
Received October 13, 2020, accepted November 3, 2020, date of publication November 6, 2020, date of current version December 1, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3036437

Deploying a Fast Detection and Eviction
Mechanism of Invalid Connection-Oriented
Flow-Entries in SDNs: A Scalability Approach
WEN-KANG JIA , (Senior Member, IEEE), RUOLAN YING, AND XIAONING SHI
College of Photonic and Electronic Engineering, Fujian Normal University, Fujian 350007, China

Corresponding author: Wen-Kang Jia (wkjia@fjnu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61871131 and Grant U1805262.

ABSTRACT As a new paradigm of network architecture, Software Defined Networking (SDN) has been
used in a large number of scenarios because it realizes flexible and efficient fine-grained flow control of the
network, and promotes the evolution of the network to a programmable and scalable direction. However,
the transition of the traditional networking model to SDN architectures poses scalability issues due to the
limitation of the flow-table in size. Facing the traffic explosion on future networks with resource-constrained
architectures, the storage space of the flow-table is not enough to bear so many flow-entries so that it not
only causes performance degradation in data delivery but also results in scalability and cost-efficiency issues.
To address this issue, in this article, we propose a solution to expedited evict the invalid flow-entries by
detecting the disconnect messages of connection-oriented protocols such as Transmission Control Protocol
(TCP) and Stream Control Transmission Protocol (SCTP) based on SDN controller and OpenFlow or
programming protocol-independent packet processors (P4) switches. The behavior of detection is achieved
by adding a specific SDN ruleset within the transport-layer in between the controller and switches. Different
from the original timeout solutions, our scheme can delete invalid flow-entries in time according to the
transmission layer disconnection instead of relying on the original timeout mechanism. Through a series of
simulation results. we also demonstrate the superiority of our proposed solution in reducing the flow-entries
occupancy and control overhead on controller, and improving the table-miss rate.

INDEX TERMS SDN, TCP, SCTP, P4, flow-table, eviction, scalability.

I. INTRODUCTION
At present, with the explosive growth of various networks
and applications, networks and services are becoming more
and more complex and diverse than ever before. In the
context of such network environments, how to quickly and
dynamically build networks, rapidly deploying services, and
efficiently establishing connections are still critical to the
future [1]. In order to solve the problems faced by the cur-
rent traditional network, around the world researches have
begun on the next generation of the Internet, such as GENI
(Global Environment for Network Innovations) [2] in the
United States, FIRE (Future Internet Research and Experi-
mentation) [3] in the European Union and so on. Based on
the preliminary works that have been carried out, ForCES
(Forwarding and control element separation) [4], 4D archi-
tecture [5], RCP (Routing Control Platform) [6], SANE

The associate editor coordinating the review of this manuscript and

approving it for publication was Abderrahmane Lakas .

(Secure Architecture for the Networked Enterprise) [7], and
Ethane [8] are themost notable examples that share the details
of implementation and measured performance of concrete
network designs.

As a new paradigm of network architecture, SDN (Soft-
ware Defined Networking) enhances the flexibility and open-
ness of the network. In 2008, OpenFlow [9] was proposed and
gradually extended it to the SDN. Its basic attributes include
the concept of control-data split, logically centralized control
of networks, and flexible open interface to program under-
lying network infrastructure, where the northbound interface
implements efficient bearer for services, and the southbound
interface controls the forwarding and packet processing of
network devices through the open standard protocols such as
OpenFlow.

One of the advantages of SDN being able to develop so
quickly is that SDN allows fine-tuned control of flows and
achieves managing every flow individually. New controller
applications usually take advantage of this and proactively

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 208669

https://orcid.org/0000-0003-0071-3476
https://orcid.org/0000-0003-4725-8634


W.-K. Jia et al.: Deploying a Fast Detection and Eviction Mechanism of Invalid Connection-Oriented Flow-Entries in SDNs

install rules for new flows [9], [10]. However, this level of
granularity will cause the problem of SDN scalability due to
the large scales and high load network traffic. This is because
the SDN switches widely use ternary content addressable
memory (TCAM) to store their forwarding rules given by
an SDN controller currently. Practically, the size of TCAM-
based flow-table in an SDN switch is restricted to a few
hundred or at most thousand [11]–[13] of entries due tomanu-
facturing cost and high-power consumption. The limited size
of the TCAM-based flow-table is not sufficient to manage the
massive data flows in a large-scale network, which may result
in the flow-table overflow problem [9], [11], and decreases
the feasibility to implement a large-scale SDN [14], [15].
But the SDN controller might need to install at least one
flow-entry per flow in each switch along the end-to-end path
used by the flow to realize per-flow based fine-grained traffic
control. This mechanism will consume the available TCAM
space on SDN switches quickly under heavy traffic load con-
ditions [15], [16]. Therefore, as the network scale increases,
the available TCAM space will be consumed quickly by
all the flow-entries generated during the operation of the
SDN network, which will further restrict the network scale
and application diversity. Generally, the invalid flow-entries
are removed from flow tables in two ways, either at the
request of the controller or via the flow expiry mechanism
of the switch. Practically, the flow expiry mechanisms (e.g.,
hard-timeout or idle-timeout) play a major role in the reg-
ulation of flow-table space, without major relying on the
controller. However, to choose a suitable timeout value is
a complicated work: long timeouts will increase the stor-
age burden for the TCAM space on SDN switches due to
flow-table occupancy. On the contrary, small timeouts might
result in unnecessary control signaling traffics [9], [17] just
like that removed by the controller approach.

In this article, we have abandoned the approach relying
on the timeout to delete expired flow-entries, and propose
an expedited invalid flow detection and eviction scheme that
focuses on connection-oriented protocols such as Transmis-
sion Control Protocol (TCP) and Stream Control Transmis-
sion Protocol (SCTP) in the typical IP-based SDN framework
today. Our solution is based on the following technique: we
expedite the eviction of invalid flow-entries by detecting the
termination from connection-oriented protocols. We rely on
detecting the transport-layer disconnect messages such as the
TCP-FIN and SCTP-SHUTDOWN-COMPLETE to instruct
that the TCP and SCTP flows are terminated respectively.
We compare our expedited eviction solution with current
OpenFlow ordinary operations (i.e., hard timeout and idle
timeout) on two different scenarios. The series of simulation
results show that this simple change has a major impact on
reducing the flow-table occupancy and significantly improves
the scalability of SDN for future requests.

The remainder of the paper is organized into the following
sections. In Section II, the background and the related works
are described. In Section III, we discuss the mechanism of our
proposed scheme. In Section IV, we present the simulation

environment and evaluate the impact of our proposed scheme
and ordinary operations on the flow-table occupancy in dif-
ferent scenarios. Finally, Section V summarizes our work.

II. BACKGROUND AND PREVIOUS WORKS
This section begins with a brief introduction to the mecha-
nism of OpenFlow timeout and then introduces the previous
works and researches which focus on addressing the scalabil-
ity of SDNs.

