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ABSTRACT Recently, optical flow guided video saliency detection methods have achieved high perfor-
mance. However, the computation cost of optical flow is usually expensive, which limits the applications
of these methods in time-critical scenarios. In this article, we propose an end-to-end cross complementary
network (CCNet) based on fully convolutional network for video saliency detection. The CCNet consists
of two effective components: single-image representation enhancement (SRE) module and spatiotemporal
information learning (STIL) module. The SRE module provides robust saliency feature learning for a single
image through a pyramid pooling module followed by a lightweight channel attention module. As an
effective alternative operation of optical flow to extract spatiotemporal information, the STIL introduces
a spatiotemporal information fusion module and a video correlation filter to learn the spatiotemporal
information, the inner collaborative and interactive information between consecutive input groups. In
addition to enhancing the feature representation of a single image, the combination of SRE and STIL
can learn the spatiotemporal information and the correlation between consecutive images well. Extensive
experimental results demonstrate the effectiveness of our method in comparison with 14 state-of-the-art
approaches.

INDEX TERMS Video saliency detection, pyramid pooling, self-attention mechanism, multi-channel
concatenation, structural information.

I. INTRODUCTION
Video salient object detection (VSOD) aims at finding the
most obvious object in each video group. It can be applied as
a basic component in many visual tasks, such as video object
segmentation [1], [2], video compression [3], object track-
ing [4] and so on. VSOD can be roughly divided into two cat-
egories: human eye fixation prediction and mask prediction
(salient object detection). The purpose of human eye fixation
prediction is to find the focus of human eyes when watching
and mask prediction focuses on the most attention-grabbing
objects. In this article, we focus on the latter task.

Similar to the saliency detection methods for static images,
many effective VSOD methods [5], [6], [11] combine
deep convolutional neural networks (CNNs) along with
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traditional techniques to acquire higher accuracy. For exam-
ple, Chen et al. [7] exploit the global motion clues to guide
the fusion of color saliency and motion saliency. In order to
guarantee the temporal smoothness of the detection results,
a low-rank coherency guided saliency diffusion strategy is
designed by constructing the temporal saliency correspon-
dence among the cross-frame superpixels. Liu et al. [8]
propose a superpixel-based spatiotemporal saliency model,
which extracts the motion histograms and the color his-
tograms as local features at the superpixel level, and the
global features at frame level. Jiang et al. [9] design a
two-layer convolutional long short-termmemory (2C-LSTM)
network to learn spatiotemporal features for predicting the
inter-frame saliency.

In addition to learning the detailed information and seman-
tic information in a single image, VSOD also needs to
learn the spatiotemporal information in time dimension via
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FIGURE 1. Saliency detection results by the proposed method with
different settings. From left to right: (a) input image; (b) ground truth;
(c) saliency predication result by the backbone; (d) saliency result by
adding SITL module; and (e) our final saliency map.

considering the motion contrast and correlation between
frames. So far, most methods solve the above-mentioned
problems through two ways: the optical flow guided network
and the ConvLSTM/ConvGRU related network. Optical flow
can be used to describe the instantaneousmotion state ofmov-
ing objects and offer explicit motion information. Therefore,
many traditional and deep learning based methods [10], [13],
[14] use changes in the time domain of pixels in the image
sequence and the correlation between adjacent frames to
find the correspondence between the previous frame and the
current frame. ConvLSTM/ ConvGRU (e.g., Pyramid Dilated
Bidirectional ConvLSTM (PDB-ConvLSTM) [11], bidirec-
tional ConvGRU (DBConvGRU) [12]) are designed to cap-
ture the long and short-termmemory of video sequences, fuse
spatiotemporal information and learning temporal motion
cues. However, the generation of optical flow map will incur
significant computational cost, and the blocks based on Con-
vLSTM have a few cost for GPU memory in the training
process.

To address the above issues, in this article, we propose an
end-to-end cross complementary network to learn the spa-
tiotemporal information jointly. Specifically, to improve the
learning ability of single image representation, we use a static
salient object detection network as the pre-trained model and
introduce a single-image representation enhancement model.
In order to enhance the spatial information learning and
capture the temporal motion cues, we compress the video
sequence into a five dimensional tensor and introduce it
into the spatiotemporal information learning (STIL) module,
which is composed of a spatiotemporal information fusion
block and a video correlation filter. In addition, we design a
mixed training strategy to maintain the strong feature repre-
sentation ability of static image. Figure 1 shows some visual
examples of the proposed method and its variants. Compared
to the baseline, ‘‘w/ STIL’’ is able to roughly detect salient
objects in continuous frames and our final method (‘‘Ours’’)
can pop out the whole salient object regions and sharpen
boundaries. The above design contributes to a powerful and
very fast (with speed at 23-26 fps on GPU) deep video
object detection model, which achieves the state-of-the-art
performance on four popular video datasets. We consider

that the proposed method is a robust network, which does
not need optical flow guiding network and long short-term
memory blocks such as ConvLSTM and ConvGRU. In total,
the contributions of this article can be summarized as follows.

