benefit by selecting the
optimal-response strategy. Thus, the SE can be expressed as a
profile of equilibrium strategies over which each player will
not benefit more individually by deviating from this SE [11].
Non-cooperative game-equilibrium (GE) in the concept of
game theory is a solution to the game involving two or more
players [12]. The formulated non-cooperative Stackelberg
game consists of one leader/EAG and N followers/EVs. The
leader/EAG sends a price signal to the followers/EVs, which
response by selecting the optimal discharging strategy.

In order to undergo a successful collision, there must have
a total energy demand, which is determined by the minimum
energy threshold of the energy grid and the backup energy
stored in EAG. Denote the total energy demands of the energy
grid as Egrid , which satisfies

Egrid ≤ eEAG, (1)

where eEAG is energy requested from the energy grid to
EAG, i.e., the energy demand of EAG. Hence, the energy
discharging required from all EVs should be greater or equal
to the energy demand of EAG to satisfy the ancillary service,
which is given by

N∑
n=1

dn ≥ eEAG,∀n ∈ N , (2)

where N = {1, · · · , n, · · · ,N } represents the index set of
EVs, and dn is the energy discharging requirement for EV n.

In the following, we derive the threshold of dn by intro-
ducing the state of charge (SoC) [13]–[15]. SoC and battery
capacity estimation are key issues in the EV battery manage-
ment systems. For EV n, SoCn is defined as the ratio of its
available battery energy En to the maximum battery capacity
Cn,max , i.e.,

SoCn =
En

Cn,max
. (3)

After discharging, the remaining SoCn should satisfy the
minimum energy requirement for traveling, which is given
by

En − dn
Cn,max

≥ X (Dn), (4)

where Dn is the distance that has to be traveled before the
next charging.X (Dn) is the required SoC to travel the distance
Dn after discharging, which is a monotonically increasing
function of Dn. Combining (3) and (4), we can derive the
threshold of dn, which is given by

dn ≤ Cn,max[SoCn − X (Dn)]. (5)
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B. OPTIMAL DISCHARGING STRATEGY OF EVs
As energy providers, the utility of followers/EVs are strongly
correlated with the pricing strategy of EAG. Once the price
provided by EAG is received, each EV reacts to it by selecting
the optimal discharging strategy. Specifically, the discharging
strategy of the EV n is equivalent to dn, ∀n ∈ N .
Let p̄ = [p1, · · · , pn, · · · , pN ] be the pricing strat-

egy of the EAG, where each element pn corresponds
to the price determined for the EV n. When the EAG
announces its strategy p̄, each EV will react based on the
specified price pn and generate its best response strategy.
The utility of EVs is determined by the following three
measures.

1) MONETARY REVENUE
The EVs earn the monetary revenue by selling their surplus
electricity to the EAG, which is calculated as the price times
the amount of the discharging electricity, i.e., pndn.

2) DISSATISFACTION REVENUE
Dissatisfaction revenue of EVs assesses the dissatisfaction
level towards the remaining SoC. The discharging behavior
conducts a negative impact on the dissatisfaction level of EVs.
Specifically, the more energy discharged, the less satisfac-
tion EVs will have. Therefore, we define the dissatisfaction
parameter for EV n as a function which decreases with SoCn
[16], i.e.,

Drn(dn) =
1

SoCn∑N
n=1 (

1
SoCn

)
, SoCn > 0, (6)

EV n with a smaller SoCn has a larger Drn, indicating a high
dissatisfaction. In the contract, a larger SoCn implies that EV
n can discharge more surplus energy. In fact, EV n with a
largerDrn is in a static status, which means a long idle period,
while EV nwith a smallerDrn is more active andmorewilling
to discharge [16]. In addition, we model the dissatisfaction
revenue as− 1

2Drn(dn)
2, which is negative and decreases with

the dissatisfaction parameter and discharge, implying more
cost.

3) CONTRIBUTION REVENUE
Contribution revenue evaluates the contribution of an EV
compared with that of all the other EVs. Here, the con-
tribution revenue is defined to be proportional to the dif-
ference between dn and the average discharge of all EVs
( 1N )

∑N
n=1 dn, i.e., dn − ( 1N )

∑N
n=1 dn. Basically, the aver-

age discharge shows the overall performance of all EVs.
As the difference between dn and ( 1N )

∑N
n=1 dn changes from

a positive number to a negative one, the contribution level
of EV n drops and affects its overall utility. The consider-
ation of contribution revenue effectively mitigates the self-
ish behavior. As a matter of fact, one with less contribu-
tion cannot take any advantage from others that contribute
more [16].