A. THE FLOW EXPIRY MECHANISMS AND THEIR
DISADVANTAGES
The flow-entries are usually removed from flow-tables in
two ways in Openflow-based SDNs, either at the request of
the controller (centralize approach) or via the switch flow
expiry mechanism (decentralized approach). The switch flow
expiry mechanism is running by the switch independently
of the controller and is based on the state and configura-
tion of flow-entries [9], which is mainly associated with the
hard_timeout and idle_timeout existing in each flow-entry.
For the hard_timeout, the non-zero hard_timeout field will
cause the specific flow-entry to be evicted after the flow-entry
has exceeded the pre-configured survival time, no matter
whether the flow-entry is needed to match the follow-up
traffic later on. Hence, the hard_timeout is the absolute
time that the flow-entry is removed from the switch. For
the idle_timeout, the switch must record the last matched
packet’s arrive time which is associated with the flow-entry
when the idle_timeout field is a non-zero value, because
the switch will actively remove the flow-entry from the
flow-table, if no packet matches the flow-entry exceed
the given idle_timeout period. That is, the idle_timeout is
the relative time that the flow-entry is removed from the
switch. If the two timeout fields are different, such as one
is a zero field and another is a non-zero field, then the
flow-entry will be removed depending on the timeout mode
of the non-zero field. And when the field of both timeout
fields are the non-zero values, the selection of the flow-
entry deletion mode mainly depends on the values of the
hard_timeout and the idle_timeout. If idle_timeout is less
than hard_timeout, the switch deletes the flow-entry when
no packet matches the flow-entry during the idle_timeout
period; the switch still evicts the flow-entry when the flow-
entry exceeds the hard_timeout, even if a packet has matched
the flow-entry during the idle_timeout period. In contrast,
if idle_timeout is greater than hard_timeout, the switch evicts
the flow-entry from the flow table when the hard_timeout
period has arrived before the idle_timeout period, and option-
ally notifies the controller the flow was removed [18].

From the above description, we can clearly aware that the
hard_timeout is not flexible enough, which cannot be efficient
for dealing with dynamically changing traffic patterns. For
example, if a frequently matched flow-entry is removed due
to a hard_timeout, then the packet that should match this
flow-entry will trigger the Packet-In event, increasing the
burden on the controller. Therefore, the controller typically

208670 VOLUME 8, 2020



W.-K. Jia et al.: Deploying a Fast Detection and Eviction Mechanism of Invalid Connection-Oriented Flow-Entries in SDNs

sets an idle_timeout for the flow-entry, not a hard_timeout.
However, there is a tradeoff between a long idle_timeout and
a short idle_timeout, and different SDN networks have dif-
ferent requirements for the value of idle_timeout, so it is not
optimal to rely on idle_timeout to delete invalid flow-entries.
Hitherto, various values of hard_timeout have been employed
in SDN switches, reasonable ranging from 5 seconds [19] to
60 seconds [20].

B. PREVIOUS WORKS
The research on flow expiry and eviction mechanisms for
SDN have been inspired by the limited size of the flow-table
and increased burden of the controller with incremental
stale flow-entries. Since there are several limitations for
flow expiry mechanisms to detect flow completion precisely,
the available flow-table space is occupied by a certain amount
of invalid flow-entries before they are evicted. As a conse-
quence, SDN decreases the level of scalability by providing
an ineffective way of maintaining the invalid flow-entries in
accordance with the SDN specification. The scalability of the
SDN switch thus has been recognized as the barrier of SDN
technology, currently, there is plenty of existing works have
been proposed to improve the effective management of the
flow-tables by increasing the flow-table space utilization.

In [21], the DIFANE architecture is proposed, which
divides the SDN switches into two categories: ordinary
switches and authority switches. All the SDN network flow-
entries are stored in authority switches uniformly, and the new
flow-entries are stored in ordinary switches. When the new
flow-entries fail to match in the ordinary switches, the ordi-
nary SDN switch sends a request to the authoritative SDN
switch obtaining the corresponding flow-entries to complete
the forwarding work.

Similar to DIFANE, the authors in [22] addressed the
scalability of SDN by adding SDN software switch. The SDN
software switch is used to process new flows that cannot be
processed by the ordinary switch and store most of the flow-
entries. However, during the operation of the SDN network,
network traffic is dynamically changed, so these two schemes
will bring great challenges to achieve storing all flow-entries
in switches.

A dynamic timeout control algorithm is proposed in [23],
which the controller collects various traffic parameters from
the switches and predicts the inter-arrival times of packets in a
flow, the idle_timeout value of each flow is thus dynamically
adjusted by the controller according to the traffic information
of the switches without modifying the switch configuration.

The authors in [24] proposed a scheme that uses a specula-
tive mechanism to predict whether a flow entry has expired,
and thus can remove the corresponding flow entry from the
switch in advance.

Based on a similar ideal, SmartTime was proposed in [25]
based-on an adaptive timeout heuristic algorithm to calculate
the most appropriate idle_timeout value individually for each
practical flow instead of setting the same timeout value to
each flow at the switch. This scheme sets and adjusts the

value of idle timeout by observing the interval of the arrival
of the adjacent packet to the switch, resulting in reason-
able utilization of the TCAM. At the same time, when the
flow-table is about to overflow, the scheme randomly deletes
the flow-entries in the flow-table to increase flow-table space
usage. However, there is a great risk of causing the flow inter-
ruption to occur since the flow-entry is randomly removed,
increasing the load of the SDN controller and reducing the
performance of the SDN network.

A flow table management method is proposed in [26],
which the caching algorithm based on least-recently-used
approach is employed to keep flow entries in SDN switches
as long as possible. In the proposed scheme, an invalid flow
entry is evicted when its age reaches a certain threshold,
rather than when its idle_timeout expires. The switch adjusts
its cache size according to the vacancy of flow table and the
controller thus determines the packet forwarding path through
the switches by referring to the vacancies.

The author in [27] propose a SofTware-defined Adaptive
Routing (STAR), to mitigate switch flow table overloading
issue, which SDN controller collects the real-time flow-table
utilization from each switch, intelligently evicts invalid
flow-entries when needed to accommodate new flows, and
selects routing paths for new flows based on flow-table uti-
lizations of each switch across the network, thus maximizing
network scalability and throughput.

The author in [28] also propose a dynamic routing
approach named DIFF that differentiate flows based on their
impact on network resource and adaptively selects appro-
priate routing paths for them to balance the utilization of
flow tables globally, and to mitigate the problems of flow-
table overflow and inefficient bandwidth allocation, while
increasing network throughput.

In [29], the authors propose a dynamic way to allocate
an adaptive hard_timeout value for each flow entry which
reflects the distinct flow characteristics including predictable
and unpredictable flows. Compared to statically allotted hard
timeout, the dynamically allotted hard timeout approach
performs better performances.

The Tag-In-Tag [30] scheme is proposed by
S. Banerjee et al., which uses the path tag and the flow
tag to identify the flow forwarding path and flow-entry in
the network. Compared to flow-entries, Path Tag and Flow
Tag use fewer bit bytes, occupying less flow-table space.
However, there is a defect in this solution, which modifies
the internal physical structure of the SDN network switch,
and it is not conducive to promote in the actual networks.

In [31], the authors propose an SDN-based TCP congestion
control mechanism—SDTCP, which can accurately decel-
erate the rate of background flows by measuring the TCP
traffics through detecting the TCP flags such as SYN, ACK,
and FIN via SDN/Openflow technologies.

The concept in [32] is follow a similar approach for solving
the problem of SDN scalability, which presents a hybrid flow
rule placement approach, where the flow hit ratio and flow
table occupancy are used for flow classification. Based on

VOLUME 8, 2020 208671



W.-K. Jia et al.: Deploying a Fast Detection and Eviction Mechanism of Invalid Connection-Oriented Flow-Entries in SDNs

the classification, two schemes focusing on TCP flows and
non-TCP flows are proposed, respectively. For TCP flows,
they consider FIN and RST flags to be the last packet and
remove the related flow-entries after that. For non-TCPflows,
this approach comes at the cost of missing the first few
non-TCPflows and installs the related flow-entries onlywhen
it exceeds a predetermined number of packets. However,
the authors of the paper did not provide a detailed description
of how to implement this mechanism, just simply introduce
an idea. In contrast to it, in our proposed scheme, we not
only detail the implementation principle but also evaluates the
comprehensive performance of the proposed scheme such as
the maximum number of flows per network and table-miss
rate.