• We innovatively establish a novel end-to-end cross com-
plementary network (CCNet) for VSOD. It is composed
of a SRE module for spatial feature learning in static
images, and a STIL module for the spatial feature repre-
sentation enhancement and the inter-frame cues captur-
ing.

• Considering the importance of different frames to a
video group, we design a novel video correlation filter
to adaptively distribute a set of weights according to the
importance of input video clips and thus to optimize the
feature maps respectively.

• The proposed CCNet achieves the state-of-the-art per-
formance in terms of both accuracy and speed.

The rest of this article is organized as follows. Section II
discusses related work, including the relevant models for
salient object detection and video salient object detection.
Section III introduces the details of the proposed video
saliency model, and meanwhile describes the SRE module
and the SIL module in detail. Section Section IV reports the
experimental results and comparisons with the state-of-the-
art methods. Section V shows the drawback of our proposed
network and conclusions are finally given in Section VI.

II. RELATED WORK
A. IMAGE SALIENT OBJECT DETECTION
With the development of convolutional neural networks
(CNNs), many deep learning methods [15]–[19], [25] for
salient object detection have been proposed. For example,
Li and Yu [20] propose a refinement method that intro-
duces a neural network architecture and fully connected lay-
ers on top of CNNs to aggregate multiple saliency maps.
Wang et al. [21] design a deep neural network (DNN-L) to
detect local saliency and integrate it with global search, and
take deep neural network (DNN-G) to predict the saliency
score of each object region based on the global features.
Recently, many works [23]–[25] based on fully convolu-
tional networks (FCN) [22] have made great progress in
generating pixel-wise saliency prediction. Liu and Han [26]
propose a novel end-to-end deep hierarchical saliency net-
work (DHSNet) to make a coarse global prediction by auto-
matically learning various global structured saliency cues,
and then take hierarchical recurrent convolutional neural
network (HRCNN) to better refine the details of saliency
map. Wang et al. [27] use a recurrent full convolutional net-
work to refine previous predictions and incorporate saliency
prior into the network to facilitate training and reasoning.
Zhang et al. [28] capture context information with convolu-
tion layers in multi-scale and incorporate multi-level convo-
lutional features with a gated bidirectional passing model.
Compared with image SOD, VSOD not only focuses on
the feature representation learning of a single image, but
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also needs to learn the temporal relationship and coherence
between consecutive video frames. In this article, we train
the backbone based on an effective SOD model.

B. VIDEO SALIENT OBJECT DETECTION
Traditional VSOD models [7], [8], [29], [30], [44] mainly
rely on handcrafted features. For example, Huang et al. [29]
present a fast trajectory-based approach to detect salient
regions in videos by motion removal. They exploit long-term
object motions to filter out short-term noises and employ
one-class SVM to remove consistent trajectories in motion.
Chen et al. [7] advocates a novel video saliency detection
method based on the spatial-temporal saliency fusion and
low-rank coherency guided saliency diffusion. In detail, they
fuse color saliency with global motion clues in a batch-wise
fashion to avoid incorrect low-level saliencymap and propose
a low-rank coherency guided spatial-temporal saliency diffu-
sion to guarantee the temporal smoothness of saliency maps.
Liu et al. [8] extract features at the superpixel level and thus
propose a superpixel-based spatiotemporal saliency model
for saliency detection in videos. Considering background
priors are effective clues to find salient objects in images,
Xi et al. [30] propose a saliency based method to detect the
visual objects by using background priors.