Based on the EAG’s pricing strategy p̄, the utility function
of EV n is defined as

Un(p̄, dn) = pndn +
1
2
pn(dn −

1
N

N∑
n=1

dn)−
1
2
Drn(dn)2. (7)

Here, the three terms on the right hand side represent the
monetary revenue, the contribution revenue, and the dissat-
isfaction revenue, respectively. Among them, the second and
third terms indicate the effect of all the other followers, and
show the impact of a particular EV on overall performance.
Taking the second term for example, if dn is larger than
( 1N )

∑N
n=1 dn, more discharge is achieved, which can improve

overall performance.
The utility optimization problem P1 for each EV is formu-

lated as

P1 : maxUn(p̄, dn)

s.t. C1 : dmin
n ≤ dn ≤ dmax

n ,

C2 :

N∑
n=1

dn ≥ eEAG,

C3 : dn ≤ Cn,max[SoCn − X (Dn)], (8)

where C1 indicates the lower and upper bound of energy
discharging strategy for EV n. C2 indicates that the total
discharged energy should be greater or equal to the energy
demand of EAG. C3 is the threshold of dn.
The optimization objective, i.e., each EV’s utility function

is a convex function of dn. By deriving the first-order deriva-
tive of Un(p̄, dn), i.e.,

∂Un(p̄, dn)
∂dn

= pn +
1
2
pn(1−

1
N
)− Drndn. (9)

we can directly get the optimal response discharging strategy
as

d∗n =
1
Drn

(
3
2
−

1
2N

)pn. (10)

C. OPTIMAL PRICING STRATEGY OF EAG
The EAG can make a profit by buying surplus energy from
EVs and selling it back to the energy grid. The utility of EAG
is defined as

UEAG(p̄, d̄)=β ln(
N∑
n=1

dn+
N∑
n=1

(dn)2)−
N∑
n=1

(pndn +

pn(dn −
1
N

N∑
n=1

dn))− Ploss
∑N

n−1
dn − Bde

∑N

n=1
dn, (11)

where the first term represents the sum of virtual revenue
based on the energy it receives and β is the discharging
range constraint for each EV. The second term shows the
total cost for purchasing electricity. The third term represents
the cost of power loss Ploss and the last term represents the
compensation cost caused by the battery degradation Bde.
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The EAG updates its strategy based on the follower’s
strategies denoted as d̄ = [d1, dn, · · · , dN ]. The pricing
strategy optimization problem is formulated as

P2 : max UEAG(p̄, d̄)

s.t. C4 : 0 ≤
N∑
n=1

dn≤ (
1
N
)
N∑
n=1

dn

C5 : βnln (
N∑
n=1

dn +
N∑
n=1

(dn)2) ≥
N∑
n=1

pndn

+ Ploss
∑N

n−1
dn + Bde

∑N

n=1
dn. (12)

Then, the EAG needs to adaptively provide the optimum price
vector p̄ for those connected EVs based on their optimal
discharging response d∗n . Similarly, we leverage the partial
derivative to calculate the optimal price p∗n. Given

∂UEAG(p̄, d̄)
∂pn

= βln (1+ 2
N∑
n=1

dn)−
N∑
n=1

(2−
1
N
)pn, (13)

the optimal pricing strategy is calculated as

p∗n =
βln (1+ 2

∑N
n=1 dn)∑N

n=1 (2+
1
N )

. (14)

The optimal pricing and discharging strategies of EAG and
EVs (p̄∗, d̄∗) is an SE for the one-leader and N -followers
game if it corresponds to the solution of the following opti-
mization problem.

(p̄∗, d̄∗) = argmax
p,d

UEAG(p̄, d̄∗),

s.t. d∗n = argmax
dn

Un(p̄, dn). (15)

IV. V2G ENERGY TRANSACTION MANAGEMENT BASED
ON CONTRACT-THEORY
In this section, we propose contract theory-based incentive
mechanisms to motivate EVs to participate in energy trans-
action and to optimize the utility of EAG under the scenarios
with and without information asymmetry.