Following a similar approach again, the article [33]
proposes a flow entry removal scheme based on programming
protocol-independent packet processors (P4) technology.
After the P4 switch parses the TCP header and checks the
FIN or RST flags. The P4 switch thus can determine whether
a TCP connection has closed, and remove the corresponding
invalid flow entry and send a notify message to the controller.

III. PROPOSED SCHEME
It is well known in the networking industry that the
connection-oriented transport-layer protocol needs to estab-
lish a connection when establishing a communication session
and needs to disconnect when communication is terminated.
Our proposed scheme here is to use a connection-oriented
transport-layer protocol (layer-4) features to detect these
events, and the framework should be used in conjunction with
the standard SDN environment. Flag fields are commonly
used in various transport-layer protocol headers to specify
certain actions, and can be used to detect the start and the end
of connections. In the proposed scheme, we rely on control
signaling of TCP (referred to as flag) and SCTP (referred
to as chunk type) to detect imminent flow completions,
the corresponding invalid flow-entries no longer depends on
a flow expiry mechanism but on each of flow-entry can
count an Active Connection Counter (ACC), hence evict
the flow-entry immediately once the countdown has been
reached zero. The proposed scheme is based on previous
works in [34] and [35] of the authors, which approaches have
also extended to take into account the integration of both the
TCP and SCTP connections are exist in an SDN. In addition,
more comprehensive and rigorous performance evaluations
for the proposed scheme will be conducted in the following
sections.

A. EXPEDITED INVALID TCP FLOW DETECTION AND
EVICTION SCHEME
In this subsection, we introduce the expedited invalid TCP
flow eviction scheme to achieve the goal of evicting the
invalid flow-entries upon the flow-table immediately, which
is by adding a specific SDN ruleset named ‘‘TCP flag detec-
tor’’ upon switches for monitoring and counting all valid TCP
connections, and establishing and evicting the corresponding

forwarding rules by the specific SDN application upon con-
troller. The key concept of the TCP flag detector is to discover
the TCP controlmessages such as the SYN (synchronization),
ACK (acknowledgment), RST(reset), and FIN (final) flags
between the client and server timely. Therefore, once the last
TCP connection has been terminated, it implies that the cor-
responding flow-entry is invalided, thus the SDN controller
can quickly notified to evict the practical invalid flow-entries
which store in the SDN switches.

As we all know, multiple TCP socket connections can be
established between both communication parties simultane-
ously. On the other hand, multiple flows with identical desti-
nation or prefix might match a wildcard rule in a practical
SDN environment. Hence, we setup an Active Connection
Counter (ACC) for each flow-entry in the proposed scheme
to record the active number of concurrent TCP sessions.
The detail match fields and related activities of Rule 0 and
Rule 2/3 are shown in Table 1 and Table 2. As Table 1 shows,
the main information of the match fields includes TCP-SYN,
TCP-FIN, TCP-RST, and TCP-ACK in Rule 0, and the cor-
responding triggering behavior will issue the information of
Packet-In to the controller. As with the mechanism of
Rule 0, the corresponding match fields will trigger the action
of forwarding in Rule 2/3. And note that Rule 0 is for all TCP
control flows pass through the switch, while Rule 2/3 is for
specific TCP flows with the identical destinations or prefixes.

TABLE 1. The Match Fields and Related Actions of TCP Flag Detector
(Rule 0).

TABLE 2. The Match Fields and Related Actions of Forwarding Rule 2/3.

In order to better describe the mechanism, the example
of the proposed scheme is shown in Figure 1, where the
left-half of the figure is a Finite State Machine (FSM) in the
perspective of SDN controller, and the right-half of the fig-
ure is a message flow chart for proposed scheme respectively.
It can be seen that the SDN controller will first pre-issue
a Flow-Mod message toward all subordinate switches to
instruct them to add the Rule 0 of the specified TCP flag
detector before establishing any end-to-end TCP connec-
tion. In TCP standard, a well-known three-way handshake
is requiring both the TCP client and server to exchange
SYN and ACK messages before actual data delivery begins.
During the TCP connection establishment stage, once the

208672 VOLUME 8, 2020



W.-K. Jia et al.: Deploying a Fast Detection and Eviction Mechanism of Invalid Connection-Oriented Flow-Entries in SDNs

FIGURE 1. Finite state machine and protocol sequence diagram of expedited invalid TCP flow detection and
eviction scheme.

TCP client sends a SYN message to the TCP server, it means
that a new TCP connection to be established between two
sides. In the proposed approach, the TCP-SYN message will
first be captured by Rule 0 and then formed a Packet-In
message including the whole TCP control packet, which is
conveyed by matching Rule 0 and then transmitted back
to the controller. Subsequently, the controller generates the
corresponding forwarding Rule 2 and Rule 3, and deploys
they toward each switch along the forwarding path through
the Flow-Mod message, and forwards the pending SYN
message through Packet-Out messages to resume the
TCP association procedure. From the FSM’s perspective,
the automata would transition from state ‘‘START’’ enter to
state ‘‘Pre-ESTABLISH’’ now, whereas the ACC increased.
Afterward, when a ACK message on the TCP connection
parameters is captured in same direction as expected, through
Packet-In and Packet-Out procedures, indicating that
the connection establishment is successful and resources are
committed on both TCP sides. Additionally, with regard to

related rules, named Rule 0 and Rule 2/3, the related infor-
mation of the incoming and outgoing bitstreams between
the client and the server will be uniquely hit according to
the match fields either Rule 0 (specified TCP commands
such as TCP-SYN) or Rule 2/3 (ordinary forwarding), and
perform corresponding operations according to the action of
Rule 0 and Rule 2/3. As for Rule 2 and 3, they are both
ordinary forwarding rules, where Rule 2 is a forward rule
from the client to the server, and Rule 3 is the backward rule
of Rule 2. Note that the Rule 0 does not attend to the TCP-
SYN+ACK, which can be treated by the forwarding Rule 2/3
and will ordinary forwarded to the final destinations. From
the FSM’s perspective, the automata would transition from
state ‘‘Pre-ESTABLISH’’ enter to state ‘‘ESTABLISHED’’,
and entering the normal TCP data exchange phase now.

During the TCP data exchange stage, once an unexpected
TCP packet arrives at an end-host, that the end-host usually
responds by sending an RST message back on the other
side and closes such connection immediately. If an end-host

VOLUME 8, 2020 208673



W.-K. Jia et al.: Deploying a Fast Detection and Eviction Mechanism of Invalid Connection-Oriented Flow-Entries in SDNs

receives a RST message in either side, it assumes an error has
occurred and also closes the connection immediately under
TCP regulation. In such abnormal condition, Rule 0 will
catch and Packet-In and Packet-Out such TCP-RST
message. From the FSM’s perspective, the automata would
transition from the ‘‘ESTABLISH’’ state enter into the
‘‘DISCONNECT’’ state directly, whereas countdowns the
ACC. Due to the TCP connection is considered to be
half-closed when it’s closed in one direction and still open
in the other direction. Therefore, the TCP needs to fully
terminate the connection by a 4-way handshake and to allow
incomplete data transfer after receiving a first FIN message
from other side. As analyzed in [32]: there are more than 97%
of TCP flows arriving at most 2 packets after receiving FIN
message, and a FINmessage is the last packet of TCP flows in
half of these cases. In order to support the half-closed mech-
anism, there are special provisions in determining whether
the TCP connection is really terminated. When one of TCP
party (such as a client) initiates a disconnect request, the FIN
flag of TCP message is captured by the Rule 0 and noti-
fied to the controller via a Packet-In message, and uses
the Packet-Out message to begin the disconnect process.
After receiving a TCP-FIN message from any communica-
tion party (such as a client side in the instance), TCP will
be entering into a half-closed state, during which the client
might continue to accept unfinished data stream from the
server. Until catching the TCP-FIN message from the other
direction (server side), the half-closed state will really termi-
nate. For terminating the TCP connection, we consider that
only detecting the TCP-ACK messages from the identical
direction (such as TCP-ACK messages from the client with
an identical socket of previous TCP-FIN) can be ensured the
TCP disconnected completely, and the TCP-ACK messages
from distinct sockets cannot be triggered. Therefore, when all
active TCP connections are terminated by identified through
ACC = 0, the flow-entries of Rule 2 and 3, that flow-entry
are assumed invalid and can be evicted as soon as possi-
ble. And the released flow-entries will be available for the
newly arrived flow, to achieve reducing the occupancy of the
flow-table and improving the scalability of the SDN.