With the success of deep learning in static image salient
object detection, more and more deep CNNs based methods
have made great progress in VSOD. Wang et al. [31] firstly
introduce deep learning into VSOD and propose a novel
static and dynamic saliency information coding scheme.
Recently, optical flow guided neural network and ConvL-
STM(or ConvGRU) have made great progress in VSOD.
More specifically, Li et al. [14] introduce a flow guided
recurrent neural encoder framework to extend FCN based
static-image saliency detector to VSOD, in which an optical
flow network is used to estimate the motion of each frame.
Song et al. [11] propose a pyramid dilated bidirectional
ConvLSTM (PDB-ConvLSTM). It mainly includes a pyra-
mid dilated convolutionmodule for simultaneously extracting
spatial features at multiple scales, and forward and back-
ward ConvLSTM units to extract multi-scale spatiotemporal
information. Li et al. [32] introduce a flow guided recurrent
neural encoder framework to enhance the temporal coherence
modeling of the per-frame feature representation, and exploit
a ConvLSTM to capture the evolution of appearance contrast
in temporal domain. Although these methods are efficient for
the VSOD task, they are time-consuming. To overcome this
deficiency, we propose an end-to-end cross complementary
network, which costs fewer time, to eliminate the influence
of optical flow or ConvLSTM.

III. THE PROPOSED ARCHITECTURE
A. MOTIVATION AND OVERALL ARCHITECTURE
Our goal is to design a network with less computation, which
can effectively extract rich spatiotemporal information and
low-level and high-level features to generate a group of

pixel-wise salient object maps with high quality. Therefore,
extracting the spatiotemporal features and ensuring the learn-
ing ability of single image have become two key points.

Thus, we elaborate on the details of the proposed video
salient object detection model, which consists of two key
components. First, single-image representation enhance-
ment (SRE) module (the pink block in Fig. 2) is estab-
lished for maintaining the single image representation when
learning the spatiotemporal information. SRE is composed
of Pyramid Pooling Module (PPM) followed by channel
attention. Second, we design a spatiotemporal information
learning (STIL) module (the blue block in Fig. 2) for spa-
tiotemporal information learning and frame-to-frame rela-
tionship (time-dimension) learning. STIL is composed of
Spatiotemporal Information Fusion (SIF) and Video Corre-
lation Filter (VCF).

B. SINGLE-IMAGE REPRESENTATION ENHANCEMENT
MODULE
The proposed SRE module consists of two blocks: a pyramid
pooling module (PPM) and a lightweight channel attention
block (CA). PPM is used to learn the multi-scale information
and CA is exploited to assign weights more optimally accord-
ing to the importance of channels.

1) PYRAMID POOLING MODULE
Different from the atrous spatial pyramid pooling (ASPP),
it uses different sizes of atrous convolution to learn rich global
information. PPM generates feature maps in different levels
by pyramid pooling and fuses them to make the network
adaptively learn better features. Intuitively, this multi-scale
pooling indeed retains global information at different scales.
In detail, we first take the adaptive averaging pooling to
generate four small-size feature maps, which correspond to
1 × 1, 2 × 2, 3 × 3, 6 × 6 respectively and use bilinear
upsampling to enlarge these blocks to the same size with
layer5 (29 × 29). Then, we concatenate four same feature
blocks in the channel dimension and exploit 1×1 convolution
to compress these channels to the original number.

2) CHANNEL ATTENTION
The purpose of the designed CAmodule is to learn the weight
of each channel through the attention module and attribute
attention weight in the channel domain. The values of differ-
ent channels are multiplied by different weights, which can
enhance the attention in the key channel domain. Specifically,
we first use the channel-wise global averaging pooling to
squeeze the global information in each feature map:

zc =
1

W × H

W∑
i=1

H∑
j=1

Xc (i, j), (1)

where X c ∈ RW×H×C is the input of CA,W ,H and C corre-
spond to width, height and channel dimension (i.e., number of
filters), respectively. Then, we take two fully connected layers
followed by a Rectified Linear Unit (ReLU) and the sigmoid

VOLUME 8, 2020 201261



Z. Wang et al.: Cross Complementary Fusion Network for Video Salient Object Detection

FIGURE 2. The overall architecture of our proposed model. The network is composed by two components: Spatiotemporal Information Learning (STIL)
Module and Single-image representation enhancement (SRE) module. A video clip with T frames (here we set T=5) is fed into Encoder to extract features.
The STIL extract spatiotemporal information and motion related information based on these features and the SRE is used to enhance the learning ability
of single image features.

activation function to enhance the feature representation and
increase the nonlinearity of the network.

S = σ(w 2 δ(w 1 z c)), (2)

where σ is sigmoid activation function and δ is ReLU activa-
tion function. w1, w2 are parameters of two fully connected
layers. The size of the two fully connected layers are set to
C/r × C . In order to reduce the model complexity, here we
set r=16.

