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ABSTRACT Malware is a rapidly increasing menace to modern computing. Malware authors continually
incorporate various sophisticated features like code obfuscations to create malware variants and elude
detection by existing malware detection systems. The classification of unseen malware variants with similar
characteristics into their respective families is a significant challenge, even if the classifier is trained with
known variants belonging to the same family. The identification and extraction of distinct features for
each malware is another issue for generalizing the malware detection system. Features that contribute to
the generalization capability of the classifier are difficult to be engineered with modifications in each
malware. Conventional malware detection systems employ static signature-based methods and dynamic
behavior-based methods, which are inefficient in analyzing and detecting advanced and zero-day malware.
To address these issues, this work employs a visualization approach where malware is represented as 2D
images and proposes a robust machine learning-based anti-malware solution. The proposed system is based
on a layered ensemble approach that mimics the key characteristics of deep learning techniques but performs
better than the latter. The proposed system does not require hyperparameter tuning or backpropagation and
works with reduced model complexity. The proposed model outperformed other state-of-the-art techniques
with a detection rate of 98.65%, 97.2%, and 97.43% for Malimg, BIG 2015, and MaleVis malware datasets,
respectively. The results demonstrate that the proposed solution is effective in identifying new and advanced
malware due to its diverse features.

INDEX TERMS Malware, malware classification, malware detection, malware images, malware variants,
malware visualization.

I. INTRODUCTION
The internet has become a key aspect of our daily lives.
Although making our lives convenient, the internet has made
innocent users vulnerable to attacks. The rise of the inter-
net and the emergence of social networks have triggered
exponential growth in malware. The evolution of malware
starts as a hobby of technical enthusiasts and is now pinned
with the main motive of making money. Attackers commonly
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use phishing or email as infection vectors. The main tar-
gets of cyber-attacks are the food industry, logistics industry,
and non-profit concerns [10]. Recent threats are posed
by information [30], similar to the earlier banking Tro-
jans. TrickBot and Emotet are significant droppers, which
carry multiple malware modules for performing various
malicious actions like sending spams, erasing sensitive
data, crypto-wallet theft, etc. These malware variants
focused a great deal of attention on ensnaring busi-
nesses, targeting profit from selling the most sensitive
information.
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FIGURE 1. Some malware sample images belonging to distinct families of three malware datasets.

Malware detection and classification is one of the
most significant problems in the area of cybersecurity.
Signature-based methods are effective against known mal-
ware, but they are ineffective against advanced and unknown
malware. Malware authors introduce evasion techniques like
obfuscation, encryption, packing, etc. on existing malware to
elude detection, leading to more number of new malware.
Malware files with the same malicious behavior belong to
the same malware family. These files are continuously mod-
ified using different tactics, which make them very distinct.
These large volumes of files are grouped into their respective
families by effective malware detection and classification
process. Basically, most of the existing malware classifiers
extract significant features from the malware files and train
a machine learning model with those features. The trained
model can distinguish between malware and a cleanware.
This is at a very preliminary level. The classifiers face a
lot of challenges because of the tactics like obfuscation,
packing, and other subtle modifications the malware authors
practice, in order to escape the malware classifiers. The fea-
tures extracted from such modified malware, do not reveal
any useful clue to the classifier and thus are causes for the
failure of the malware detector. This is quite possible with
any machine learning-based malware detector and classifier.
Hence, the malware and anti-malware community holds an
arms race situation and is a never-ending story in the cyber-
security domain. This creates a pressing need to approach the
malware detection in an angle of extracting features that are
robust to any sort of modifications practiced by the malware
authors and could detect a malware in spite of any changes
introduced in the malware script. Further, the variant of an
existing malware should also be trapped by the system.

This research work makes such an attempt and is found
to be succeeding to a greater extent. In this paper, binary
file executables (malware & cleanware) are analyzed using
vision- based analysis technique. The malware authors reuse
the same malicious code segments to generate new malware
variants. This is easily observed when we visualized the
binary code of the malware. This approach is called the

Vision-based Analysis Technique. Malware visualization has
recently been used as an alternative and efficient approach for
malware analysis. This approach does not require an in-depth
analysis.

The similarity in malicious code variants is visualized
and identified. Each malware family exhibited a particular
texture in the respective malware images. These texture pat-
terns in the images are found to be exhibiting significant
visual similarities to malware belonging to the same class.
Another advantage is that vision-based analysis does not
need static disassembly or dynamic execution of binaries,
unlike other traditional malware analysis techniques. Texture
features could be extracted from themalware image and could
be employed for training the classifier. This will not fail since,
due to obfuscation or packing or reassembling, the texture
will occur at a different position in the malware image. So the
features can act as the telltale clue to detect the occurrence of
the texture and thus help in finding the malware, their invari-
ants, and any of their modified versions. This technique aids
better performance for classifying malware and is resilient to
obfuscation and other modification techniques.

The binary files of malware are converted as 8-bit vectors
consisting of a string of zeros and ones and are organized
into two-dimensional matrices forming grayscale images g =
f (m, n), where g is the gray level. The intensity levels vary
from Gmin,Gmax to [0,G − 1], for Gmin ≤ g = f (m, n) ≤
Gmax . We represent g = 0 for black, g = G − 1 for
white, and intermediate values for shades of black to white.
Malware authors alter a small part of the binary, and images
visualize these small changes maintaining their global struc-
ture. Fig. 1 shows some of the image patterns of families
in three datasets. Fig. 1(a) and (b) shows the sample images
of Adialer.C and Autorun.K families in the Malimg dataset.
Fig. 1(c) and (d) shows the sample images ofObfuscator.ACY
and Ramnit families in Microsoft BIG 2015 dataset. Fig. 1(e)
and (f) show the sample images of Dinwod and Regrun
families in the MaleVis dataset. The similarity in the texture
pattern is found to be more among the malware of the same
family.
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The next step in the process is to extract features of
these patterns from the images and train a classifier with
those features. Over the past decade, many research efforts
have been taken to develop such a classifier with the mal-
ware features. Data mining and machine learning techniques
are employed to develop intelligent malware detection and
classification systems. Deep neural networks have reached
significant success in diverse applications, especially in the
field of computer vision. Although deep learning models are
powerful, they have certain limitations in real-world detec-
tion tasks, especially in security domains. With the flow
of zero-day and unlabeled malware, the detection perfor-
mance using deep learning is also low. These deep models
are very intricate and require high computational overhead.
Also, they require a substantial number of hyperparameters,
and performance improvement is achieved by tuning them
appropriately.

Deep learning models are trained by backpropagation,
whereas the proposed model is trained using tree learners.
Considering all these factors, this research work proposes
to employ an ensemble deep forest algorithm, which has
many advantages over the existingmachine learning and deep
learning models. It has high generalization ability, improved
detection accuracy & precision, and low computational
overhead.