From the FSM’s perspective on the SDN controller,
the controller should maintain an ACC and associated func-
tion for each valid flow-entry. The ACC function is a recur-
sive function that can repeat itself several times, outputting
the concurrent number of active TCP connections and the end
of each iteration. In the proposed scheme, the automata would
first transition from ‘‘START’’ state enter into the ‘‘Pre-
ESTABLISH’’ state correspond to opening a connection by a
TCP client issues a TCP-SYNmessage, andwhereas theACC
←ACC+1 is performed. Once a TCP-SYN is captured in the
same direction again, it enters into the ‘‘ESTABLISHED’’
state. Otherwise, an abnormal incomplete TCP association
will cause the timeout and ACC←ACC-1, whereas it enters
back to the ‘‘START’’ state. Then the FSM will accomplish
the 3-way handshake process to enter the TCP data transmis-
sion stage. When the controller receives a TCP-FIN flag in

this state it will enter the ‘‘SEMI-DISCONNECT’’ state, after
a TCP-SYN is captured in the same direction again, it enters
into the ‘‘DISCONNECT’’ state. This happens whenever
either TCP connection side starts a disconnect process that
is expected to wait for incoming TCP-FIN requests. At this
moment, the ACC←ACC-1 is also performed, and once an
ACC value that corresponding to specific flow-entry is count-
down to zero, it implies the flow-entry is no longer valid for
any active TCP connection flow, the controller should send
a Flow-Mod message with the delete the command to the
switch to remove the invalid flow-entry immediately. Then
the FSMwill accomplish the 4-way discount process to move
back to the ‘‘START’’ state.

In order to avoid the TCP connection terminating abnor-
mally, for example, the FIN and ACK messages are eventu-
ally not appearing for captured, the proposed scheme should
be used in conjunction with the original idle timeout method
in SDN. Once the forwarding rules 2 and 3 fails to match
any TCP data packet as expected, the idle timeout mecha-
nism will start the flow-table eviction. Besides, considering
that an SDN wildcard forwarding rule could be designed to
provide multiple flows at the same time. Therefore, the SDN
controller must compare and confirm that the so-call invalid
flow-entry is indeed useless for any other active flows e.g.,
non-TCP flows before performing the flow-table eviction
action.

B. EXPEDITED INVALID SCTP FLOW DETECTION AND
EVICTION SCHEME
Similar to TCP, the SCTP is also a connection-oriented
IP transport protocol in nature, which can provide reliable
transmission and perfect congestion control, but the SCTP is
a broader concept than the TCP [36]. For example, SCTP
can protect the endpoints from a Denial-of-Service (DoS)
attack through the four-way handshake: INIT, INIT_ACK,
COOKIE_ECHO, and COOKIE_ACK and provides the
multi-streaming and multi-homing functionality to extend
the availability of the application. For disconnection, there is
3-way handshake: SHUTDOWN, SHUTDOWN_ACK and
SHUTDOWN_COMPLETE and according to [36], [37],
during the shutdown, the half-open state (like TCP) is not
be supported wherein any endpoint performs a shutdown,
the new data from its user will be rejected. SCTP also
supports the heartbeat mechanism for monitoring the state of
the system and coordinating the work of the master and slave
servers. It can detect faults in the server application-level
system, isolate and recover the error quickly, maintain system
availability, and ensure that critical services continue to be
highly available.

Because of the superiority of SCTP, an increasing num-
ber of recent applications have incorporated their own
applications on top of SCTP instead of TCP. Therefore,
we choose the SCTP to combine with our concept, using
the SCTP detection mechanism to achieve real-time mon-
itoring, to minimize occupancy in a flow-table and delete

208674 VOLUME 8, 2020



W.-K. Jia et al.: Deploying a Fast Detection and Eviction Mechanism of Invalid Connection-Oriented Flow-Entries in SDNs

FIGURE 2. Finite state machine and protocol sequence diagram of expedited invalid SCTP flow detection and eviction
scheme.

expired flow-entries in an SDN switch as soon as possible.
We propose a flow-table management scheme—the expe-
dited invalid SCTP flow eviction scheme, which is by
adding a specific SDN rule set named ‘‘SCTP chunk-type
detector’’ upon switches for monitoring and counting all
valid SCTP connections, and establishing and evicting the
corresponding forwarding rules by the specific SDN applica-
tion upon controller. In order to achieve the goal of expe-
dited eviction the invalid flow-entries in the flow-tables,
the key concept of the SCTP chunk-type detector is to
discover the SCTP control messages such as the SCTP-
INIT, SCTP-COOKIE_ACK, SCTP-HEARTBEAT_ACK,
and SCTP-SHUTDOWN_COMPLETE between SCTP end-
points, through real-time formulating related rules about
its match fields and action, thus quickly notifies the SDN
controller to delete the invalid flow-entries which store in
the SDN switches. In addition, in terms of related rules,
which mainly includes three rules, named Rule 1 and
Rule 2/3. By setting the specified match fields and the
action, we make the incoming and outgoing bitstreams can
only match the unique rule and execute the related action.
As for Rule 2 and 3, they are both ordinary forwarding
rules, where Rule 2 is a forward rule from the client to

the server, and Rule 3 is the backward rule of Rule 2.
Additionally, note that the Rule 1 does not attend to the SCTP-
INIT_ACK, SCTP-COOKIE_ECHO, SCTP-HEARTBEAT,
SCTP-SHUTDOWN, and SCTP-SHUTDOWN_ACK which
can be treated by the forwarding Rule 2/3. An identical ACC
for each flow-entry in the proposed scheme to record the
active number of concurrent SCTP sessions. Any changes
made to the ACC will automatically available to both TCP
and SCTP connections, as well as to any other future traffic
flow are sharing the same entry with.

The example of the framework operation of our proposed
scheme is shown in Figure 2, where the left-half of the
figure is a FSM in the perspective of SDN controller, and the
right-half of the figure is a message flow chart for proposed
scheme respectively. The SCTP chunk-type detector will
placed on the SDN switches named Rule 1, where the match
field in rules ensure the relevant control-bit field between
the SCTP client and server match the corresponding rules
and only match and the action ensure the corresponding
operation is performed. Note that older OpenFlow such as
version 1.0 [38] does not directly support matching on SCTP
header flags, but it can be extended by extensible matching
supported in newer OpenFlow specification [9].

VOLUME 8, 2020 208675



W.-K. Jia et al.: Deploying a Fast Detection and Eviction Mechanism of Invalid Connection-Oriented Flow-Entries in SDNs

Similar to the operations of expedited invalid TCP flow
eviction scheme. The SDN controller will first pre-issue
a Flow-Mod message toward all subordinate switches to
instruct them to add the Rule 1 before establishing any end-
to-end SCTP connection. Consider that SCTP uses a 4-way
handshake between client and server to enable secure connec-
tions. At the beginning of establishing an end-to-end SCTP
connection, the negotiation will take place in two rounds.
In the first-round, upon receipt of the Packet-In mes-
sage with SCTP-INIT from SCTP client to server, which the
message is conveyed by matching the Rule 1, the controller
generates a forwarding rules (Rule 2/3) and deploys it toward
each switch along the forwarding path, and forwards the
SCTP-INIT through Packet-Out messages to realize the
SCTP association procedure. In the second round, an SCTP-
COOKIE_ACKmessage on the SCTP connection parameters
is returned, indicating that the connection establishment was
successful and resources committed on both sides.

