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ABSTRACT The solution of large-scale optimization problems is the key to many decision-making
processes in practice. However, it is a challenging research topic when considered both the quality of
solutions and the required computational time. One of the popular approaches for these problems is to divide
the problems into a number of smaller sub-problems, that are then solved separately with an exchange of
some information using the cooperative co-evolution (CC) concept. However, the characteristics of sub-
components could be different, and their contributions to the overall performance can also be different while
solving the problem. In the CC approach, it usually applies one optimizer and allocates equal computational
budget to all sub-components. In this article, a new algorithm is proposed with the use of multiple optimizers,
along with a need-based allocation of computational budget for the sub-components. In the proposed
algorithm, a group of optimizers cooperate in an effective way to evolve the sub-components, depending
on heuristic fuzzy rules. The performance of our proposed algorithm was evaluated by solving a number of
large-scale global optimization benchmark functions. The empirical results show that the proposed algorithm
outperforms equal allocation CC, a single selection characteristic, a single candidate optimizer and state-of-
the-art algorithms.

INDEX TERMS Cooperative co-evolution, large-scale optimization, fuzzy logic.

I. INTRODUCTION
Optimization algorithms, such as evolutionary algorithms
(EAs) [1] and swarm intelligence (SI) [2], have emerged as
effective methods for solving a wide variety of optimization
problems, such as single objective or multi-objective prob-
lems, with discrete and/or continuous variables, in different
fields including, but not limited to, engineering and sci-
ence [3], [4]. However, the performance of these algorithms
significantly deteriorates with growing numbers of decision
variables [5].

As of the literature, the cooperative co-evolution (CC)
approach [6] is a popular choice for solving large-scale
optimization problems [7], [8]. The CC method applies a
divide and conquer strategy, firstly to decompose the high-
dimensional problems into a number of smaller sub-problems
and to then solve them individually by exchanging some
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information among the sub-problems during the search pro-
cess. Liu et al. [9] have demonstrated that CC approaches are
highly effective in dealing with high dimensional continuous
problems. For practical cases, problem decomposition is very
important, as the sub-problems are usually interdependent
because they have some common variables in two or more
sub-problems. The performance of the CC algorithms is
highly dependent on the number of common variables and the
complexity of the sub-problems. So it is expected that a prob-
lemmust be decomposed in a way that minimizes the number
of common variables in the sub-problems and maximizes
the number of highly related variables in each sub-problem.
In other words, the inter-dependencies between sub-problems
should be asminimum as possible. There exist several decom-
position methods, such as static [9], random [10] and variable
interaction grouping [11], that have dealt with grouping of
decision variables in the global optimization domain.

It is worth mentioning that a suitable grouping results in a
significant improvement in the quality of solutions when an
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appropriate search approach is applied. Interestingly, some
sub-problems may make higher contributions than others
during the search process [12]. Therefore, the round-robin
mechanism of CC [6], which gives equal consideration to
all sub-problems, despite their different contributions, might
waste a considerable amount of computational resources due
to inappropriate resource allocation. Here, the share of higher
resources is given to sub-problems that contribute more, and
so this could provide a significant advantage [13].

In the literature, CC approaches usually use a single opti-
mizer repeatedly for all sub-problems. However, as the char-
acteristics of sub-problems may vary significantly due to
the problem’s structure and decomposition, it is unlikely
that a single optimizer will perform the best for all sub-
problems. It is noted that different optimizers, such as differ-
ential evolution (DE) [14], covariance matrix adaptation ES
(CMA-ES) [15] and particle swarm optimization (PSO) [2],
are suitable for problems with a variety of properties in their
sub-problems. DE is considered useful for problems in which
feasible regions are parallel to the axes, although it has a
weakness of how it handles local optima when solving multi-
modal functions [16]. CMA-ES provides an effective way
of dealing with uni-modal problems, but is also weak in
handling local optima in multi-modal functions [17]. PSO
has demonstrated high convergence ratios in the first phases
of the optimization process, but in the refinement stage, its
performance is slow and it may become trapped in local
optima [16]. Hybridization [18]–[20] appears to be a com-
plementary framework which tries to capture and merge the
strengths of each algorithm to achieve superior results. For
large-scale problems, divided into a number of smaller sub-
problems, the use of multiple optimizers with complementary
abilities could offer significant advantages, where an opti-
mizer can be selected for each sub-problem based on its rate
of progress in the search process.