C. SPATIOTEMPORAL INFORMATION LEARNING MODULE
Our proposed spatiotemporal information learning (STIL)
module consists of two blocks: spatiotemporal information
fusion (SIF) and video correlation filter (VCF). SIF is elabo-
rately designed to learn the spatiotemporal information based
on the fusion of T single input blocks, and VCF is used to
learn the influence of each individual block corresponding to
the input group in the network and redistribute the weights
according to their importance.

1) SPATIOTEMPORAL INFORMATION FUSION
Similar to saliency detection, the feature learning of single
image in the video saliency task is only applied for represen-
tation extraction. Therefore, in order to learn the correlation
and spatiotemporal information between consecutive frames
more effectively, we first stack the t feature maps correspond-
ing to consecutive t input images in the time dimension, and
design a time-dimensional pyramid structure and multi-scale
3D convolution combination module.

Time-dimensional Pyramid Structure. The average
pooling block in the pyramid pooling module (PPM)
only acts in the w and h dimensions, which enhances
the representation for SOD task, but cannot extract spa-
tiotemporal information. Therefore, we propose a novel

time-dimensional pyramid structure based on PPM to extract
the spatiotemporal information and motion related informa-
tion. In the time-dimensional pyramid structure, we use 3D
adaptive-average pooling to extract features and compress T
to n (n < T ) as time dimension. In this way, the feature
information at different times can be merged. Then, we adopt
the similar settings to PPM in the two dimensions of w
and h to enhance the feature extraction ability of the fused
information, and learn more global spatiotemporal correla-
tion information in the time dimension. Suppose n is set to 3,
we use the adaptive average pooling to generate four sets of
maps with different sizes (3× 512× 1× 1, 3× 512× 2× 2,
3×512×4×4, 3×512×6×6) respectively, and use bilinear
interpolation to upsample these small-scale feature maps to
its original size (3× 512× 29× 29). Then, we stack the four
branches with the original input on the channel dimension,
and take a 3 × 3 convolution to combine the mainstream
and the supplementary features. Different from PPM, our
time-dimensional pyramid structure pays more attention on
the integrated feature extraction and the spatiotemporal fea-
ture enhancement.

Multi-scale 3D Convolution Combination. As shown
in the middle block ‘‘STIL’’ in Fig. 2, the STIL takes the
output of time-dimensional pyramid structure (five feature
maps with 512 channels) as input, and extracts spatiotem-
poral information in another way. Considering the limited
spatiotemporal correlation information obtained from the
time-dimensional pyramid structure, and the methods based
on LSTM (DB-ConvGRU [12] and PDB-ConvLSTM [11])
are very time-consuming, we propose a multi-scale 3D con-
volution combination module. However, the amount of cal-
culation for n × n × n 3D convolution is very large and
the effect of the last two dimensions (h,w) in convolution
is not applied to the learning of spatiotemporal information,
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since our representation learning is enhanced by the back-
bone and SRE. Therefore, in order to overcome the above
shortcomings, we use n × 1 × 1 3D convolution to extract
the time dimension information. Specifically, we introduced
three 3D convolutions of different receptive fields (1×1×1,
3×1×1, 5×1×1) to extract multi-scale temporal and spatial
information, and then stack these three blocks in channel
dimension and use a 3D convolution to fuse these features.
It is noted that the maximum value of T can only be 8 due
to the GPU restriction, so the 3D convolution of 5× 1× 1 is
sufficient to extract features in the time-dimension. 1× 1× 1
3D convolution does not destroy the original features, so we
do not join the residual network.

2) VIDEO CORRELATION FILTER
The channel attention (CA) mechanism mentioned above
mainly focuses on redistributing weights according to the
importance of channels in each feature map blocks. Inspired
by CA, in order to optimize our network in time dimension,
we propose a video correlation filter in STIL to learn the
importance of T feature map blocks corresponding to T input
frames in each group. That is to say, wewant to assignweights
for each blocks rather than each feature maps in their block.

Considering that the number of feature map blocks (pink
cuboid in STIL) in time dimensions is relatively small,
we compress the input X ∈ R(1×512×T×29×29) only in w and h

dimensions and generate
∼

X ∈ R(1×512×T×1×1). Specifically,
we turn each feature map in two-dimensional (w × h) into
a real number, which to some extent has a global receptive
field. Then, we compress the five-dimensional vector into
a three-dimensional vector z∈ R(1×1×512∗T ) to fuse features
in the dimensions of time and channel. Similar to softmax,
we use two fully connected layers to map the learned dis-
tributed feature representation to the sample label space and
generate a vector of Y ∈ R(1×1×T×1×1). Finally, we multiply
the input of video correlation filter with the newly learned
filter weight Y and thus generate optimized feature map
blocks.