A. EV TYPE MODELING
EVs are interested in contributing to support the energy
demand of the energy grid by discharging their batteries
if an adequate compensation is provided. EAG can design
and sign a contract, which specifies the required electricity
and the corresponding reward, with EVs to obtain the sur-
plus electricity of EVs and supplement to the overloaded
energy grid [17]. Based on the battery capacity and preference
towards discharging, the considered N EVs can be sorted in
an ascending order and classified into N types, the set of
which is denoted as2,2 = [θ1, . . .−, θn, . . . , θN ]. Then we
have

θ1 ≤ . . . ≤ θn ≤ . . . ≤ θN , n = 1, · · · ,N . (16)

For the sake of simplicity, 2 is assumed to be a discrete
and finite space. Numerically, θn is equal to the maximum

Algorithm 1 Algorithm to Reach Non-Cooperative SE

1: Initialization: N , SoCn,int , pint , dminn , dn, dmaxn ,Cn,max ,
βn,Ploss,Bde.

2: For each EV in N , calculate Drn(dn).
3: EAG first generates its strategy:

For each EV in N , EAG initiates
p̄ = [p1, p2, · · · , pN ].

4: EVs determine their best-response strategy:
For each EV in N , the best response strategy dn(p̄)

corresponding to p̄ can be obtained by solving (8).
Update Drn(dn) as equation (6), and take the first-order
derivative of (7) with dn and set it to zero as

∂Un(p̄,dn)
∂dn

= 0.
Then dn ¯(p) = argmaxdn Un(p̄, dn) as equation (15).

5: EAG then upgrades and re-generates its optimal strategy:
Update dn(p̄) as the input of equation (11). Solve

(11) by taking the partial derivative with each pn
in p̄ to be zero as ∂UEAG(p̄,d̄)

∂[p1,p2,...,pN ]
= 0. Then, p̄ =

argmaxp̄∗ UEAG(p̄, d1(p̄), . . . , dN (p̄))
Record d∗n (p̄) and p̄

∗ as the optimal strategy
6: Repeat 3-5 to obtain the optimal solution until the SE is

satisfied.

electricity that can be discharged by the corresponding EV.
The specific type of an EV is only known by itself and is
unavailable to the EAG.

B. CONTRACT FORMULATION
A contract which consists of N contract items is designed
for N types of EVs, i.e., one contract item for each type of
EV [17], [18]. The contract item designed for type θn EV
is denoted as (dn,Rn), where Rn is the dedicated reward in
terms of energy coins for type θn EV and dn is the required
electricity as defined before. The contract is denoted as
{(dn,Rn),∀n ∈ N }.With information asymmetry, EAG does
not know the specific type of each EV, but only has the knowl-
edge of the total number of EV types and the probability
distribution. Denoting the probability that an EV belongs to
type θn as λn, we have

∑N
n=1 λn = 1.

In this scenario, considering a total ofN EV types aswell as
the battery degradation and power loss, the estimated utility
of the EAG, UEAG, is calculated as [19]

UEAG({dn}, {Rn}) = N
N∑
n=1

λn(γEAGdn − Rn)

−Ploss
N∑
n=1

dn − Bde
N∑
n=1

dn, (17)

where the γEAG is the unit value of obtained electricity for the
EAG. The EAG will benefit from the contract item designed
for type θn EVs only if γEAGdn − Rn ≥ 0, otherwise, the EAG
has no incentive to purchase electricity from type θn EVs.
The utility function of type θn EV which accepts the con-

tract item (dn,Rn) is the offered reward minus the cost of
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discharged electricity, which is given by

Un(dn,Rn) = θnm(Rn)− γ dn,∀n ∈ N , (18)

where γ is the unit cost of discharged electricity. θnm(Rn)
represents the value of Rn for type θn EV, and m(Rn)
is the evaluation function of the reward, which satisfies
m(0) = 0,m′(Rn) > 0, and m′′(Rn) < 0 for all Rn. Without
loss of generality, m(Rn) can be calculated as a logarithmic
function, i.e.,

m(Rn) = loge(Rn) = ln(Rn). (19)

Therefore, the expected social welfare (SW) is the sum
utility of the EAG and the N EVs, which is given by

SW (dn,Rn) =
N∑
n=1

Un(dn,Rn)+ UEAG({dn}, {Rn}). (20)

Three constraints should be satisfied for the feasibility and
effectiveness of the contract. First, an EV will not accept the
corresponding contract item if it results in a negative utility
considering the rationality of energy transaction. In other
words, the individual rationality (IR) constraints should be
satisfied, which can be given by

Un(dn,Rn)≥ 0⇒ θnm(Rn)− γ dn≥ 0,∀n ∈ N . (21)