Motivated by the above two aspects, in this article, a
performance-based computational budget allocation among
the sub-problems, with appropriate use of multiple optimiz-
ers, called fuzzy contribution-based cooperative co-evolution
(F3C), is proposed as an effective alternative to a round-
robin strategy with a single optimizer. In F3C, a group of
optimizers cooperate in an effective way to evolve its sub-
components based on heuristic fuzzy rules. This heuristic
emphasizes on the most effective sub-component, with its
optimizer using two complementary criteria, namely, fitness
improvement and population diversity. Its performance is
evaluated by solving a good number of large-scale global
optimization (LSGO) benchmark functions. The empirical
results show that it outperforms CC with equal allocation,
single selection characteristic, single candidate optimizer and
state-of-the-art algorithms.

The remainder of this article is structured as follows:
Section II highlights the related literature; Section III
describes the proposed algorithm; Section IV presents the
experimental results; and finally, Section V concludes the
paper with directions for future work.

II. RELATED LITERATURE
This section provides a brief review about the CC framework,
existing contribution-based techniques and an overview of
fuzzy theory.

A. COOPERATIVE CO-EVOLUTION
To mitigate the curse of dimensionality that affects the per-
formance of EAs, two basic approaches have been adopted.
The first tries to improve those of classic EAs by embedding
in them some features, such as intelligent sampling [21],
advanced initialization [22], parallelization [23], adaptation
of operators and/or parameters [24], a local search mecha-
nism [25] and hybridization [26]. The other aims to apply a
divide-and-conquer strategy to divide a large-scale problem
into smaller sub-problems (also called sub-components) and
to then solve each of them latter as an independent problem,
which is called the CC framework.

The standard CC framework has two phases, that is decom-
position and optimization phases. In the first, a divide-and-
conquer mechanism is used to decompose the problem into
smaller ones. In the second, it subsequently solves them in a
cooperative manner [6], [27].

As of the literature, several decomposition techniques
have been suggested to divide the high dimensional problem
into many smaller sub-components. This list of these tech-
niques include CC with variable interaction learning [11],
random grouping (RG) [28], differential grouping (DG) [29],
global DG (GDG) [30], extended DG (XDG) [31], improved
DG (DG2) [32], fast inter-dependency identification [33],
enhanced DG (EDG) [34] and recursive DG (RDG) [35].

As previously mentioned, in the optimization stage, each
sub-problem is regarded as an independent problem that is
optimized iteratively for a predetermined number of iterations
in a round-robin fashion. Then, the obtained solution is used
to update a context vector (a complete solution consisting of
the best solution of each sub-problem) at each iteration [36].
It is worth mentioning that the classic CC algorithm [6] opti-
mizes sub-problems iteratively in a round-robin fashion until
the stopping condition is satisfied. Thismeans that all the sub-
problems have equivalent computational resources, which
negatively affects the performance of EAs when solving
large-scale optimization problems. In other words, a consid-
erable amount of computational budget is wasted on solv-
ing an optimization problem with different contributions’
sub-components.

B. CONTRIBUTION-BASED COOPERATIVE CO-EVOLUTION
To alleviate the above-mentioned drawback, several stud-
ies proposed methodologies that give more consideration to
sub-problems with higher contributions to the overall objec-
tive value [13], [37]–[39]. These methods are known as
contribution-based CC (CBCC).