During the SCTP association phase, the related infor-
mation between the endpoints will be uniquely hit accord-
ing to the match fields either Rule 1 (specified SCTP
commands such as SCTP-COOKIE_ACK) or Rule 2/3
(ordinary forwarding), and perform corresponding opera-
tions according to the action of Rule 1 and Rule 2/3.
Thus, the Rule 1 will catch and Packet-In the SCTP-
COOKIE_ACK message and the Rule 2/3 will ordinary
forward the SCTP-INIT-ACK and SCTP-COOKIE-ECHO
messages to the final destinations. The detail match fields
and related activities of Rule 1 is shown in Table 3,
the main information of the match fields includes SCTP-
INIT, SCTP-COOKIE_ACK, SCTP-HEARTBEAT_ACK,
and SCTP-SHUTDOWN_COMPLETE in Rule 1, and the
corresponding triggering behavior will issue the information
of Packet-In to the controller. Same as the mechanism
of Rule 1, the corresponding match fields will trigger the
action of forwarding in Rule 2 as in Table 2. From the
FSM’s perspective, the automata would transition from state
‘‘Pre-ESTABLISH’’ enter to state ‘‘ESTABLISHED’’, and
entering the normal SCTP data exchange phase now. Before
the SCTP association is really established, if Rule 1 cannot
detect the SCTP-COOKIE-ACK within the prescribed time
limit, indicating that the actual SCTP connection between
client and server has not established successfully, which the
SCTP-INIT message considers being a DoS attack. In the

TABLE 3. The Match Fields and Related Actions of SCTP Flag Detector
(Rule 1).

meantime, in order to suppress such a potential DoS attack,
the controller could delete the corresponding flow-entries
(Rule 2/3) stored in switches according to the flow expiry
mechanism if ACC = 0.

During the SCTP data exchange stage, we consider that the
shutdown of the SCTP connectionmeans that the flow-entries
stored in switches might also invalid. Therefore, when
the Rule 1 monitors the process of the shutdown, espe-
cially detects the SCTP-SHUTDOWN-COMPLETE mes-
sage, the SCTP chunk-type detector will inform the controller
to evict the corresponding invalid flow-entries in switches as
soon as possible once the last SCTP connection has been
terminated (ACC = 0), thus significantly improving the
scalability of SDN for future requests.

In contrast, in order to avoid erroneous eviction that may
cause control signaling overhead problems. Considering that
an active SCTP connection might keep silence for a con-
tain time until exceed the idle-timeout, the SCTP detector
(Rule 1) also monitors the process of heartbeat by detects
the message of SCTP-HEARBEAT-ACK, the SCTP detector
will inform the controller to renew the idle_timeout counter
of corresponding flow-entries, thus significantly reducing
the large signaling interaction between SDN controller and
switches once an erroneous eviction is occurring. In addition,
the idle_timeout mechanism is used as the last line of defense
to delete SCTP flow-entries that have not been terminated by
the normal SCTP handshake messages.

Obviously, the goal of SCTP is to provide a more rigorous
framework for the design and implementation of long-term
transport-layer IP data exchange manner, that inadvertently
minimizes the complexity for SDN control signaling interac-
tions for processing SCTP messages, compare to processing
TCP messages.

IV. PERFORMANCE EVALUATION
A. SIMULATION ENVIRONMENT
To build a proof of concept implementation of the pro-
posed scheme and demonstrate its performance, we con-
struct a series of simulations to compare the performance of
the proposed scheme against the SDN ordinary operations.
The network simulator is based on self-developed C codes.
According to previous researches, three approaches to SDN
deployment can be considered—1) PS: proposed scheme,
2) IT: idle timeout scheme; and 3) HT: hard timeout
scheme. We have designed several simulation conditions
and their combinations to understand the performance vari-
ation in different scenarios. The simulations are evaluated in
three distinct reference network topologies, i.e., 1) 52-node
Fat-Tree; 2) 28-node Cost-239 European network, and
3) 14-node NSFNet represented by a non-weighted directed
graph G(V, E). And the detail parameters in the simulation
are indicated Table 4: we set up reasonable system param-
eters to pattern the SDNs and evaluate scenarios of network
performances, where flow frequency λ connection per second
(CPS) is used for representing the network traffic, and the

208676 VOLUME 8, 2020



W.-K. Jia et al.: Deploying a Fast Detection and Eviction Mechanism of Invalid Connection-Oriented Flow-Entries in SDNs

TABLE 4. System Parameters for Simulations.

values of network traffic are set 0.01∼50, the total flows
f is set the maximum to no more than 100,000, as for the
flow-table limitation 8 will not exceed 65,535. We define
the ‘‘mice-flow (MF)’’ as the flow with short holding time
and packet length distribution in the simulation (average
30 seconds holding times) and relatively low traffic during the
survival period, and the flowwith relatively long survival time
and long holding time in the simulation (average 21,600 sec-
onds holding times) for ‘‘elephant-flow (EF)’’. According to
the current reference, we set the timeout value to 60 seconds
in either OpenFlow expiry mechanisms [20].

B. AVERAGE AND MAXIMUM FLOW-TABLE
COMSUMPTIONS AT ENTIRE NETWORKS
As is known, the trend of the flow-table at the switch
being occupied by the flow-entry during the whole simula-
tion is first increased, then stabilized a period, and finally
decreased towards 0. In order to describe the flow-table of
all switches occupied by flow-entries during the whole simu-
lation, we express it by the average flow-table occupancy rate
and the maximum flow-table occupancy rate. In the simula-
tion of the TCP scenario, Fig. 3(a) and 3(b) demonstrate the
relationship between the number of flow-tables and different
network traffic λ in constant flow-table limitations 8 under
h = MF and EF conditions respectively. The lower part of
the cylinder is expressed as the number of average flow-table
occupancy, and the upper part is the number of maximum
flow-table occupancy. We consider three distinct schemes:
1) PS represents the scheme we proposed (e.g., the first of
the three cylinders under the same network traffic), 2) IT
represents the method of idle_timeout (e.g., the second of the
three cylinders under the same network traffic), and 3) HT
represents the method of hard_timeout (e.g., the third of

FIGURE 3. Number of flow-tables requirements vs. traffic intensities of
three competed schemes under three reference topologies in four
scenarios.

the three cylinders under the same network traffic). We can
clearly see that, regardless of the type of network topologies,
our method (especially under h = MF) not only performs
well in the average number of flow-table occupancy but also
has a significant optimization in the maximum number of
flow-tables occupancy. As our proposed scheme can evict
invalid flow-entries immediately during the entire simulation.
It means that our proposed scheme makes the flow-table at
all switches be occupied by fewer flow-entries averagely,

VOLUME 8, 2020 208677



W.-K. Jia et al.: Deploying a Fast Detection and Eviction Mechanism of Invalid Connection-Oriented Flow-Entries in SDNs

while the other two ordinary methods make the flow-tables
occupancies relatively high during the whole simulation.

In the simulation of the SCTP scenario, Fig. 3(c) and 3(d)
demonstrate the relationship between the number of
flow-tables and different network traffic λ in constant flow-
table limitations 8 under h =MF and EF conditions respec-
tively. In order to represent certain malicious connections
that have existed in the real world. We manipulated the
situation that there are 90% of the SCTP connections have
successfully established, while the remaining 10% indicates
that the SCTP-INIT message has been sent but failed to
establish, which might due to the SYN flooding attack. From
the trend of Fig. 5 and 6, there are similar to Fig. 3 and 4.
The method of expedited invalid SCTP flow eviction also
performs excellently in reducing flow-table occupancy, not
only under h =MF but also under h = EF.