Various types of forests and random subspace sampling
for high-dimensional data are adopted in order to promote
diversity in the layered ensemble approach. The proposed
malware detection and classification system is context-aware
and generalizes well. As far as the model complexity is con-
cerned, the deep forest approach uses less hyper-parameters
compared with deep learning and performs well with default
setting. Thus, it does not require hyper-parameter tuning.
Deep forests work well even with small scale data where deep
learning typically fails. Themodel does not require additional
computational resources such as Graphical Processing Unit
(GPU). Deep forest do not suffer from overfitting, as ran-
domness is increased by the use of different grains of sliding
windows, and ensemble forests generate class vectors using
cross-validation.

The main contributions of this paper are as follows.
• Adaptation of Vision-based Malware Analysis Tech-
nique, where-in the malware executable files are con-
verted as grayscale images to exploit global features.
The risk of executing the malware for analysis as
in Dynamic Analysis, and the requirement of intense
knowledge in opcodes/assembly language to understand
the malware codes as in Static Analysis & reverse Engi-
neering are not involved at all. It involves a clean,
straight forward, simple, and powerful visual feature
engineering & extraction approach.

• Employed a novel ensemble deep forest approach [45]
for malware detection and classification, which is com-
petitive and superior over deep learning and other
machine learning techniques. The proposed approach
is data-independent and learns the discriminative

representation from the data itself rather than depending
on hand-crafted feature descriptors.

• Extensive empirical investigation on three benchmark
malware datasets (Malimg, Microsoft, and MaleVis) to
demonstrate the efficiency of the proposed method over
traditional and contemporary methods.

• Superior accuracy than the existing schemes: A higher
detection performance of 98.86% without requiring to
extract local features, indicating the proposed method as
a promising approach in detecting novel, zero-day, and
even obfuscated malware.

• Low Model Complexity: The proposed system does not
require hyper-parameter tuning or backpropagation and
works with reduced model complexity.

The rest of the paper is organized as follows. Section II
discusses the related works on various malware analysis
and detection techniques. Section III describes the proposed
model. Section IV presents the mathematical proof of the pro-
posed deep forest-basedmalware detection system. Section V
describes the details of the datasets used and the experimen-
tal setup. Section VI discusses the results and performance
analysis with other works. Finally, Section VII presents the
conclusion of the paper.

II. RELATED WORK
Malware analysis approaches include static, dynamic, hybrid,
and vision-based approaches. The features are extracted by
using any of the analysis approaches and based on these
features, the file is classified as malware or cleanware by the
trained classifier.

A. STATIC ANALYSIS
Static analysis analyzes the binary file executable by disas-
sembling it without execution. Signature-based methods or
pattern-matching methods detect malware by identifying a
match with the malware signature database that is updated
frequently. The features extracted from thesemethods include
hash signatures, string sequences [17], [36], byte sequences,
system resource information [36]. Portable Executable (PE)
file features [34] like the list of DLLs, DLL function calls list,
the number of different function calls within eachDLL, Num-
ber of (standard sections, non-standard sections, Executable
sections, Readable/Writable/Executable sections, entries in
the IAT), and Entropies of the (PE header, code sections, data
sections, and entire PE file).Many traditional signature-based
methods like antivirus programs use hash values of binary
files as signatures [49]. This method is ineffective for
unknown zero-day and obfuscated malware. The exponential
growth and scalability issues of malware signature databases
are also a major drawback.

To combat these issues, automatic signature generation
methods such as string sequences [17], function-based meth-
ods [37] constructing common sequences or segments were
used as unique signatures. The semantics-aware malware
detector [8] employs a template-based approach that is capa-
ble of detecting malware variants, using a unique template.
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Their method is resilient to some obfuscations like instruction
reordering, register renaming, and garbage insertion. The
techniques like instruction replacement, equivalent function-
ality, and reordered memory accesses are not handled. Static
analysis techniques do not generalize for unseenmalware, are
computationally expensive, require expertise, and are slow.
It takes more time to discover it as malware, and by that time,
the malware could have created the damage by performing its
intended malicious actions.

B. DYNAMIC ANALYSIS
The dynamic analysis approach addresses the drawbacks of
static analysis, with a great deal of attention towards tracking
the runtime behavior of the executables. This analysis allows
executables to run in a safe and virtual environment to prevent
system outbreaks. The features extracted using dynamic anal-
ysis includes n-grams, operational code (opcode) sequences,
API/system call sequences, control flow graphs. The work
presented in [24] extracted byte code sequences from exe-
cutables and converted them into n-gram features. The
opcode sequences and their appearance frequencies [35] are
extracted from executables to identify unknown malware.
This method was observed ineffective in detecting packed
malware. The Spatio-temporal features are extracted from
API traces [3] and achieved a higher accuracy rate in identi-
fying malware. The dynamic analysis approach is ineffective
when malware authors design the same malware with differ-
ent behaviors in different instances or behaviors exhibition
by user triggers. This technique cannot efficiently detect
malware in real-time.

1) GRAPH-BASED DETECTION
The dynamic malware behaviors, such as system calls and
API calls, are visualized using dependency graphs [23], [13].
The dependencies are analyzed by tracing the input and out-
put arguments of the system or API calls. The API depen-
dency graphs [12] are constructed from malware files and
common behavior graphs are extracted from them. A non-
string feature space containing semantic relevance paths is
developed [33] in terms of the Average Logarithmic Branch-
ing Factor (ALBF) metric. These semantically relevant paths
are extracted from the system-level information flow. The
2-grams features are extracted from binary files to form a
Markov chain [4], which is transformed into a graph. Then,
a similarity matrix is generated to classify malware. Various
analytical models were proposed to analyze the propaga-
tion dynamics of malware in networks using Spatio-temporal
measures [7], difference equation [43], mean-field approxi-
mation [11]. Dynamic analysis techniques involve the execu-
tion of the malware in a controlled environment like Cuckoo
sandbox or virtual machine, letting the malware to cause
the damage and then analyzing its persistence mechanism,
spreading mechanism and their vulnerability exploration and
exploitation aspects. It requires an extremely safe controlled
environment and an intense knowledge in analyzing the
effects caused by the malware attack. Even a small ignorance

and negligence in the environment could cause very serious
damage to the network and systems.

2) MACHINE LEARNING-BASED DETECTION
Data mining and machine learning techniques identify
malware based on features extracted from static analysis,
dynamic analysis, vision-based analysis, or a combination
of the analysis methods. Data mining classifiers are trained
using various features to classify unknown malware. Some
works employ feature ranking [42] using machine learning
classifier for effective malware classification. The framework
presented by [36] is based on static features that work for
three learning algorithms, such as an inductive rule-based
learner, a probabilistic method, and a multi-classifier sys-
tem. Their approach was limited to large-scale real-world
samples. Reference [24] implemented machine-learning
techniques such as naive Bayes, decision trees, support vec-
tor machines, and boosting based on n-gram features. The
authors inferred that boosted decision trees outperformed
other methods. Their approach is limited to code obfuscations
and determining the functional properties of malware. The
static PE file features are extracted from executables [34] and
experiments on machine learning classifiers such as Naive
Bayes, J48 decision tree, Bagged J48, KNN, Multi-Layer
Perceptron (MLP) and Entropy Threshold are conducted
to classify packed and unpacked samples. Reference [35]
constructed vectors from opcode sequences of executables
and trained machine learning classifiers. Their approach is
limited to packed executables. The instruction sequences are
extracted from PE files [14] and generated malicious sequen-
tial patterns to perform feature representation. The authors
performed malware detection using All-Nearest-Neighbor
(ANN) classifier. However, the success of these machine
learning-based detectors depends heavily on the features
extracted and the capability of the machine learning model
selected. In case the features could not give any clue because
of themodifications like packing, obfuscation, subtle changes
in sequencing done on them by the malware authors, the clas-
sifier will become ineffective. Also, frequent tuning of the
trained classifier with the latest advanced malware samples
is needed for effective detection.