3) BASE NETWORK
Our network is built upon a widely used backbone ResNet-
50. For the Encoder, we take five convolution blocks layer1−5
to reduce the resolution of feature maps and learn visual
representation from low-level to high-level. layer1 takes a
sequence of images in video group with resolution 448×448
as input and takes 7 × 7 kernel size, stride of 2, followed by
a batch normalization and a ReLU function to generate five
64-channel feature maps. Different from layer1, the rest four
layers just use 3× 3 kernel size and add a residual bottleneck
architecture (bottleneck). In detail, these four residual layers
contain 3, 4, 6, 3 bottlenecks and generate 256, 512, 1024,
2048 channel feature maps, respectively. The strides of these
four residual layers are set to 2, 2, 2, 1, and thus the size of
the output feature maps is 1/16 of the original size. Finally,
we take a 3 × 3 convolution to process layer5 and generate

512-channel feature maps, then we feed it into spatiotem-
poral information learning module, single-image representa-
tion enhancement module respectively for the representation
enhancement and spatiotemporal information learning.

For the Decoder, through the fusion of low-level and
high-level features, F(F1−5) denotes five different previous
spatial size of feature maps layer by layer, and the video
salient object groups with high-resolution can be predicted
with accurate semantic information and object boundary. In
order to reduce the impact of detail information loss caused
by down-sampling, three refinement blocks are fused for
each layer: its corresponding feature map connected from
the top-down stream, side-output of feature maps Fi and its
previous output feature maps in high-level layer. Bilinear
interpolation is applied to the up-sampling small-scale feature
maps in high-level layer (layer i+1) and Fi, ensuring that they
are in the same size with layer i. Note that, channel numbers
are reduced to 128, 256, 256, 512, 512 corresponding to
layer1−5 in the refinement process. Finally, we use a convo-
lution (kernel = 3) to get the final prediction.

IV. EXPERIMENTS AND RESULTS
In this section, we introduce the experimental setup includ-
ing implementation details, utilized datasets and evaluation
metrics, and report the performance of the proposed method.
Besides, a number of ablation experiments are performed to
analyze the role and importance of each component of the
proposed approach.

A. EXPERIMENTAL SETUP
1) IMPLEMENTATION DETAILS
We implement the proposed method based on the publicly
available framework: PyTorch-1.0. A PC with a NVIDIA
2080Ti GPU is used for both training and testing, and the
operating system is Ubuntu 16.04. We remove STIL and SRE
(the blue and pink block in Fig. 2) module from our network
and pre-train it as backbone with the training set of DUTS-
TR [33] dataset, which has 10553 images. We utilize the
Adam optimizer [37] with learning rate 5e − 5 and weight
decay 0.0005 to train our pre-train network until it is con-
verged. Pre-training process takes about 10 hours with 24
epoches. After pre-training process, we restore the network to
its original appearance and choose the dataset of DUTS [33],
DAVIS [34], DAVSOD [36], and FBMS [35] as our training
set. Note that we resize input video groups to 448× 448 and
utilize the Adam optimizer with learning rate 1e − 5 in this
process, which takes about 15 hours with 12 epoches.

2) DATASETS
We evaluate the performance of our proposed method
on four extensively used video object detection public
benchmark datasets: DAVIS [34], FBMS [35], ViSal [5]
and DAVSOD [36], all of which are available online.
Freiburg-Berkeley motion segmentation (FBMS) is an early
adopted dataset which comprises a large, heterogeneous
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TABLE 1. Quantitative evaluation in terms of maximum F-measure (maxF), S-measure (S-m) and MAE scores in four popular datasets. ↑ indicates higher
scores on the metric are better and ↓ presents lower scores on the metric are better. ‘‘-’’ indicates no reported. ‘‘*’’ indicates traditional methods and
others are deep learning based methods. The best results are shown in green and the worst results are shown in red.

benchmark with 59 sequences and pixel-accurate ground
truth annotation of moving objects. ViSal is the first dataset
designed for video object detection task and contains 17
video sequences with obvious objects. DAVIS is a famous
dataset deigned for video object segmentation and consists of
50 sequences, 3455 annotated frames. DAVSOD is a newly
proposed challenging dataset with 226 video sequences and
totally 23938 frames. Note that DAVSOD have not only
pixel-accurate ground truth annotation but also eye fixation
labels.