C. FLOW-TABLE COMSUMPTIONS AT INDIVIDUAL
SWITCHES
In the simulation of the TCP scenario, Fig. 4(a) and 4(b)
present the probability density function (PDF) of the average
flow-table consumptions for each individual switch with the
h = MF and EF conditions respectively during the simula-
tion for our proposed scheme and two ordinary flow expiry
mechanisms, where PDF indicates the statistical number
of switches which are occupied by the same scale of the
number of flow-entries during the simulation. The X-axis
and Y-axis represent the concurrent flow-table consumption
and PDF respectively, and a point (x, y) denotes that the
y% switches are occupied by how much flow-entries. For
example, in Fig. 7, there are about 90% switches taking less
than 20 concurrent entries in peak in all network topologies
case of PS. But for the ordinary operations, especially for the
NSFNet scenario, the difference ismore significant. There are
more than 15% and 17% switches taking more than 80 and
90 concurrent entries in peak in the case of HT and IT,
respectively. But, under the h = EF scenario, the advantage
of the expedited invalid TCP flow eviction scheme is not very
obvious (slight advantage). This is because the EF case lasts a
too long time, hence the value of the timeout setting is much
smaller than the duration of the EF, causing a communica-
tion duration almost the same as the value of timeout, thus
resulting in such a situation.

Fig. 4(c) and 4(d) display similar results with
Fig. 4(a) and 4(b), where the simulation results are about
the expedited invalid SCTP flow eviction scheme and two
ordinary flow expiry mechanisms. Unlike the simulation of
flow-table consumptions at individual switches, in addition
to the situation S2: 90%-10% PS curve, we also simulate
that the situation S1: 80%-20% PS curve, where 80% of the
SCTP communication has successfully established a connec-
tion, while the remaining 20% indicates that the SCTP-INIT
message has been sent but failed to establish. As shown
in Fig. 4(c) and 4(d), the performance of the expedited invalid
SCTPflow eviction scheme ismore excellent than themethod
based on TCP, especially under the h = EF scenario. This

FIGURE 4. The PDF of concurrent flow-table consumptions of three
competed schemes under three reference topologies in four scenarios.

is because the SCTP method adds the timeout mechanism
and the heartbeat mechanism, which makes it more flexible
to delete invalid flow-entries. As the Fig. 9 and 10 show,
regardless of network topologies, it is obvious that all the
curves of our scheme are mainly concentrated in the front
part of the table and the value of the peak is quite high,
which expresses a larger amount of switches occupied by a
small number of flow-entries. But the results of the ordinary
operations are not satisfying, which displays many switches

208678 VOLUME 8, 2020



W.-K. Jia et al.: Deploying a Fast Detection and Eviction Mechanism of Invalid Connection-Oriented Flow-Entries in SDNs

are occupied by a large number of flow-entries. By means of
comparing the flow-table consumption at individual switches,
we can conclude that our scheme evicts the invalid flow-table
more timely and quickly than the other ordinary operations.

D. FLOW-TABLE MISS RATES
As we know, the next incoming flow-entry cannot match the
match fields in the switch in time due to the available entries
of the flow-table is fully occupied, which will result in table-
miss. Thus, evaluating the performance of the flow-table miss
rate is very necessary for SDN.

Fig. 5(a) and 5(b) demonstrate the relationship between
flow-table miss rate and different network traffic λ based
on expedited invalid TCP flow eviction scheme and two
ordinary flow expiry mechanisms in the scenarios of constant
flow-table limitations8 under h=MF and h=EF separately.
As expected, the table-miss rate increases rapidly because
a large amount of network traffic occupies the switch. But
we can see that in the early stage of network traffic growth,
our scheme can suppress the rapid growth of table-miss rate
more than the other ordinary operations due to themechanism
which evicts the invalid TCP flow-entries quickly and can
significantly slow the growth of table-miss rate under h=MF
scenario. It is worth noting that the effect of the EF simulation
[Fig. 5(b)] is not obvious due to the long EF simulation time
and the defects of the TCP mechanism, which we will further
discuss in the next subsection.

Fig. 5(c) and (d) also depict the flow-table-miss rates in the
given scenarios for different traffic intensities λ and h =MF
and EF respectively, based on expedited invalid SCTP flow
eviction scheme and two ordinary flow expiry mechanisms in
the scenarios of constant flow-table limitations8. From these
two figures, it can be seen that no matter what percentages
of SYN flooding attacks have, we can see that our method
can effectively reduce the table-miss rate in the early stage
and slow down the increase of the table-miss rate. In addi-
tion, the ordinary operations result in the rapidly exponential
increase of table-miss rate in the early stages, which means
that our method can evict invalid flow-tables faster, leaving
more space for future flows matching.

Fig. 6 depict the flow-table-miss rates in the given scenar-
ios for different flow-table limitations8 and h=MF and EF,
and in the scenarios of constant network traffic, based on TCP
and SCTP eviction schemes respectively. As shown in the fig-
ure, an increase in the number of flow-tables (flow-table lim-
itation8) at switches will cause the table-miss rate to drop as
expected. And it is obvious that our scheme can better achieve
the goal of reducing the flow-table miss rate with given lower
flow-table limitation (in addition to the expedited invalid TCP
flow eviction scheme in the h = EF scenario, the effect is
not obvious because of the same reason). In contrast, the
table-miss rates of ordinary operation decrease very slowly,
and the table-miss rate only can achieve better results when
the flow-table limitation is high enough. It is worth noting
that some of the table missing rate curves in the simulation
have obvious simulated inflection points. The reason is the

FIGURE 5. Flow-table miss rate vs. traffic intensities of three competed
schemes under three reference topologies in four scenarios.

bottleneck effect—certain key nodes on the critical paths are
accompanied by insufficient available space of flow-table that
provides immediate performance degradations.

E. CONTROL OVERHEADS IN OPENFLOW-BASED SDNS
We also concerned the controller overhead costs between
controller and switches to be inevitably increased by the
proposed scheme, and performed a simulation experiment
to evaluate the number of control messages and their band-
width occupancies to be inevitably increased by the proposed

VOLUME 8, 2020 208679



W.-K. Jia et al.: Deploying a Fast Detection and Eviction Mechanism of Invalid Connection-Oriented Flow-Entries in SDNs

FIGURE 6. Flow-table miss rate vs. flow-table size limitations of three
competed schemes under three reference topologies in four scenarios.

scheme. In the simulation of the traffic type h = MF and h
= EF scenarios, a single flow with a sending rate λ = 2,
4,. . . ,10 and λ = 0.1, 0.2,. . . ,0.5 packets/second respectively
were injected in the reference networks and for every f =
4000 and f = 60,000 packets respectively the number of
control messages and their total datagram sizes were sam-
pled. The measured control message includes Packet-In,
Packet-Out, Flow-Mod, and Flow-Removed mes-
sages. All messages exclude the required control messages

FIGURE 7. Control overhead vs. traffic intensities of three competed
schemes under three reference topologies in four scenarios.

in OpenFlow (e.g., LLDP, ARP, ICMP, and other link-state
advertisement packets) which appeared during the network
uptime due to the topology discovery in the SDN controller.
For standard OpenFlow protocol, the proposed scheme pro-
duces up to 15 and 11 control messages on each TCP and
SCTP session respectively between controller and switch. For
legacy flow expiry mechanisms, we suppose each initial
connect-oriented connection produces at least 4 and up to
innumerable control messages between controller and switch,

208680 VOLUME 8, 2020



W.-K. Jia et al.: Deploying a Fast Detection and Eviction Mechanism of Invalid Connection-Oriented Flow-Entries in SDNs

and these are assumed to be the distinction as the average
result of that on the idle_timeout and hard_timeout situations,
when the session durations are long enough. Fig. 7 depicts a
comparison of accumulated number of control messages and
their bandwidth consumptions in bytes, which weremeasured
in the aforementioned reference network topologies with sim-
ilar conditions. The primary coordinate unit level is expressed
in K messages, which is used to represent the accumulated
number of control messages; the secondary coordinate unit
level is expressed in M bytes, which is used to display the
control bandwidth consumptions.