C. VISION-BASED ANALYSIS
Malware researchers employ a vision-based analysis
approach for analyzing malware binaries by visualizing them
as images. Then, malware is characterized using image-based
features. This involves either taking the whole image as a
single vector or taking the local and global features extracted
from the image. The images are then classified into their
respective families using machine learning classifiers. Refer-
ence [31] first proposed the visualization of malware binaries
as images and classification was based on global image
features. They inferred that attackers could obfuscate the
malware images by section relocation, insertion of largely
redundant data, etc. To overcome these attacks, many local
feature extraction techniques are employed for vision-based
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malware analysis to identify the unique features of malware
binaries and their original code segments.

The texture features such as GIST [32], Gray Level
Co-occurrence Matrix (GLCM) [9], Wavelet-based fea-
tures [21] are extracted from the images to classify malware
variants. The three types of features, such as Intensity-based,
Wavelet-based, and Gabor based features are extracted to
classify malware using an SVM classifier. Reference [15]
extracted global features like texture and color features, and
local features like code and data sections from color images
of malware binaries.

Malware researchers used image features to classify
malware using machine learning and deep learning clas-
sifiers [20], [25], [22]. Experiments were conducted for
malware classification using machine learning classifiers
such as Logistic Regression (LR) [40], Naïve Bayes (NB)
(Vinayakumar et al., 2019), Decision Tree (DT) [40], Ran-
dom Forest (RF) [40], [15], K-Nearest Neighbor (KNN) [31]
and Support Vector Machine (SVM) [31], [40]. Refer-
ence [26] proposed an approach that extracts Local Binary
Patterns (LBP), and dense Scale-Invariant Feature Trans-
form (SIFT) features from malware image. Reference [40]
presented a scalable and hybrid deep learning model called
ScaleMalNet based on malware image processing to detect
new malware. They assessed the performance of machine
learning and deep learning models on all available mal-
ware datasets for malware detection and classification. They
inferred that the proposed deep learning model outperformed
the machine learning techniques in detecting malware. The
whole binary image features are extracted automatically [9]
for classifying malware using Convolutional Neural Net-
works (CNN). The authors used a data equilibrium approach
based on a bat algorithm to solve the data imbalance problem
among various malware classes. A hybrid approach [1] was
presented by combining deep learning and SVM algorithms
to classify malware from the Malimg dataset. However, these
approaches involve heavy computational complexity and are
subject to a huge amount of hyperparameter tuning of the
deep learning models.

D. HYBRID ANALYSIS
The hybrid analysis approach involves the extraction of
integrated features by combining any of the other malware
analysis approaches to detect and classify malware. The com-
binations of static and dynamic features improve detection
performance [24], [47]. Reference [19] combined static fea-
tures such as function length-frequency vectors and printable
string information vectors and dynamic API features as a
single vector. The opcode sequences and system call features
are extracted from binaries using dynamic analysis. Then
these dynamic features [44], [18] are visualized as images.
A similarity estimation approach [18], [48] based on the
vector representation of image matrices is constructed from
static and dynamic features. The samples are represented
using a novel approach [39] by forming clusters based on
similarity functions of each resource types such as file names,

registry names, mutexes and domain names. They used
machine learning classifier to classify malware from clean-
ware. These methods lacked generalization ability which
is needed for malware detection, since new and variant
of existing malware are always expected to flow in the
network.

III. PROPOSED MODEL
A. OVERVIEW
Fig. 2 shows the overall design of the proposed malware
detection system. The proposedmodel consists of two phases,
analysis and classification phase. In the analysis phase, each
PE binary file is transformed into a 2D array and visual-
ized as a grayscale image. The second phase involves the
classification of malware into their corresponding classes
based on the image patterns. This phase uses the deep forest
approach for malware detection and classification. The deep
forest approach includes two stages, namely, sliding window
scanning and cascade layering. Motivated by the concept of
Convolutional Neural Networks (CNNs), the sliding window
scanning stage is adopted to preserve the spatial relationship
between raw pixels. Each binary image in the training set
is given as input to the classification phase. The first stage
begins with scanning the input image with parallel process-
ing of two sliding windows. A set of smaller instances are
obtained from each sliding window and are trained with two
ensembles. The predictions from both the ensemble forests
return class probability vectors. These class vectors from
both sliding windows are concatenated to form multidimen-
sional feature vectors that enable the model to boost the
performance.

The resulting transformed feature vectors from slidingwin-
dow scanning are passed as input to the cascade layering
stage. This stage consists of sequential layers, with each layer
comprising of four ensemble forests. The deep forest model
adaptively chooses the number of layers based on the input
data leading to lowermodel complexity. Each forest generates
class vectors using k-fold cross validation to minimize the
problem of overfitting. In every layer, the input feature vector
is trained k-1 times using k-1 forests and each forest outputs
k-1 class vectors. Each layer generates final class vector by
averaging the k-1 class vectors. Here 5-fold cross validation
is used and the instances are trained four times using four
ensemble forests. The feature representation at each cascade
layer is performed using class vector probability of each
ensemble forest. The class vector probabilities are estimated
by averaging the class vectors across all decision trees in
the ensemble. The layering process terminates when there
is no improvement in accuracy. The ensemble outputs the
prediction probabilities of different classes and the average
probability values for every class are calculated from each
of the ensembles. The class with maximum average prob-
ability value is identified as the corresponding class of the
input sample. The steps of the proposed model are given
in Algorithm 1.
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FIGURE 2. Proposed malware detection model.

Algorithm 1 ProposedMalware Detection and Classification
Model

Input: P = {(xf , yf )}Nf=1: the training set
Output: Predicted class yf
1: repeat
2: for each PE file f ∈ P do
3: Visualize as grayscale image: g← f (m, n)
4: Resize g : m× n
5: Set sliding windowsW ∈ {w1,w2 of size i× j.
6: repeat
7: for each W do
8: Sliding Window Scanning Phase ()
9: end for
10: until W
11: Cascade Layering Phase ()
12: Compute the average of class probabilities

vf = 1
E

∑E
e=1 vf ,e

13: Return yf
14: end for
15: until the last binary file f = (xN , yN )

B. PREPROCESSING PHASE
The PE binary files (malware or cleanware) are given as input
to the proposed model. Each file comprises the hexadecimal
representation of its binary content. Each binary is converted
using a function that processes hexadecimal into images
in.png format. First, each line of a binary is scanned and every
set of eight characters are stored in an array. Then, each byte
is converted to its decimal equivalent and stored it in another
array. This conversion process is repeated for all the lines of
the binary file. The array with decimal values is converted
to visualize binary images using a Python Imaging Library
(PIL) package.