Besides, a feasible contract has to consistently satisfy the
incentive compatibility (IC) constraints, which motivates
type θn EV to select the contract item intended for its own
type. In other words, when the EV selects the contract
items which are not designed for its type, no more util-
ity will be obtained. The IC constraints can be formulated
as

θnm(Rn)− γ dn≥ θnm(Rj)− γ dj, j 6= n,∀n, j ∈ N . (22)

In addition, the reward of higher type EVs should also be
higher than that of the lower type EVs considering the supe-
rior discharging capability, which is known asmonotonicity
constraints and given by 0 ≤ R1 < · · · < Rn < · · · < RN .
Therefore, the expected social welfare (SW) is the

sum utility of the EAG and the N EVs, which is given
by

SW (dn,Rn) =
N∑
n=1

Un(dn,Rn)+ UEAG({dn}, {Rn}). (23)

The objective of the contract theory-based incentive mech-
anism is to maximize the utility of EAG, which is formulated
as

P3 : max
{dn},{Rn}

UEAG ({dn} , {Rn})

s.t. C1 : θnm (Rn)− γ dn ≥ 0, (IR)

C2 : θnm (Rn)− γ dn ≥ θnm
(
Rj
)
− γ dj, (IC)

C3 : 0 ≤ R1 < · · · < Rn < · · · < RN ,

C4 : dn ≤ θn,

FIGURE 2. Utility of EAG with and without power losses (plos) and
battery degradation (bde).

C5 :

N∑
n=1

dn ≥ eEAG,

∀n, j ∈ N , (24)

where C1,C2, and C3 represent the IR, IC and monotonicity
constraints, respectively. C4 is the upper bound of dn. C5
represents the total electricity obtained from EVs should
satisfy the requirements of EAG.

Based on the IR, IC, and monotonicity constraints, the
following properties can be derived [20].

Proposition 1: For any n 6= j, n, j∈ N , if θn> θj, then
Rn> Rj, and Rn = Rj if and only if θn = θj.
Proposition 2: For any dn,Rn, the inequalities must be

hold as

0 ≤ d1 ≤ · · · ≤ dn ≤ · · · ≤ dN ,

0 ≤ R1 ≤ · · · ≤ Rn ≤ · · · ≤ RN ,

0 ≤ U1 ≤ · · · ≤ Un ≤ · · · ≤ UN . (25)

C. CONTRACT OPTIMIZATION WITH INFORMATION
ASYMMETRY
First, the sufficient and necessary conditions for contract
feasibility are defined.
Theorem 1: The contract {(dn,Rn),∀n∈ N } is feasible

and achievable if and only if the following conditions are
satisfied [22].
• 0 ≤ R1 ≤ · · · ≤ Rn ≤ · · · ≤ RN ,
• 0 ≤ d1 ≤ · · · ≤ dn ≤ · · · ≤ dN ,
• θ1m(R1)− γ d1 ≥ 0,
• γ dn−1 + θn− 1[m(Rn − Rn−1)]≤ γ dn≤ γ dn−1 +
θn[m(Rn − Rn−1)], n ∈ {2, · · · ,N }.
Proof: The detailed proof of Theorem 1 is omitted here

due to space limitation. A similar proof can be found in [21].
�

The N IR constraints and N (N − 1) IC constraints can be
reduced to 1 and N − 1, respectively [21], [22], and P3 can
be rewritten as

P4 : max
{dn},{Rn}

UEAG ({dn} , {Rn})

s.t. C1 : θ1m (R1)− γ d1 ≥ 0,
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FIGURE 3. The convergence of (a) energy discharged, (b) deal prices, and (c) utility of EVs.

C2 : θnm (Rn−1)− γ dn−1 ≤ θnm (Rn)− γ dn,

n ∈ {2, · · · ,N }

C3,C4,C5,∀n ∈ N . (26)

By checking the Hessian matrix, we can prove that the objec-
tive of P3 is a concave function and the concave-convex pro-
cedure (CCP) algorithm proposed in [23] is adopted to solve
P4. The proposed CCP-based algorithm is summarized in
Algorithm 2 and performed in an iterative mode. At iteration
τ , a feasible initial point Rn,τ is selected and the non-linear
function m(Rn) can be approximated by using its first-order
Taylor series expansion with regards to Rn,τ as

m(Rn) ≈ m(Rn,τ )+∇m(Rn,τ )(Rn,τ )

= ln(Rn,τ )+
Rn − Rn, τ

Rn,τ
. (27)

Then, the constraint C2 with the difference of two concave
functions is transformed as

C̃2 : θn[ln(Rn,τ )+
Rn − Rn,τ
Rn,τ

]−γ dn≥θnm(Rn−1)− γ dn−1.