3) EVALUATION METRICS
We use five widely used and standard metrics, F-measure,
S-measure (S-m), mean absolute error (MAE), precision-
recall (PR) curve and F-measure curve to evaluate the per-
formance of the proposed network, and compare it with other
state-of-the-art networks. In detail, the F-measure [38] is a
harmonic mean weight of Precision and Recall:

Fβ =

(
1+ β2

)
× Precision× Recall

β2 × Precision+ Recall
, (3)

where Precision means the proportion of pixels that are
correctly predicted to be positive account for all predictions
that are positive in the ground truth and Recall means the
proportion of pixels that are correctly predicted to be positive
account for all actually positive in the ground truth. We set
β2 = 0.3 to weigh the precision value more important than
recall. The higher F-measure, the prediction map is closer to

ground truth. The PR curve and F-measure curve are created
by varying the saliency threshold from 0 to 255.

The MAE score indicates the similarity in pixel level
between the generated saliency map S and the binary ground
truth G:

MAE =
1

H ×W

H∑
x=1

W∑
y=1

|S (x, y)− G (x, y)| , (4)

where (x, y) is the coordinate position, andW andH represent
the width and the height of the predicted saliency map. The
smaller the value of MAE, the more similar the saliency map
is to the ground truth.

The S-measure is a new way to evaluate non-binary fore-
ground maps proposed by Fan [38], which can simultane-
ously evaluate based on region-aware structural similarity
measure and object-aware structural similarity measure.

B. MODEL ABLATION ANALYSIS
Our proposed method consists of two modules: spatiotem-
poral information learning (STIL) module and single-image
representation enhancement (SRE) module. In this part,
we conduct experiments to prove the necessity of the STIL
and SRE. Table 2 shows the effect of STIL and SRE in terms
of MAE, maxF and S-m. Table 3 shows the effect of the
pre-training in training process. Table 4 gives the importance
of different blocks in STIL module. From Table 2, we can
find that STIL and SRE module are both important, and our
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FIGURE 3. Comparisons of the proposed method and other state-of-the-art methods on FBMS and ViSal datasets in terms of PR
curves and F-measure curves. Clearly, our method performs well on these two datasets.

TABLE 2. Effect of each module in terms of maximum F-measure,
S-measure and MAE on the FBMS datasets. ‘‘Backbone’’ means basic
network. ‘‘STIL’’ denotes spatiotemporal information learning module and
‘‘SRE’’ denotes single-image representation enhancement module. The
best results are shown in bold.

proposed network with STIL and SRE modules achieves the
best performance.

1) EFFECTIVENESS OF PRE-TRAINING
In this experiment, we aims at testing the importance of
the pre-training process in training methods. Table 3 shows
the result of ‘‘w/o Pre-training’’ and ‘‘w/ Pre-training’’
respectively in terms of maxF, S-measure and MAE in
two popular datasets: ViSal and FBMS, where ‘‘w/o Pre-
training’’ means without pre-training process in our training

TABLE 3. Maximum F-measure (maxF), S-measure (S-m) and MAE scores
on the FBMS (left) and ViSal (right) datasets with respect to ‘‘w/o
Pre-training’’ and ‘‘w/ Pre-training’’ in our training process. The best
results are shown in bold.

and ‘‘w/ Pre-training’’ denotes adding pre-training process in
the training. Obviously, the results without pre-training are
much worse than those with pre-training. This proves the
importance of learning the representation information of a
single image (like the SOD task) through pre-training.

2) EFFECTIVENESS OF DETAILS OF STIL
In Table 2, we learn that STIL is truly effective. To provide
more comprehensive analysis of STIL, we further evaluate
its performance with respective to spatiotemporal informa-
tion fusion (SIF) and video correlation filter (VCF) in STIL
module. In this experiment, we test the necessity of SIF and
VCF in STIL module. Table 4 illustrates the result of ‘‘w/o
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TABLE 4. Maximum F-measure (maxF), S-measure (S-m) and MAE scores
on the FBMS (left) and ViSal (right) datasets with respect to ‘‘w/o SIF’’,
‘‘w/o VCF’’ and ‘‘Ours’’ in spatiotemporal information learning (STIL)
module. The best results are shown in bold.

FIGURE 4. Visualization of the weights distribution corresponding to
different input video group numbers T.

SIF’’ and ‘‘w/o VCF’’ respectively in terms of Maximum
F-measure, S-measure andMAE in ViSal and FBMS datasets
in detail, where ‘‘w/o SIF’’ means without spatiotemporal
information fusion block in our network and ‘‘w/o VCF’’
meanswithout video correlation filter in our network. ‘‘Ours’’
performs better than ‘‘w/o SIF’’ and ‘‘w/o VCF’’, which
demonstrates the effect of SIF and VCF in our network.