Experiments were conducted by giving squared images
(aspect ratio 1:1) as input to the proposed classification
model. It was observed that the model did not show good
performance. By keeping aspect ratio of the image as 1:3

(various sizes such as 10× 30, 20× 60, 30× 90), the model
showed better performance, but required higher computations
and memory. This can be attributed to the PE files having
certain format which restricts the width of the files while
the height of the program is generally large. Also, images
with smaller dimensions lead to loss of sensitive information.
In order to minimize the cost in terms of time, space and
information loss, the image dimensions are resized to 30×90
for the experiments.

C. SLIDING WINDOW SCANNING STAGE
Each input binary image is scanned using two sliding win-
dows of different sizes such as 10×10 and 30×30. Based on
the input dimensions, sliding window size, and stride value,
the number of smaller image instances are generated for
further processing. The dimensions of the input image is g :
m×n→ 30×90. The sliding window is denoted as i× j and
stride s = 1. The number of smaller images S are generated
by using the formula, S = v1× v2, where v1 = m− i+ s and
v2 = n− j+ s. For window w1 : i× j→ 10× 10, v1 = 21,
v2 = 81, resulting in S = 1701. Thus, for 10 × 10 window
size, 1701 smaller image instances are generated. Similarly,
for the window size of 30 × 30 denoted as w2, 61 smaller
image instances are generated.

Then, the smaller images of each sliding window are pro-
cessed by two ensembles such as Random Forest (RF) and
Completely Random Forests (CRF) classifiers. Both RF and
CRF forests take decisions frommultiple decision trees. Each
ensemble determines a probability distribution over classes
for densely sampled instances from the input image. The
class distributions are estimated at the leaf nodes into which
the concerned instance falls. The final feature vectors are
obtained by concatenating class vectors from the two sliding
windows. The aggregation is based on the probability rather
than majority voting. The probability values are observed
to be reflecting the class label of the malware family, more
precisely. The chances of 50/50 predictions are very low and
in such cases, the predictions of CRF model are given more
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FIGURE 3. Sliding window scanning stage.

weightage, since on an average they provide performance
superior to naïve RF model.

The methodology is explained with Microsoft Malware
dataset along with cleanware class, containing ten classes
(9 malware classes + 1 cleanware class). For w1, the
RF classifier outputs 10× 1701 class vectors, obtained from
processing 1701 image subsets with respect to ten classes.
Likewise, the CRF classifier generates 10 × 1701 class vec-
tors. The resulting feature vectors from both the ensembles
are concatenated to form 34020-dimensional feature vectors
(vevenf ). Similarly for w2, the RF and CRF classifiers generate
10× 61 feature vectors each, forming 1220-dimensional fea-
ture vectors (voddf ). Fig. 3 shows the flow of sliding window
scanning stage. The procedure of sliding window scanning
stage is given in Algorithm 2.

D. CASCADE LAYERING STAGE
The input to this stage is the feature vectors vevenf and voddf
obtained by processing smaller images of sliding windows
w1 and w2. The first layer processes the feature vector vevenf
from first sliding window of the first stage. Each ensemble
generates class vectors and is concatenated with the feature
vector voddf obtained from the second sliding window. This
resulting feature vector from the first layer is given as input
to the four ensemble forests in the second layer. The class
vectors generated from each ensemble are concatenated with
the feature vector obtained from the first sliding window.
This process repeats in an alternative manner. (i.e) Odd layers
take feature vector obtained from the first sliding window,
and even layers take feature vector obtained from the second
sliding window. The feature vectors from the two sliding

Algorithm 2 Sliding Window ScanningStage
Input: g: resized grayscale image.
Output: voddf and vevenf : feature vectors.

1: g : m× n;W ∈ {w1,w2 : i× j; s: stride; I ∈ {I1, . . . , IS :
set of all smaller images; E ∈ {e1, e2: set of ensembles.
2: Generate smaller images S = v1 × v2
Where v1← m− i+ s; v2← n− j+ s.

3: repeat
4: for each e1, e2 ∈ E do
5: Train I
6: Obtain class probability vectors vC

Where vC ∈ {vC1, vC2: set of class probability
vectors; vc1 = (vI1,1, . . . vIS ,C ) and
vc2 = (vI1,1, . . . vIS ,C )

7: end for
8: until no element in E
9: Obtain feature vectors voddf ← vC1&vC2 and
vevenf ← vC1&vC2
Where vf 1: 2S1 × 1 dimensions, for w1 ∈ W ;
vf 2: 2S2 × 1 dimensions, for w2 ∈ W ;
S1 and S2 – number of smaller images from w1
and w2 respectively.

windows are alternatively concatenated with the class vectors
generated from the four ensembles of each layer.

The process is explained with the first setting, where all the
four ensembles are CRFs. The first layer takes the feature vec-
tor vevenf and processes it using the four ensembles, resulting
in 4×10 dimensional class vectors. Then, the 40-dimensional
class vectors are concatenated with vevenf to serve as input to
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FIGURE 4. Cascade layering stage. e2,e2, e3, e4 denote ensembles.

the next layer. This layering process repeats by taking the
output from the previous layer, sending the new feature vector
to be processed by the ensembles, and concatenating with
the feature vector voddf . Fig. 4 shows the flow of the cascade
layering stage.

Likewise, alternatively feature vectors vevenf and voddf are
concatenated with the class vectors of the current layer
to form new feature vectors. At each layer, 5-fold cross-
validation is carried out to check the accuracy achieved and
decide whether this process should proceed further or not.
If there is an increase in accuracy, the next layer is processed.
If there is no improvement in accuracy, the layering stops.
At the optimum layer, the class probability vectors from the
four forests of the final layer are averaged to obtain the
final prediction probability vector with 10 × 1 dimensions.
The class, which shows the highest probability, is the correct
matching class for the given input sample. The steps in the
cascade layering phase are given in Algorithm 3.