(28)

By replacing C2 with C̃2, P4 is transformed into a convex
programming problem and the optimal solutions for each iter-
ation, d∗n,τ and R

∗
n,τ , are achieved by solving the transformed

convex problem. Then, the initial point for Taylor series
expansion at iteration τ + 1 is defined as Rn,τ+1 = R∗n,τ .
The iterative process terminates until the improvement in
the utility of EAG is lower than or equal to some positive
threshold µ, i.e.,

UEAG({d∗n,τ+1}, {R
∗

n,τ+1})− UEAG({d
∗
n,τ }, {R

∗
n,τ }) ≤ µ. (29)

Theorem 2: Convergence: At any iteration, the obtained
d∗n,τ and R

∗
n,τ are feasible. Assume d

∗
n,τ and R

∗
n,τ are feasible

points for (21) and the sub-problem (28). Then d∗n,τ+1 and
R∗n,τ+1 can be existent to (29), and the objective value con-
verges [23], i.e.,

UEAG({d∗n,τ }, {R
∗
n,τ }) ≤ UEAG({d

∗

n,τ+1}, {R
∗

n,τ+1}). (30)

Algorithm 2 CCP-Based Contract Optimization Algorithm
1: Initialization: Rn,τ ,2, γ dn, γEAG,Ploss,Bde.
2: Output: d∗n,τ and R

∗
n,τ ,∀n ∈ N .

3: τ = 0
4: Repeat
5: Transform the concave function m(Rn), into logarithm

function by using (27).
6: Transform P4 into a convex programming problem.
7: Obtain d∗n,τ and R∗n,τ by using Karush-Kuh-Tucker

(KKT) conditions.
8: Update: τ = τ + 1,Rn,τ+1 = R∗n,τ .
9: Until satisfying the stopping criterion (29) .

FIGURE 4. The optimal energy-price convergence of the EAG game
equilibrium.

D. CONTRACT OPTIMIZATION WITHOUT INFORMATION
ASYMMETRY
Without information asymmetry, there exists a selfish EAG
which is accurately aware of each EV’s type. The EAG can
further increase its utility as long as each EV only accepts the
contract item designed for its type and the utility of each EV
is non-negative. Otherwise, the EVs have no incentive to sign
the contract item and discharge electricity.
Proposition 3: Without information asymmetry, any con-

tract item (dn,Rn) should satisfy θnm(Rn) = γ dn, i.e., the
utility for any EV is zero. If the contract item (Rn, dn)
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FIGURE 5. Contract feasibility of (a) reward for EV’s owner, (b) discharged electricity, and (c) utility of EVs.

TABLE 1. The Parameter Setting of EV1-4.

satisfies θnm(Rn)− γ dn > 0, the EAG can increase its utility
by increasing dn or decreasing Rn until θnm(Rn)− γ dn = 0.
The SW is equivalent to the utility of the EAG while the utility
of each EV is zero. The optimization problem is expressed as

P5 : max
{dn},{Rn}

UEAG ({dn} , {Rn})

s.t. C1 : θnm (Rn)− γ dn = 0,∀n ∈ N ,
C2 : θnm(Rn)− γ dn = θnm(Rn−1)− γ dn−1,

n ∈ {2, · · · ,N },

C3,C4,C5, ∀n ∈ N . (31)
Proposition 4: In the contract design without information

asymmetry, for any EV of type θn,Rn is fixed regardless of θn.
Substituting θnm(Rn)− γ dn = 0 into (23), it can be verified
that the SW increases monotonically with

∑N
n=1 dn. Hence,

EAG can increase dn until dn = θn. Substituting dn = θn into
θnm(Rn)− γ dn = 0, we have m(Rn) = γ .

V. RESULT AND ANALYSIS
In this section, we validate the proposed energy transaction
management strategies via simulations.