Omidvar et al. [12] proposed a CBCC method for assign-
ing the available resources among the sub-components, by
calculating the total improvement each makes towards the
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main optimization problem. It depends on the contribution
estimated in the testing phase and has two versions, namely,
CBCC1 and CBCC2. The former optimizes a selected sub-
component for only one iteration, whereas the latter optimizes
it for as long as it continues to improve the overall fitness and
then the algorithm applies the testing phase again to select
another sub-component.

However, the CBCC1 and CBCC2 algorithms suffer from
over-exploratory and over-exploitative problems, respec-
tively [40]. They focus on only the sub-problems that have
high initial contributions to the overall fitness value in the first
cycle, but do not have fast responses to changes in their con-
tributions later. Therefore, the information accumulated from
the first cycle, limits their selection strategies to sub-problems
with high initial effects on the overall fitness value. To lessen
these issues, the CBCC3 algorithm, which is an enhanced
version of the CBCC1 and CBCC2 ones, was proposed.
Its policy of resource allocation, concentrates on optimizing
only the most recent sub-problem, which contributes more
to enhancing the overall objective value in the exploitation
stage. According to [40], the CBCC3 version is superior
to the traditional CC, CBCC1 and CBCC2 algorithms, for
dealing with unbalanced contribution problems. However, its
major drawback is that it depends on the magnitude of the
contributions of the sub-components in the selection process.

In another approach, called CC with adaptive optimizer
iterations (CCAOI), introduced in [41], the existing compu-
tational budget assigned to several sub-problems is dynam-
ically adapted. It computes the number of iterations each
sub-problem has to carry out in each cycle using an indicator,
δi, (the contribution factor of the sub-problem), which should
be normalized with the generation number performed by the
optimizer.

With a similar aim, the CC framework (CCFR) approach
was proposed in [42]. It has two aspects which distin-
guish it from the abovementioned methods: a sub-problem
is excluded if it does not contribute to improving the overall
objective value; and the contribution of each sub-problem
is updated dynamically in each cycle, with the one with
the highest contribution chosen to complete the evolutionary
stage. This means that this method evaluates the recent con-
tribution of each sub-problem, based on the mean value of its
contributions in the last two generations.

A Bandit-based CC (BBCC) framework [43] has been
proposed to formulate the resource allocation problem as a
dynamic multi-armed bandit one. It employs efficient bandit
algorithms that seek to learn the contribution done by each
sub-component to the fitness improvement value and allocat-
ing the appropriate resources respectively.

Ren et al. [44] proposed a fine-grained resource allocation
strategy, called FCRACC, which allocates resources based
on both the evolution characteristics of CC and the optimal
solution of a mathematical model for its resource alloca-
tion. FCRACC allocates more computational resources to
the subproblem, which is most expected to make the highest
contribution to the fitness improvement at the next iteration.

Recently, an improved version of CCFR, called CCFR2,
was proposed in [45], which correlates the subpopulation size
with the size of subproblems and considers unequal-sized
subpopulations in when calculating contributions. Unlike
CCFR, it saves the computational resources required to both
obtain the best overall solution before the start of co-evolution
and evaluating population during the co-evolution, if the
current best solution is the same with the last best one.

C. FUZZY THEORY
Zadeh [46] presented the field of fuzzy theory in the mid-60s
and now fuzziness is fast becoming a fundamental of our daily
lives. In this research, he clarified that ‘‘fuzzy sets’’ are sets
with boundaries that are not obvious, and they are used
mainly to represent uncertainty [47]. In general, a fuzzy
set (S) is in X , where X is the universe of discourse with
its elements denoted by x; for instance, a fuzzy set (S =
{x1, x2, x3, x4}) in X , is characterized by a membership func-
tion marked byµ(x) that maps each point (x) to a real value in
a [0,1] interval. The value of themembership function (µS (x))
represents the degree of the membership of x in S and the
mapping is restricted to onlyµS (x) ∈ [0, 1]. The membership
value of an element, specifies the degree towhich it belongs to
its fuzzy set, and whenµS (x) is close to 1, x clearly belongs to
S. There are various types of membership functions, includ-
ing triangular, Gaussian, trapezoidal and the generalized
bell curve.