IV. MATHEMATICAL PROOF OF THE PROPOSED
MALWARE DETECTION SYSTEM
Given a set of N training PE file samples P ={(af, bf)}Nf=1, in
which af ∈ vf is a feature vector and bf∈ {1, . . . ,C} refers
to the class of the associated instances. For each PE file rep-
resented as a binary image with size m× n, sliding window
size i× j, and stride s, the smaller images are generated using
the formula,

(m× n) ∗ (i× j) = (m− i+ s)× (n− j+ s) (1)

Likewise, the smaller images for an input binary image
are obtained for W sliding windows simultaneously. For
each sliding window W ∈ {w1,w2}, the smaller images
are generated using Eqn. 1. The smaller images are fed to
e ensembles where E ∈ {e1, e2}. Each forest gives an esti-
mate of the class probability distribution d = (d1, . . . ,dC)
based on the percentage of distinct classes of training

Algorithm 3 Cascade Layering Phase

Input: voddf and vevenf : feature vectors from w1,w2 ∈ W
Output: vnf : new feature vector; accn: accuracy of current
layer
1: E ∈ {e1, e2, e3, e4}: set of ensembles; n: layer variable;
accn−1 = 0.
2: for n = 1 until accn−1 < accn
3: accn−1 = accn
4: if n = 1
5: call Layering (voddf , 0)
6: n = n+ 1
7: end if
8: if n = even
9: call Layering (vnc, v

even
f )

10: else
11: call Layering (vnc, v

odd
f )

12: end if
13: n = n+ 1
14: end for
15: function Layering (v1, v2→ vn,f , accn):
16: for each layer Ln(n = 1) do
17: Train vn−1f with all elements of E
18: for each e1, e2, e3, e4 ∈ E and C classes do
19: Generate class probability vectors E → vnc

Where vc ← ve1c &v
e2
c &v

e3
c &v

e4
c : e× C-dimensional

class vectors; ve1c , v
e2
c , v

e3
c , v

e4
c -class vectors obtained

from e1, e2, e3, e4 respectively; e – no. of ensembles (e =
4).
20: end for
21: end for
22: Obtain new feature vector vnf ← v1&v2 and accn
23: end function

samples at the leaf node where the appropriate sample
belongs. These probabilities are computed as the ratio of
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the number of smaller images of class c, which reaches l
to the total number of smaller images in set I reaching l.
For each tree t ∈ T, class c ∈ C, and at each leaf node l ∈ F,
the posterior probabilities are given by,

(Pt,l(Y (I) = c)) (2)

where T is the tree set, C is the class set, F is the leaf set of
any tree t, Y(I) is the class label c for smaller image I .
Each image in I is classified as belonging to class C,

which is of highest probability. By taking an average of the
probabilities of Eqn. 2, the smaller images are classified
using,

Y (I) = argmax
1
T

∑T

t=1
(Pt,l(Y (I) = c)) (3)

The class probabilities vc=(vIS ,1, ..,vIS ,C) for every forest
classifier is calculated by finding the average of all class
probability distributions over all trees. Let all ensembles have
the same number of decision trees, each layer in the layering
phase consists of e ensembles, and the number of layers is
denoted by L. The current layer produces e class vectors
vIS ,1, . . .vIS ,e and then concatenated alternatively with the
original vector voddf or vevenf obtained from w1,w2 ∈ W to
serve as input to the next subsequent layer. Thus, the training
dataset for the next layer is given by,

Tr∗ = {
((
aI, vI,1, . . . ,vI,e

)
, bI
)
, I = 1, . . . ,S} (4)

At each level l, the layer building process is decided auto-
matically based on accuracy obtained from cross-validation
for all smaller images. If the accuracy of one layer l is
higher than the previous layer l − 1, the final prediction is
determined at the current level. Otherwise, the process con-
tinues through the next level. The prediction of any sample((
af, vf,1, . . . ,vf,e

)
, bf
)
is calculated by finding the average

vector of the class probabilities,

vf =
1
E

∑E

e=1
vf,e (5)

The final prediction is given by,

X =

{
1, max

(
vf,1. . . ,vf,C

)
0, for other classes.

(6)

For a PE sample, if X = 1, the final prediction is reached at
the current layer, which is given by,

yf = argp=1,...,Cmax vf,p (7)

A. GENERALIZATION ERROR OF ENSEMBLE ESTIMATOR
Consider the smaller image set tS = {t1, . . . ,tS} where tm =
(am, bm). The basic relationship among (am, bm) is given by,

bm = h (am)+ ε (8)

where h(a) is the unknown target function and ε is the additive
noise with mean E (ε) = 0 and variance V(ε) =σ 2(< ∞).
tS is a realization of a random sequence TS

= {T1, . . . ,TS}

whose mth component consists of a random vector Tm=

(Am,Bm). Given tS, the parameter estimation is given by,

θ̂
(
tS
)
= argminθ

∑S

m=1
(bm − p(am; θ ))2/S (9)

The outcome of the estimator p for an input a is given as
p(a; tS). Consider a new random vector T0 = (A0,B0) ∈

Rg+1, with a distribution similar and independent (for all
m) of Tm. Then, the mean squared error averaged over all
possible realizations of TS and T0 is the generalization error
(denoted by Gerr) of the estimator p. It is given by,

Gerr (p) = {ETSET0{[B0−p(A0;TS)]2}} (10)

where ET0{} and ETS{} denote expectation in terms of T0 and
TS respectively. From Eqn. (2), it is identified that Gerr (p)
does not depend on the smaller image set tS or an unknown
malware sample t0, but it depends on sample size S and the
estimator model used.

Eqn. (10) is expressed using the bias-variance decomposi-
tion that is given by,

Gerr (p) = EA0

{
V {p |A0} + Bias {p |A0}

2
}
+ σ 2 (11)

where V {p |A0 = a0} and Bias{p|A0 = a0} are the condi-
tional variance and conditional bias (given A0 = a0).

V {p |A0} = ETS (p
(
A0;TS

)
− ETS{(p

(
A0;TS

)
})
2
} (12)

Bias {p |A0} = ETS−h(A0) (13)

Let p1, . . . ,pE denoteE estimators, where the eth estimator
is individually trained on tS(e), e = 1, 2, . . . ,E. Let S be the
sample size of each smaller image set tS(e)}, which is a realiza-
tion of a random sequence TS

(e) = {T1, . . . ,TS which has the
same distribution and are not always mutually independent.
For an input file a, the ensemble estimator output is defined as
the average of outcomes of individually trained E estimators
for a. It is given by,

f(E)en (a) =
1
E

∑E

e=1
fe(a;tS(e)) (14)

Gerr

(
f(E)en

)
= Ea0{

1
E
V (A0)+

(
1−

1
E

)
Cov (A0)+ Bias+ σ 2

} (15)

where Gerr(f
(E)
en ) indicate the generalization error of the

ensemble estimator given in Eqn. (14), V (A0) denote average
conditional variance, Cov (A0) denote average conditional
covariance, and Bias(A0) denote average conditional bias that
is averaged over E estimators.

V (A0) =
1
E

∑E

e=1
V{pe|A0} (16)

Cov (A0) =
1

E(E− 1)

∑
e

∑
e′ 6=e

Cov{pe, pe′ |A0} (17)

Bias (A0) =
1
E

∑E

e=1
Bias{pe|A0} (18)

where pe denotes pe(A0;TS
(e)).
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The average generalization error averaged over E estima-
tors is given by,

Gerr =
1
E

∑E

e=1
(Ea0{V{pe|A0 + Bias}{peA0}

2
+ σ 2) (19)

Gerr

(
f(E)en

)
and Gerr can be related as given below.