As seen in Fig. 7(b), in the TCP with the MF scenario, the
control overhead of the proposed scheme is significantly less
than that of the other two existing flow expiry mechanisms,
especially better than the inflexible HT method. In the TCP
with the EF scenario, the signaling overhead of the method
in this article is more than that of the IT method, and is
significantly less than that of the HT method. This is because
of the long duration connections; the half-closed state of
the fast invalid TCP flow eviction scheme causes massive
overheads. As a result, it is not as good as the IT method. This
situation will be resolved by using the P4 switch technology,
but overall, the proposed scheme is acceptable in terms of
control overhead.

As shown in Fig. 7(c) and 7(d), in the two SCTP scenarios,
the control overhead of the proposed scheme is not high. The
IT method also does not cause too much signaling control
due to its more flexible characteristics. The feature of the HT
method causes very high signaling overhead, especially in EF
scenarios. That is because of the HT method deleting flow
entries at an always imperfect constant expiry time interval.
Thus the fast invalid SCTP eviction scheme is superior to
the legacy flow expiry mechanisms in terms of signaling
overheads, and does not cause excessive control overheads.

From these results, it is mainly noted that once the pro-
posed approach has implemented by P4 technology in switch-
side, by decentralizing the network’s intelligence toward the
edge in SDNs, it will further succeed in reducing the number
of control messages such as Packet-In, Packet-Out,
and Flow-Removed, etc.

V. CONCLUSION
In this article, we revisit the reasons for causing the scalability
issues of SDN, since the size of an SDN switch’s TCAM
is finite and the ordinary operations are not timely enough
to evict the invalid flow-entries. To improve the scalability,
we propose a scheme to achieve early detecting and evict-
ing the invalid flow-entries of connection-oriented protocols
immediately and minimize the concurrent flow-table occu-
pancies in SDN switches. The scheme can be divided into
two parts: the countermeasures for the TCP and SCTP, called
the expedited invalid TCP flow eviction scheme and the
expedited invalid SCTP flow eviction scheme, respectively.

A series of simulations based on practical SDN param-
eters are used to evaluate the performance of the proposed
scheme and the results prove that our scheme can achieve the

purpose of quickly evicting invalid flow-entries and signif-
icantly improve the scalability of SDN, that corresponds to
intuition. However, the expedited invalid TCP flow eviction
scheme in the elephant traffic scenario does not achieve very
good results, which needs to be improved in our future work.
In addition, the lifetime of different port numbers under nor-
mal conditions will also depend on the traffic characteristics
of that particular application. In the follow-up study, we can
consider checking the port number with SDN rulesets, and
assigning different initial idle timeout values to different port
numbers or generating dynamic adaptive and dynamically
adjustable idle timeout initial values via machine learning.
It is expected that this method will be further optimized and
this part is for further study.

Undeniably, a certain of SDN control messages are gener-
ated each time a TCP/SCTP control message appears which is
very common in network traffics increasing the control over-
head and decreasing the feasibility of the proposed scheme in
the ordinary Openflow-based SDNs. Positively, the proposed
scheme in some cases, which may be embedded into the SDN
switches, takes over the responsibilities of the TCP/SCTP
control signaling detector and consolidate proposed func-
tions into a new feature set to be implemented on the newer
P4 switches. The improved P4 switch checks the concurrent
number of connections for both the transport-layer protocols
and evicts the invalid flow-entry right after the last data flow
is away by detecting the control messages of the famous
connection-oriented protocols. The above-mentioned action
to be accomplishedwithin zerowaiting time. Thus, scalability
in terms of the available flow-table of the SDNs increases
with quite little additional costs.

REFERENCES
[1] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong,

and J. C. Zhang, ‘‘What will 5G be?’’ IEEE J. Sel. Areas Commun., vol. 32,
no. 6, pp. 1065–1082, Jun. 2014.

[2] C. Elliott, ‘‘GENI: Opening up new classes of experiments in global
networking: Internet predictions,’’ IEEE Internet Comput., vol. 14, no. 1,
pp. 39–42, Jan. 2010.

[3] A. Gavras, A. Karila, S. Fdida, M. May, and M. Potts, ‘‘Future Internet
research and experimentation: The FIRE initiative,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 37, no. 3, pp. 89–92, Jul. 2010.

[4] L. Yang, R. Dantu, T. Anderson, and R. Gopal, Forwarding and Control
Element Separation (ForCES) Framework, document IETF RFC-3746,
Apr. 2004.

[5] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie,
H. Yan, J. Zhan, and H. Zhang, ‘‘A clean slate 4D approach to network con-
trol and management,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 35,
no. 5, pp. 41–54, Oct. 2005.

[6] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe, ‘‘Design and implementation of a routing control plat-
form,’’ in Proc. ACM NSDI, Berkeley, CA, USA, vol. 2, May 2005,
pp. 15–28.

[7] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh,
N. McKeown, and S. Shenker, ‘‘SANE: A protection architecture for
enterprise networks,’’ in Proc. ACM USENIX-SS, Vancouver, BC, Canada,
Aug. 2006, vol. 15, no. 10, p. 50.

[8] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker,
‘‘Ethane: Taking control of the enterprise,’’ in Proc. ACM SIGCOMM,
Aug. 2007, pp. 1–12.

[9] (Mar. 2015). OpenFlow Switch Specification, Version 1.5.1. [Online].
Available: https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-
ssl.com/wp-content/uploads/2014/10/OpenFlow-switch-v1.5.1.pdf

VOLUME 8, 2020 208681



W.-K. Jia et al.: Deploying a Fast Detection and Eviction Mechanism of Invalid Connection-Oriented Flow-Entries in SDNs

[10] A. Yassine, H. Rahimi, and S. Shirmohammadi, ‘‘Software defined net-
work traffic measurement: Current trends and challenges,’’ IEEE Instrum.
Meas. Mag., vol. 18, no. 2, pp. 42–50, Apr. 2015.

[11] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, ‘‘On scalability of
software-defined networking,’’ IEEE Commun. Mag., vol. 51, no. 2,
pp. 136–141, Feb. 2013.

[12] S. Luo, H. Yu, and L. Li, ‘‘Practical flow table aggregation in SDN,’’
Comput. Netw., vol. 92, pp. 72–88, Dec. 2015.

[13] S. Veeramani, M. Kumar, and S. N. Mahammad, ‘‘Minimization of
flow table for TCAM based openflow switches by virtual compression
approach,’’ in Proc. IEEE Int. Conf. Adv. Netw. Telecommun. Syst. (ANTS),
Kattankulathur, India Dec. 2013, pp. 1–4.

[14] S. Saraswat, V. Agarwal, H. P. Gupta, R. Mishra, A. Gupta, and T. Dutta,
‘‘Challenges and solutions in software defined networking: A survey,’’
J. Netw. Comput. Appl., vol. 141, pp. 23–58, Sep. 2019.

[15] R. Challa, Y. Lee, and H. Choo, ‘‘Intelligent eviction strategy for efficient
flow table management in OpenFlow switches,’’ in Proc. IEEE NetSoft
Conf. Workshops (NetSoft), Seoul, South Korea, Jun. 2016, pp. 312–318.