Since fuzzy language is regarded as a natural language for
handling ambiguous and uncertain expressions, fuzzy logic
has been exploited for word-based computing [48] and can
be considered the process of transition from total to partial
truth. In other words, the value of a Boolean variable (i.e.,
1 or 0) is changed to a linguistic weighting variable which
takes values such as ‘‘medium’’, ‘‘very low’’, ‘‘high’’, etc.
Therefore, fuzzy logic represents a human’s reasoning mech-
anism that seeks to translate all truths as approximate, with
a false value represented as a partial truth. This mechanism
seeks to convert the input data to output by using a formula
of ‘‘IF-THEN’’ rules, which the fuzzy system then maps to
their mathematical equivalents.

III. PROPOSED APPROACH
The F3C approach adopts heuristic fuzzy rules that place
more emphasis on better-performing optimizers for solving
sub-problems, based on their contributions to improving the
overall objective value and maintaining diversity within the
population.

Similar to the typical CC framework, it starts by decompos-
ing a large-scale problem into several smaller sub-problems
using an appropriate decomposition method. This is followed
by an optimization stage in which the sub-components gen-
erated are optimized for a certain number of generations.

Throughout the optimization process, fuzzy rules are used
to measure the effectiveness of a sub-component-optimizer
(CiOj) pair based on two core characteristics, namely, fit-
ness improvement and population diversity, which can be
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easily expressed as linguistic variables. During the first
co-evolutionary cycle, all the sub-components formed in the
decomposition stage are optimized in a round-robin fashion
using each member in the optimizer’ group (Oj) to measure
the initial effectiveness of each (Ci Oj) pair. Firstly, the contri-
bution of each sub-component (Ci) is calculated as the relative
fitness improvement (FI ) before (i.e., fb) and after (i.e., fa)
using Oj by:

FICi,Oj =
(fb − fa)

fb
,

∀ i = 1, 2, . . . , k and j = 1, 2, . . . ,m, (1)

where k is the number of sub-components generated and m
the number of candidate optimizers used.

Then, the diversity of the population is calculated as the
average distance of each individual in xi to the best solution
among them as:

DCi,Oj =

∑NP
i=1 dis(

−→x i,
−→x b)

NP
(2)

where dis(−→x z,
−→x b) is the Euclidean distance between the

zth individual and the best individual in x, NP the number of
individuals and −→x b the best solution among the individuals.

Then, in each generation, to determine which (CiOj) pair
will use the computational resources, the inputs (diversity and
fitness improvement) are fuzzified so that the effectiveness
can be determined and a conclusion drawn based on the
application of the rules on the fuzzy sets generated. This
process involves the following three steps.

1) Fuzzification establishes to what extent the numeric
values of both the fitness improvement and population
diversity belong to each of the fuzzy sets (Si) using
a membership function. Although the proposed F3C
algorithm could employ different types of membership
functions, the Gaussian function is considered in this
study for the simplicity in its design that requires only
two parameters [49], as shown in Fig. 1 and defined as:

µSi (x) = e−(x−mi)
2/2σ 2i (3)

wheremi and σi are the mean and standard deviation of
the ith fuzzy set (Si), respectively.
In this study, as suggested in [50], five linguistic levels,
namely, ‘‘Poor (P)’’, ‘‘Fair (F)’’, ‘‘Good (G)’’, ‘‘Very
Good (VG)’’ and ‘‘Excellent (E)’’ are used to deter-
mine which CiOj pair is the most effective, as shown
in Fig. 2. The parameters, including the mean and the
standard deviation, of these membership functions, are
given in Table 1.

2) An inference mechanism that formulates human think-
ing by mapping the inputs to the outputs is applied.
It supports the decision-making process by creating
fuzzy inferences for antecedents and IF-THEN rules.
It also applies fuzzy operators on the antecedents and
obtains the overall consequent using the aggregation
of fuzzy rules. The IF-THEN rules are based on the

FIGURE 1. Gaussian membership function.