Gerr

(
f(E)en

)
=

1
E
Gerr +

(
1−

1
E

)
σ 2
+ Ea0{

(
1−

1
E

)
Cov (A0)

+
1
E2

∑
e

∑
e′ 6=e

Bias{fe|A0}Bias{fe′ |A0}} (20)

Eqn. 11 is rewritten by replacing p using f(E)en as,

Gerr

(
f(E)en

)
= Ea0

{
V
{
f(E)en |A0

}
+ Bias

{
f(E)en |A0

}2}
+ σ 2

(21)

The term f(E)en depends on tS(1), . . . ,t
S
(E). The conditional

variance of the ensemble forest is given by,

V
{
f(E)en |A0

}
= ETS(1),...,T

S
(E)
{[
1
E

∑E

e=1
fe

−ETS
(1),...,T

S
(E)
{
1
E

∑E

e=1
pe}]2}

=
1
E2

∑E

e=1
ETS

(e)

{[
pe − ETS(e)

{pe}
]2}

+
1
E2

∑
e

∑
e′ 6=e

ETS
(e),T

S
(e′)

{[pe − ETS
(e)
{pe} ][pe′ − ETS

(e′)
{pe′} ]}

(22)

=
1
E
V (A0)+ (1−

1
M

)Cov(A0)

Bias
{
f(E)en |A0

}
= ETS

(1),.....T
S
(E)

{
1
E

E∑
e=1

pe

}
−h

=
1
E

∑E

e=1
ETS(e)
{pe−h}

= Bias(A0) (23)

B. DIVERSITY MEASURE
Given a set of E trained classifiers Z ={em(a)}Em=1, where
each classifier em: A→ {−1,+1} is a mapping from the
feature space A to the class label set {−1,+1}, the decision
function is defined as,

fd (a;Z) =
1
E

∑E

m=1
em(a) (24)

The diversity of classifier set Z ={em(a)}Em=1 is given by,

div (Z) = 1−
1∑

1≤m6=o≤E 1

∑
1≤m6=o≤E

dif(em, eo) (25)

The diversity is calculated using the average of pair-
wise differences between two classifiers. The larger the

value of div(Z), the higher is the diversity of the classifier
set Z.

dif (em, eo) =
1
S

∑S

q=1
em(aq)eo(aq) (26)

where dif(., .) denotes the pairwise differences.
Consider the set of classifiers Z ={em(a)}Em=1 and a set of

smaller images I ={(am, bm)}Sm=1. Let the output of the deci-
sion function be fd = [f (a1;Z) , . . . , f(aS;Z)]T. On dataset I,
if div(Z) ≥ k, then

| |fd| |1 ≤ S
√
1/E+ (1− 1/E)(1− k) (27)

According to basic algebra,

| |fd| |22 =
∑S

m=1
(
1
E

∑E

d=1
ed(am))

2

=

∑S

m=1

(
1
E
+

1
E2

∑
1≤o6=x≤E

eo(am)ex(am)
)

= S(1/E+ (1− div(Z))(1− 1/E)) ≥ 0 (28)

Since the term, 1/E+ (1− 1/E)(1− k) is always positive,
based on the inequality ||fd||1≤

√
S| |fd| |2, the eqn. (27) is

obtained.

C. RELATIONSHIP BETWEEN DIVERSITY AND
GENERALIZATION
Let H denote the function space such that for every f ∈ H,
there exist a set of E classifiers Z ={em(a)}Em=1 which sat-
isfies f (a) = 1

E

∑E
m=1 em(a) and div (Z) ≥ k for any

independent and identically distributed sample I of size S,
then for any ε, it holds

log2 P∞(H, ε,S) ≤
36(1+ ln E)

ε2
log2 (2S⌈

4
√
1/E+ (1− 1/E) (1− k)/ε + 2

⌉
+ 1) (29)

Initially, assume that ε ≤ 1, since the result is trivial
if ε ≥ 1. The interval [−1− ε/2, 1+ ε/2] is split into
p =d4/ε + 2e sub-intervals, each of size lesser than ε/2,
and θo be the boundaries of the sub-intervals so that θo −
θo−1≤ ε/2 for all o. Let ole(m) denote the maximum index
of θo such that f (am) − θole(m) ≥ ε/2 and ori(m) denote the
maximum index of θo such that f (am)− θori(m)≤ −ε/2.

Let em = [e1 (am) , . . . ,eT (am)]T, em′ = [em,−θole(m)]T

and em′′ = [−em, θori(m)]T. Then, the covering number
P∞(H, ε, I) is no more than the number of possible values
of the vector α,
where

α =gw(
∑S

m=1
hmem′ +

∑S

m=1
qmem′′) (30)

and gw(u) is a component-wise function which maps each
component um of u to w. sign(um)|um|w−1 with w ≥ 2, and
hm and qm are positive integers satisfying the condition,∑S

m=1
(hm + qm) ≤ 36(1+ ln E)/ε2 (31)

There is a one-to-one mapping between em′ and em′′, thus
the number of possible values of em′ and em′′ equals to the
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FIGURE 5. Confusion matrix for Malimg dataset.

number of possible values of em′. Let f =[f (a1) , . . . f (aS)]T

be f’s outputs on I. Based on the definition of θole(S),
the number of possible values of em′ is no more than
S
⌈
4
√
1/E+ (1− 1/E) (1− k)/ε + 2

⌉
. Consequently, from

Eqn. (30) and Eqn. (31), the number of possible values of
(α, ρ) is upper-bounded by

(2S
⌈
4
√
1/E + (1− 1/E) (1-k)/ε+2

⌉
+ 1)

36(1+lnE)/ε2

(32)

Hence the Eqn. (32) proves Eqn. (29).
From Eqn. (29), the relationship between diversity and

generalization voting performance is obtained with probabil-
ity at least 1− β, for any θ > 0, every function f ∈ H satisfies
the following bound

Bartlett’s Lemma [5]

Gerr (f ) ≤ I θerr (f )+

√
2
S

(
lnP∞

(
H ,

ε

2
, 2S

)
+ ln

2
β

)
(33)

Applying Eqn. (29) in Eqn. (33), the result is obtained.

V. EXPERIMENTS AND RESULTS
A. DATASETS AND EXPERIMENT SETUP
The four benchmark malware datasets used to ana-
lyze the performance of the proposed deep forest-based

malware detection system are the Malimg dataset [31] and
the BIG 2015 dataset [2], MaleVis dataset [6] and Mal-
ware dataset [38]. The cleanware samples are self-collected
containing 1044 files, and they were checked using the
VirusTotal [41] portal for confirming their legitimacy. The
Malimg dataset contains 9,339 malware images belonging
to 25 malware classes, with each class comprising of a
varying number of samples. The malware classes include
Adialer.C, Agent.FYI, Allaple.A, Allaple.L, Alueron.gen!J,
Autorun.K, Benign, C2LOP.P, C2LOP.gen!g, Dialplat-
form.B, Dontovo.A, Fakerean, Instantaccess, Lolyda.AA1,
Lolyda.AA2, Lolyda.AA3, Lolyda.AT, Malex.gen!J, Obfus-
cator.AD, Rbot!gen, Skintrim.N, Swizzor.gen!E, VB.AT,
Wintrim.BX, and Yuner.A.