Next, through Fig. 4, we visualize the weights generated by
the two fully connected layers in VCF. In detail, we list three
different situations T = 5/6/7 with three evaluation metrics:
maxF, S-m andMAE for comparison. Clearly, we find that for
T continuous feature maps, the weights trained by the middle
feature maps will be lower than feature maps in the front and
backwhichmeans that our network paymore attention to both
sides of video groups.

3) EFFECTIVENESS OF DIFFERENT AMOUNT OF INPUT
VIDEO FRAMES
As described in Table 5, we discuss the sensitivity of different
input video group numbers to the network’s ability of learning
spatiotemporal information. We take six number settings:
m1 = 3, m2 = 4, m3 = 5, m4 = 6, m5 = 7, m6 = 8,
where ‘‘m’’ means the number of input video frames. By
repeating the experiment above, we show the performance of
CCNet trained with different number of input video frames in
Table 5. Note that our maximum T can only be set to 8 due to
the GPU limitations. According to Fig. 5 and Table 5, it can be
clearly seen that m = 5 obtains the best performance. Thus,
we keep m = 5 in all experiments.

C. COMPARISON WITH THE STATE-OF-THE-ART METHODS
1) QUANTITATIVE COMPARISON
We compare our video saliency detection network with
other 14 state-of-the-art models, including MDB [39],

TABLE 5. F-measure, S-measure and MAE scores on the FBMS dataset
with respect to different image numbers T in input block. The best results
are shown in bold.

FIGURE 5. Visualization in terms of maxF, S-measure and MAE scores on
the ViSal dataset with respect to different image numbers T in input block.

MST [44], STBP [30], SFLR [7], SCOM [43], SCNN [45],
DLVS [31], FGRN [14], MBNM [46], PDBM [11], RCR-
Net [12], SSAV [36], PSCA [47], and LSTI [48]. For fair
comparison, we take the code provided by Fan et al. [36] to
compute these metrics on our video saliency maps. As seen
from Table 1, our method gets the best result on four test
datasets in terms of maximum F-measure (maxF), S-measure
and MAE, which demonstrates the effectiveness of our pro-
posed method. As shown in Fig. 3, the PR curves and
F-measure curves of our method are higher than other meth-
ods, which demonstrates ourmethod ismore robust than other
approaches, even on the challenging datasets.

From Table 1 above, we learn that the index of maxF,
S-measure and MAE get the best result on the four datasets
(DAVIS, FBMS, ViSal and DAVSOD). To be specific, our
method gets much improvement, comparing with the best
existing approach on ViSal dataset and FBMS dataset, 0.954,
0.883 in the index of maxF, 0.954, 0.900 in the index of
S-measure and 0.013, 0.035 in the index of MAE, respec-
tively. Since DAVSOD is a newly proposed dataset, our
method demonstrates 2.4%maxF and 2.2% S-measure higher
than the second best model PSCA. Moreover, quantitative
evaluation results of our proposed method in terms of index
PR curve, F-measure curve are listed in Fig. 3. Note that due
to the lack of video groups on the DAVIS2016 and DAVSOD
datasets, we only provide comparisons on the FBMS and
ViSal databases.

2) VISUAL COMPARISON
Fig. 6 shows visual comparisons of our proposed model
with 11 previous state-of-the-art methods. From the results
given above, we find that the video saliency maps generated
by our method are more accurate and more similar with the
ground truth. Specifically, our method is more accurate in the
recognition of continuous salient objects in video. For the
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FIGURE 6. Visual comparisons of the proposed method and the state-of-the-art algorithms. From left to right: the input image, ground truth, the
saliency maps produced by our proposed method, GT, SCOM [43], SCNN [45], DLVSD [31], FGRN [14], MBNM [46], MST [44], PSCA [47], PDB [11],LSTI [48],
RCR [12], SSAV [36]. Our method consistently produces saliency maps closest to the ground truth. ‘‘GT’’ indicates Ground Truth. ‘‘Input’’ indicates input
image.

most of the challenging video groups, they mainly are with
low contrast between objects and background (e.g., row 1, 2, 3
and 9 in Fig. 6), multi-objects or multi-salient objects overlap
(e.g., row 7, 8 and 9 in Fig. 6). Our proposed method can
effectively divide the foreground and the background (e.g.,
row 1, 3 and 4 in Fig. 6) and distinguish continuous salient
objects (e.g., row 5, 6 and 8 in Fig. 6).