A. NUMERICAL RESULTS OF NON-COOPERATIVE
STAKELBERG-GE
The numerical results validate that the performance and oper-
ation of the proposed Stackelberg-GE energy discharging
strategies and energy-price GE are investigated. Assume a
number of EVs are connected to the EAG during peak hours,
where each of the EVs initial SoC upon arrival is randomly
selected among its capacity. Consequently, the corresponding

dissatisfaction parameter Drn can obtained. Set the power
losses Ploss as 0.04 and battery degradation Bde as 0.15.
Fig. 2 shows the utility of EAG, with and without power

loss and EVs’ battery degradation. Fig. 3 (a), (b), and (c) show
that the convergence process of the discharged electricity,
price, and utility of EV1 to EV4. In the follower’s perspec-
tive, they are willing to earn a profit by selling as much
surplus energy to EAG and the sold energy is different
for all EVs because of the different SoC and discharging
constraints. Therefore the prices increase as the discharged
energy increases. The corresponding utility for each EV takes
into account the dissatisfaction parameters, and different
EVs, utilities, and their relationships with the relative energy
loss during different SoC and discharged constraints.
Fig. 4 represents the convergence of the total optimal

energy-price that the EAG purchased and collected from all
participating EVs. Therefore, when EAG buys more energy,
the higher price is made.

B. NUMERICAL RESULTS OF CONTRACT FEASIBILITY
We considre a parking lot with one EAG and N = 10 EVs.
For any EV, the battery capacity is 24 kWh, and the unit
discharging cost is 2 cents/kWh, i.e.,γ = 2. The unit revenue
of electricity for the EAG is 4 cents/kWh. Assume the power
loss Ploss = 0.035 and battery degradation Bde = 0.019. The
proposed schemes under the scenarios with andwithout infor-
mation asymmetry as well as the take-it-or-leave contract [22]
are compared to evaluate the optimization performance. In the
take-it-or-leave contract, the EAG cannot distinguish EVs by
their types. EVwith higher types, i.e., more than θj,will accept
the contract, while others will reject the contract.
Fig. 5 (a) and (b) show the contract feasibility of the EV

owner’s reward and discharge power relative to the EVs’ type,
respectively. In the case of information asymmetric, both EV
owner’s reward and discharged electricity increase monoton-
ically with the EVs type, which follows the proposition 2.
In the case of information symmetry, the energy demands
require much higher amounts of electricity from EVs com-
pared with the case of information asymmetry and offer each
EV with the same Rn, which is consistent with proposition 4.
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FIGURE 6. System performance of (a) utility of EAG, (b) utility of EV, and (c) social welfare.

FIGURE 7. The convergence performance of the proposed CCP-based
solution.

In the take-it-or-leave contract, only EVs whose types are
no less than θj will have non-zero discharged electricity and
rewards. Fig. 4(c) shows the relationships between the utili-
ties of different types of EVs versus different types of contract
items. It is verified that the proposed contract is incentive
compatible. Hence, if and only if it takes the contract, with
item committed to its type, EV can achieve its maximum
utility. In addition, it can be seen that the utility of EV Un
increases with the increase of EV type, which is consistent
with preposition 2.

Figs. 6 (a) and (b) show the performance of the utility of
EAG and EVs, respectively. It can be seen that, the EAG
can achieve a much higher utility, while the utility of any
EV remains zero in the case of information symmetry, which
is consistent with proposition 3. In the case of information
asymmetry, EVs can get many benefits from the existence of
information asymmetry, because the EAG cannot extract all
the available electricity from EV due to information asymme-
try. Fig. 6 (c) shows the relationship between social welfare
and EV types. The contract without information asymmetry
outperforms the contract with information asymmetry. The
reason is that the social welfare is equal to the utility of EAG
and the utility of each EV is zero when the contract without
information asymmetry, which follows the proposition 3.

In take-it-or-leave contract, only EVs whose types are no less
than θj will have non-zero utilities.
Fig. 7 shows the convergence performance of the proposed

CCP-based contract optimization algorithm with three differ-
ent initial points, i.e., Rn[1]= 8, 6, and 4. With the number of
iteration increases, all three cases converge to optimal utility.

VI. CONCLUSION
In this paper, we first proposed the three-tier bi-directional
V2G energy transaction management system model consist-
ing of energy grid, EAG, and EVs. The edge computing
was introduced to assist in decision making and strategy
optimization. A game-theory based optimal pricing and EV
discharging strategy and a contract-theory based incentive
mechanism were proposed to cope with the unequal positions
and information asymmetry between EVs and EAG. Simula-
tion results show the superior performance of the proposed
algorithms in terms of energy-price equilibrium, utility of
EVs and EAG, as well as convergence. In the future, we will
take into account the security of energy transaction and joint
energy scheduling among multiple EAGs.
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