[16] M. Rifai, D. Lopez-Pacheco, and G. Urvoy-Keller, ‘‘Coarse-grained
scheduling with software-defined networking switches,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 45, no. 5, pp. 95–96, Aug. 2015.

[17] H. Zhu, H. Fan, X. Luo and Y. Jin, ‘‘Intelligent timeout master: Dynamic
timeout for SDN-based data centers,’’ inProc. IFIP/IEEE Int. Symp. Integr.
Netw. Manage. (IM, Ottawa, ON, Canada, May 2015, pp. 734–737.

[18] OpenFlow Timeouts. Accessed: Oct. 2018. [Online]. Available:
https://www.sdnlab.com/22563.html

[19] N. Gude, ‘‘NOX: Towards an operating system for networks,’’ ACM SIG-
COMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, Jul. 2008.

[20] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, ‘‘DevoFlow: Scaling flow management for high-
performance networks,’’ Comput. Commun. Rev., vol. 41, no. 4,
pp. 254–265, Aug. 2011.

[21] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, ‘‘Scalable flow-based
networking with DIFANE,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 4, pp. 351–362, Aug. 2010.

[22] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, ‘‘Infinite CacheFlow
in software-defined networks,’’ in Proc. ACMHotSDN, Chicago, IL, USA,
Aug. 2014, pp. 175–180.

[23] T. Kim, K. Lee, J. Lee, S. Park, Y. H. Kim, and B. Lee, ‘‘A dynamic timeout
control algorithm in software defined networks,’’ Int. J. Future Comput.
Commun., vol. 3, no. 5, pp. 331–336, Oct. 2014.

[24] K. Kannan and S. Banerjee, ‘‘FlowMaster: Early eviction of dead flow
on SDN switches,’’ in Proc. Int. Conf. Distrib. Comput. Netw. (ICDCN),
Berlin, Germany, Jan. 2014, pp. 484–498.

[25] A. Vishnoi, R. Poddar, V. Mann, and S. Bhattacharya, ‘‘Effective switch
memory management in OpenFlow networks,’’ in Proc. 8th ACM Int.
Conf. Distrib. Event-Based Syst. (DEBS), Mumbai, India, May 2014,
pp. 177–188.

[26] E.-D. Kim, Y. Choi, S.-I. Lee, and H. J. Kim, ‘‘Enhanced flow table
management scheme with an LRU-based caching algorithm for SDN,’’
IEEE Access, vol. 5, pp. 25555–25564, 2017.

[27] Z. Guo, R. Liu, Y. Xu, A. Gushchin, A. Walid, and H. J. Chao, ‘‘STAR:
Preventing flow-table overflow in software-defined networks,’’ Comput.
Netw., vol. 125, pp. 15–25, Oct. 2017.

[28] Z. Guo, Y. Xu, R. Liu, A. Gushchin, K.-Y. Chen, A. Walid, and H. J. Chao,
‘‘Balancing flow table occupancy and link utilization in software-defined
networks,’’ Future Gener. Comput. Syst., vol. 89, pp. 213–223, Dec. 2018.

[29] A. Panda, S. S. Samal, A. K. Turuk, A. Panda, and V. C. Venkatesh,
‘‘Dynamic hard timeout based flow table management in openflow enabled
SDN,’’ in Proc. Int. Conf. Vis. Towards Emerg. Trends Commun. Netw.
(ViTECoN), Vellore, India, Mar. 2019, pp. 1–6.

[30] S. Banerjee and K. Kannan, ‘‘Tag-in-tag: Efficient flow-table management
in SDN switches,’’ inProc. 10th Int. Conf. Netw. ServiceManage. (CNSM),
Rio de Janeiro, Brazil, Nov. 2014, pp. 109–117.

[31] Y. Lu, Z. Ling, S. Zhu, and L. Tang, ‘‘SDTCP: Towards datacenter TCP
congestion control with SDN for IoT applications,’’ Sensors, vol. 17,
no. 12, p. 109, Jan. 2017.

[32] S. Shirali-Shahreza and Y. Ganjali, ‘‘Delayed installation and expedited
eviction: An alternative approach to reduce flow table occupancy in
SDN switches,’’ IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1547–1561,
Aug. 2018.

[33] C.-H. He, B. Y. Chang, S. Chakraborty, C. Chen, and L. C. Wang, ‘‘A zero
flow entry expiration timeout p4 switch,’’ in Proc. Symp. SDN Res.,
New York, NY, USA Mar. 2018, pp. 1–2.

[34] R. Ying, W.-K. Jia, Y. Zheng, and Y. Wu, ‘‘Fast invalid TCP flow removal
scheme for improving SDN scalability,’’ in Proc. 16th IEEE Annu. Con-
sum. Commun. Netw. Conf. (CCNC), Las Vegas, NV, USA, Jan. 2019,
pp. 1–5.

[35] R. Ying, W.-K. Jia, C. Luo, and Y. Wu, ‘‘Expedited eviction of invalid
flow entries for SDN-based EPC networks,’’ in Proc. IEEE/CIC Int. Conf.
Commun. China (ICCC), Changchun, China, Aug. 2019, pp. 298–303.

[36] R. Stewart, Stream Control Stream Transmission Protocol, document IETF
RFC-2960, Sep. 2007.

[37] A. L. Caro, J. R. Iyengar, P. D. Amer, S. Ladha, G. J. Heinz, and
K. C. Shah, ‘‘SCTP: A proposed standard for robust Internet data trans-
port,’’ Computer, vol. 36, no. 11, pp. 56–63, Nov. 2003.

[38] (Apr. 2013). OpenFlow Switch Specifications, Version 1.3.2. [Online].
Available: https://www.cs.princeton.edu/courses/archive/fall13/cos597E/
papers/OpenFlow-spec-v1.3.2.pdf

WEN-KANG JIA (Senior Member, IEEE)
received the Ph.D. degree from the Department of
Computer Science, National Chiao Tung Univer-
sity (NCTU), Hsinchu, Taiwan, in 2011. Before
returned to school, he has been a Senior Engineer
and a Manager since 1991 in various network-
ing areas including ICT Manufacturer, Network
Integrator, and Telecomm Service Provider. Since
January 2018, he has been a Full Professor of the
College of Photonic and Electronic Engineering

(P&EE), Fujian Normal University (FJNU), Fuzhou, China. He has pub-
lished more than 100 research articles, which has been cited more than
500 times. His current research interests include OSI layer-2/3/4 such as
TCP/IP protocol design, high-performance switching and routing, mul-
ticasting and broadcasting, mobile management, error resilience coding,
multimedia communications, QoS and teletraffic engineering, IP-optical
convergence networks, P2P overlay networks, cloud computing, and 4G/5G
mobile networks. He was awarded the 2nd Fujian Province Hundred Talent
Plan, in 2019.

RUOLAN YING received the M.S. degree
from Fujian Normal University (FJNU), Fuzhou,
Fujian, China, in 2020, where she is currently
pursuing the master’s degree with the College of
Photonic and Electronic Engineering (P&EE). She
has been a Patent Examiner of Communication
Engineering Room, Patent Examination Cooper-
ation, Beijing, Fujian, Center of the Office, which
is under the jurisdiction of China National Intel-
lectual Property Administration (CNIPA), Fujian,

China, since 2020. Her current research interests include network pro-
tocol designs, network routing and forwarding, and emerging network
architectures.

XIAONING SHI received the B.S. degree from the
School of Business Administration, Jimei Univer-
sity, Xiamen, Fujian, China, in 2002. Since 2020,
she has been a Research Assistant with the College
of Photonic and Electronic Engineering (P&EE),
Fujian Normal University (FJNU), Fuzhou, China.
Her current research interests include social net-
works, P2P networks, multimedia networks, cloud
and edge computing, and electronic commerce.

208682 VOLUME 8, 2020