Kaggle’s Microsoft BIG 2015 dataset consists of
training and testingmalware samples belonging to nine differ-
ent classes, classified based on their varying features. There
are 21741 samples contained in this dataset with a size of
nearly half-terabyte uncompressed, of which 10868 are train-
ing samples (200 GB), and the remaining 10873 are testing
samples (200 GB). The malware classes include Ramnit, Lol-
lipop, Kelihos_ver3, Vundo, Simda, Tracur, Kelihos_ver1,
Obfuscator.ACY andGatak. Each sample consists of a unique
class ID and a class to which it belongs to. The class ID is
a 20 character hash value that identifies the malware sam-
ple and a class labeled with an integer value denoting
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FIGURE 6. Confusion matrix for BIG2015 dataset.

any of the nine malware classes. The distribution of
the number of samples in all classes varies and is non-
uniform. Each binary sample consists of two files, such
as bytes file and disassembled asm file. The byte’s file
provides the hexadecimal representation of a binary file,
and asm file contains metadata obtained from the binary
content like function calls, instruction sequences, strings,
registers, etc.

MaleVis (Malware Evaluation with Vision) dataset is
an open image dataset consisting of 9100 RGB images
for training and 5126 RGB images for testing belonging
to 25 malware classes and a cleanware class. Malware
classes include Adposhel, Agent-fyi, Allaple.A, Amonetize,
Androm, AutoRun-PU, BrowseFox, Dinwod!rfn, Elex,
Expiro-H, Fasong, HackKMS.A, Hlux!IK, Injector, Install-
Core.C, MultiPlug, Neoreklami, Neshta, Regrun.A, Sality,
Snarasite.D!tr, Stantinko, VBA/Hilium.A, VBKrypt, and
Vilsel. Each class contains 350 samples for training, and each
class contains varying samples for testing.

The detection ability of the proposed algorithm has to
be tested on a totally new unseen malware family to
ensure efficient performance. Hence, we have chosen Mali-
cia dataset [46] to test the efficiency of the proposed mal-
ware detector. It contains 9670 malware samples belonging
to 8 classes such as cleaman, winwebsec, zbot, zeroaccess,
cridex, harebot, smarthdd, securityshield. This dataset is not

trained with the deep forest model. The samples from this
dataset are not exposed to the model during training and
validation.

The experiments were performed on Ubuntu 18.04 64-bit
system with 32 GB RAM and 1 TB Hard Drive. The imple-
mentation was done with Python programming language,
with the necessary packages included. The experiments are
conducted with four settings, where each setting is based on
different types of ensemble forest combinations. Each level in
CL phase consists of 4 Completely Random Forests (CRF) in
the first setting, 4 Random Forests (RF) in the second setting,
4 XGBoost (XGB Forest) in the third setting, whereas the
fourth setting uses a combination of all the forests (Mixed for-
est). The generation of class vectors is done using three-fold
cross-validation. The number of cascade levels is determined
automatically based on the data. The levels are generated until
no performance improvement is observed. The experiments
are trained on 80% and validated on 20% of the training
set. The proposed model involves few hype-parameters and
the default settings produce superior performance. The opti-
mal choice of hyper-parameters used in the sliding window
scanning stage are: the number of forests is 2, number of
trees in each forest is 10 and number of sliding windows
used is 2. In cascade layering stage, the number of forests
is 4 for each layer and the number of trees of each forest
is 10.
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FIGURE 7. Confusion matrix for MaleVis dataset.

FIGURE 8. ROC Curve for Malimg dataset.

B. RESULTS AND DISCUSSION
The test results for all four models are summarized in Table 1,
Table 2, Table 3, and Table 4. With 2 sliding windows

and 10 trees in a forest, the proposed malware detector
showed optimal results. The proposed deep forest based
malware detector achieves highly competitive performance
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FIGURE 9. ROC Curve for BIG2015 dataset.

FIGURE 10. ROC Curve for MaleVis dataset.

with default settings. It is inferred that the fourth set-
ting, which is a mixed forest model, shows the high-
est accuracy of 98.65%, 97.20%, and 97.43% on each

of the three datasets, respectively. Table 2 and Table 4
shows results on three malware datasets and also unseen
dataset.
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FIGURE 11. Precision recall curve for Malimg dataset.

TABLE 1. Performance comparison of the proposed model with other methods in malware detection for the three datasets.

The confusion matrices for the three malware datasets with
the mixed forest model are shown in Fig. 5, Fig. 6, and Fig. 7.
For the Malimg dataset, the off-principal diagonal values
show low values. Though Swizzorgen! E and Swizzorgen!
I show higher misclassifications, as they both are similar fam-
ilies with less variation in pattern. For the BIG 2015 dataset,
the major number of misclassifications is identified from

samples of the Obfuscator.ACY class as belonging to the
Ramnit class. For MaleVis dataset, there is more number of
misclassifications observed for cleanware class misclassified
as other classes and vice versa.

Receiver Operating Characteristic (ROC) curve is an
important evaluation metric for examining the classifier per-
formance. The ROC curve is plotted with True Positive
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FIGURE 12. Precision recall curve for BIG2015 dataset.

Rate (TPR) against the False Positive Rate (FPR), where
TPR is on the y-axis, and FPR is on the x-axis. In Fig. 8,
Fig. 9 and Fig. 10, for N number of classes, the N num-
ber of ROC Curves is plotted. In the Malimg dataset, there
are 26 classes. The plot consists of one ROC for class 1
classified against the other 25 classes, another ROC for
class 2 classified against the other remaining classes, and so
forth.

The curves for each class to every other class shows TPR
as nearly one and FPR as nearly zero. A larger area under the
curve is observed in Fig. 8 and Fig. 9. Fig. 10 shows a higher
false-positive rate when compared to Fig. 8 and Fig. 9. Thus,
the proposed model shows higher performance in classifying
malware into various classes.

The Precision-Recall Curve for the three datasets is shown
in Fig. 11, Fig. 12, and Fig. 13. The effectiveness of the
proposed model is assessed using the precision-recall curve,
which shows the trade-off between precision and recall at dif-
ferent thresholds for the three malware datasets. High scores
for both metrics show that the classifier is returning accurate
results (high precision), as well as returning a majority of all
positive results (high recall).

For the Malimg dataset, the precision value is 0.9886, and
the recall is 0.9863. For the BIG 2015 dataset, the precision
value is 0.9761, and the recall is 0.9679. For the MaleVis

dataset, the precision value is 0.9753, and the recall is 0.9732.
These results show that the proposed model shows high
precision and high recall. This indicates that the proposed
results have shown almost correct predictions.