Besides, our model can highlight both small-scale or
large-scale salient objects in the video groups, no matter
having a large difference (e.g., row 2, 4, 6 and 8 in Fig. 6)
or small difference (e.g., row 3 and 7 in Fig. 6) in the move-
ment process. These results demonstrate the robustness of
our method, and confirm the effectiveness of the proposed

TABLE 6. Average running time cost comparison (in a single video frame)
for optical flow based methods.‘‘-’’ indicates no reported.

cross complementary network in obtaining the discriminant
feature representations and spatiotemporal information for
video salient object detection.

3) RUNTIME COMPARISON
We compare our video saliency detection network with
optical flow based methods and all methods in runtime
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TABLE 7. Average running time cost (in second) for a single video frame. The first row corresponds to various state-of-the-art image/video saliency
methods. The second row corresponds to average time cost for one video frame in different methods.

FIGURE 7. Four failure cases of the proposed method. The three lines in
each case from left to right correspond to: input image, ground truth and
our final predication result.

cost respectively in Table 6 and Table 7. In Table 6,
we show total time cost and optical time cost in five
optical flow based methods: EC [40], SP [8], SA [42],
SCOM [43] and bMRF [41]. For most optical flow based
methods, they account for a large proportion in total time
cost.

Table 7 shows runtime comparisons of our proposed model
with 14 previous state-of-the-art methods (some are not men-
tioned), including MDB [39], MST [44], EC [40], SA [42],
SP [8], STBP [30], SCOM [43], SCNN [45], FGRN [14],
bMRF [41], MBNM [46], PDBM [11], RCRNet [12] and
SSAV [36]. Though some traditional methods (e.g., MDB,
MST in Table 7) are truly efficient in time cost, they per-
form worse than deep learning based methods in F-measure,
S-measure and MAE. It can be seen from Table 7 that the
average time of a single image of our method takes 0.04s,
which is close to the real-time level. It is far better than many
deep learning based methods (e.g., FGRN, PDB, SSAV in
Table 7) and optical flow basedmethods (e.g., SA, SP, SCOM,
SCNN andMBNM in Table 7). From the results given above,
single image average time of our method takes 0.04s which is
close to real-time level, which is much better than many deep
learning based methods (e.g., FGRN, PDB, SSAV in Table 7)
and optical flow based methods (e.g., SA, SP, SCOM, SCNN,
MBNM and FGRN in Table 7).

V. LIMITATIONS
Although satisfactory results have been achieved, there are
still some limitations in our cross complementary network.
Fig. 7 shows some failure examples. First, our proposed
method is difficult to deal with some challenging video
groups, in which the salient objects are occluded or incom-
plete (e.g., (a) and (b) in Fig. 7). Second, some static salient
objects that may be salient in a single image are also consid-
ered as salient objects in video salient object detection (e.g.,
(c) and (d) in Fig. 7).

TABLE 8. Quality comparison with 8 unsupervised video object
segmentation (UVOS) methods in DAVIS16 using the region similarity J ,
boundary accuracy F . The best scores are marked in bold.

VI. PERFORMANCE ON UNSUPERVISED VIDEO OBJECT
SEGMENTATION
We compare our method on the DAVIS and FBMS dataset
with 8 state-of-the-art methods: FST [49], SFL [50],
LMP [51], FSEG [52], LVO [53], PDB [11], RCR [12]
and AGS [54]. Following the evaluation setting of unsu-
pervised video object segmentation (UVOS), we adopt
the mean Jaccard index J (intersection-over-union) and
mean boundary accuracy F as metrics for fair comparison.
In Table 8, our method achieve the best accuracy in UVOS
task.

VII. CONCLUSION AND FUTURE WORK
In this article, we concern video salient object detection
both from emphasizing spatiotemporal information and bet-
ter fusion in spatiotemporal information and saliency infor-
mation in a single image. We present an end-to-end cross
complementary network, which consists of a spatiotemporal
information learning (STIL)module for spatiotemporal infor-
mation extraction and a single-image representation enhance-
ment (SRE) module for feature supplement for single image.
Besides, in order to maintain the ability of extracting image
features, we combine video dataset and image dataset as
our training set. Experimental evaluation on four datasets
demonstrates that our proposed approach provides more
accurate video saliency maps as compared to the state-of-the-
art video saliency detection methods. In further work, we will
focus on replacing our backbone with a lightweight network
to increase the detection speed and while maintaining the
accuracy.
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