C. COMPARISON RESULTS
Table 1 shows the results for the comparison of the proposed
model and other methods for malware detection and classi-
fication for the three datasets. Performance metrics, such as
accuracy, precision, recall, and F-score, are recorded. The
results are taken for the three malware datasets to analyze
the efficiency of the proposed method. The malware detec-
tion approaches employ Deep Learning (DL) and Non-Deep
Learning (Non-DL) algorithms or a combination of both. The
proposed model is a Non-DL model showing an accuracy
of 98.65% for the malimg dataset, 97.2% for the Microsoft
dataset, and 97.43% for the MaleVis dataset. The precision,
recall, and f-score measures are also higher compared to the
other methods. This comparison shows the effectiveness of
the proposed Non-DL model over the other DL and Non-DL
methods.

Table 2 compares the performance of the proposed deep
forest variant models with machine learning models for the
three datasets. The results are taken for studying the effective-
ness of the proposed models with various machine learning
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FIGURE 13. Precision recall curve for MaleVis dataset.

models such as K-Nearest Neighbor (KNN), Logistic Regres-
sion (LR), Support Vector Machine (SVM), Naïve Bayes
(NB), Random Forest (RF), and Adaboost. The proposed
models outperform the machine learning models in terms
of accuracy, precision, recall, and f-score. The mixed forest
model shows the highest performance compared to other pro-
posed variant models and machine learning models. The CRF
Forest model shows an accuracy of 98.62% for the malimg
dataset, 97.06% for the Microsoft dataset, and 96.92% for the
MaleVis dataset, which is slightly lesser than the mixed forest
model. LR, SVM, and NB models show low performance in
classifying malware for all the three datasets.

Table 3 shows the comparison of the proposed model
with the previous works in malware detection for the three
datasets. The performance analysis is done based on the
criteria such as features used, classifier used, number of
features, number of samples, number of classes, and accuracy.
Various features such as GIST, Gray-Level Co-Occurrence
Matrix (GLCM), Gabor, Wavelet, Intensity, and LBP were
extracted and used for classification of malware. The pro-
posed system uses global features and deep forest as a clas-
sifier to classify malware with three malware datasets. The
proposed system outperforms other works extracting distinct
features.

Table 4 shows the performance comparison of the pro-
posed deep forest model with deep learning models such as
CNN, VGG16, VGG19, Inception-v3, Resnet-50, Densenet-
121, Densenet-169, Densenet-201, and Xception for the three
datasets. The proposed model outperforms the deep learning
models in terms of accuracy, precision, recall, and f-score.

The running efficiency of the proposed model is apprecia-
ble. Sliding window scanning will increase the cost of the
proposed deep forest model. However, the different grains of
scanning are inherently parallel. Table 5 shows the compu-
tational time efficiency of the proposed model over the deep
learningmodels for the three datasets. The training time taken
by the proposed model with the Malimg dataset is 4165 sec-
onds. With BIG 2015 and MaleVis datasets, the proposed
model takes 2496 seconds and 8974 seconds for training.
Deep learning variant models show a higher training time
comparably, with GPU. But the proposed malware detection
model takes a lesser training time without GPU.

D. RESILIENCE TO OBFUSCATION
The proposed model is robust, even if the malware is obfus-
cated. The BIG 2015 malware dataset contains Obfusca-
tor.ACY class consisting of 1228 obfuscated binary samples.
The detection accuracy of the proposed model on this dataset
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TABLE 2. Performance comparison of the proposed models with machine learning models for the four datasets.

TABLE 3. Performance comparison of the proposed model with previous works in malware detection based on features for the three datasets.

is 97.2%, which indicates the resiliency of the proposed
system.

E. MODEL COMPLEXITY
The proposed malware detection model uses a minimal num-
ber of layers to train and test the data. The model com-
plexities of the proposed deep layered forest method for the
three datasets are shown in Fig. 14, Fig. 15, and Fig. 16.
The model builds layers based on the data. For the malimg
dataset, the model grows until 5 layers. The test accuracy
starts improving at layer 2. At layer 5, there is no improve-
ment, and the layer building process stops. Similarly, for the

BIG2015 dataset, the proposed method builds 11 layers, and
the test accuracy does not improve after layer 9. For the
MaleVis dataset, the training accuracy does not show any
improvement from layer 2.

Deep forest model involves sliding-window application
and layering as the key stages by employing traditional forests
as a subroutine. In the first stage, four forests are used for
two sliding windows. In the second stage, each layer uses
4 forests. Each forest generates class vector probabilities
using 10 decision trees. The computational complexity is
higher for the proposed malware detection method, since
deep forest allowsmore computations thanmalware detectors
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TABLE 4. Performance comparison of the proposed models with deep learning models for the four datasets.

FIGURE 14. Model complexity of the proposed method for Malimg
dataset.

FIGURE 15. Model complexity of the proposed method for BIG2015
dataset.

based on machine learning models. Unlike most deep neural
networks with fixed model complexity, the proposed classifi-
cation model automatically decides its model complexity by
terminating the training process when reaching the stopping
criterion. Thus, the computational complexity of the proposed

FIGURE 16. Model complexity of the proposed method for MaleVis
dataset.

TABLE 5. Comparison of proposed model with deep learning models
based on training time.

deep forest based malware detector is lower than the deep
learning based malware detection system.

VOLUME 8, 2020 206321



S. A. Roseline et al.: Intelligent Vision-Based Malware Detection and Classification Using Deep RF Paradigm

The sliding window scanning stage consists of smaller
instances of the input image for each sliding window which
demands more memory. Random subsampling is used to
handle this high dimensional space. In the second stage of
layering, four forests are generated with 10 decision trees
each. With more number of training data, the proposed
approach obviously requires more memory compared to sim-
ple random forest machine learning approach. Compared to
deep learning models, deep forest based malware detection
system is better in terms of space complexity.

VI. CONCLUSION
Although there are several ongoing research efforts to mal-
ware detection and classification, the malware remains a seri-
ous threat in the cyberworld. Malware detection is bypassed
using evasion techniques such as code obfuscations, pack-
ing, etc., making detection methods ineffective. This work
proposes a diverse deep forest model for effective mal-
ware detection and classification. The system is focused on
enhancing the existing malware detection systems in three
aspects. Firstly, the PE binary files are converted to 2D
grayscale images. Secondly, the images are processed in two
phases, namely, sliding window scanning phase and cas-
cade layering phase. The sliding window scanning phase is
similar to convolutional neural networks where each pixel
is processed using sliding windows, which allow consider-
ing critical features aiding for better prediction. The cas-
cade layering phase consists of layers like deep learning but
generates feature vectors without backpropagation. Thirdly,
cross-validation performance is used to decide the layering
process, whether to continue or stop.

The proposed model showed a detection rate of 98.65%,
97.2%, and 97.43% for Malimg, BIG 2015, and MaleVis
malware datasets, respectively, which is better than existing
systems discussed in literature. The proposed approach is
characterized by its deep ensemble layering and low model
complexity and outperforms deep neural networks in detect-
ing malware. The proposed model identifies unknown mal-
ware samples belonging to the trained malware families. The
malware samples, which belong to other families that are not
trained by the model, may show incorrect predictions. Future
work may include identifying unknown samples of untrained
families by using a threshold.
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