FIGURE 2. Fuzzy membership functions of inputs or output.

TABLE 1. Parameters of Membership Functions for Fitness Improvement,
Diversity and Effectiveness.

Mamdani fuzzy interference model [51], with a typical
one expressed as:

Rulei : IFFI isA1 ANDD isB2 THENEFF isC3 (4)

where i indicates the rule number (i = 1, 2, . . . , n), n
is the number of rules (n = 25) and A, B and C
represent the fuzzy sets for the inputs and outputs.
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TABLE 2. IF-THEN Rules.

FIGURE 3. Fuzzy heuristic output surface.

The IF-THEN rules, which formulate the consequent
based on the two antecedents, are shown in Table 2,
in which the logical AND connective represents the
intersection between two fuzzy sets denoted by the
minimum membership value of the antecedents as:

A AND B = A ∩ B = min(µA(x), µB(x)) (5)

3) A defuzzification step is applied to convert the fuzzy
output from the inference mechanism to its original
crisp value using the center-of-gravity method, which
is considered the most prevalent. It locates the center of
an area under the surface of the membership function
which is expressed as:

y? =

∫ b
a µ(y) · y dy∫ b
a µ(y) dy

(6)

where y? and y are the crisp and fuzzy outputs, respec-
tively. Fig. 3 shows the decision surface of the effective-
ness obtained by the fuzzy systemwhich is based on the
different values of the two inputs, fitness improvement
and diversity. It is clear that, when both these values are
increased, so does the output value of the effectiveness.

Based on the mentioned points, Algorithm 1 summarizes
the steps in the proposed F3C algorithm. Firstly, an initial
population (P) of size NP is randomly generated (P =
{
−→
X 1,
−→
X 2 . . .

−→
X NP}) and the best individual (

−→
X best ) and its

fitness value (f (
−→
X best )) recorded to build the context vector

(lines 1 to 3). Then, in the decomposition stage (line 4), all
the sub-components are constructed based on the interactions
among the decision variables using a decomposition function.
Before the optimization stage begins, the control parameters

of the candidate optimizers are set as suggested in the liter-
ature (line 5) and then, during the optimization phase, any
group of candidate optimizers can be applied. Also, in lines
6 to 8, the F3C algorithm initializes all the elements of the
FI , D and EFF matrices to 0, 0 and 1, respectively.

First, each sub-component is evolved with each optimizer
for a pre-defined cycle (i.e., number of fitness evaluations),
with FI as well as D recorded for each pair. Subsequently,
the fuzzy-based heuristic takes place with FI and D consid-
ered as input. The numeric values of these inputs are assigned
to their appropriate fuzzy sets (i.e., ‘‘P’’, ‘‘F’’, ‘‘G’’, ‘‘VG’’
and ‘‘E’’) and then, both IF-THEN rules and fuzzy operators
are applied on them to obtain the effectiveness of each pair.
Finally, this fuzzy output is converted to its original crisp
value (EFF t ∈ [0, 1], ∀t = 1, 2, . . . , (k ∗ m)). Once this
step is carried out, the pair with the largest effectiveness is
selected as:

[Ci, Oj] = max(EFF[1, 2, . . . , (k ∗ m)]), (7)

and the optimization process places emphasis on this pair for
the subsequent cycle. This process (lines 10 to 22) is repeated
until all the available computational resources are consumed.

Algorithm 1 FBCC
1: generate initial population P randomly;
2: [V1, . . . ,VNP ]← evaluate(f (

−→
X i),∀i = 1, . . . ,NP;

3: (
−→
X best , fbest )← P(min([V1, . . . ,VNP ]));

4: G = {g1, . . . , gk} ← decompose(f (x), dim);
5: Initialization of m candidate optimization algorithms;
6: FIt ← 0,∀t = 1, . . . , k ∗ m;
7: Dt ← 0,∀t = 1, . . . , k ∗ m;
8: EFFt ← 1,∀t = 1, . . . , k ∗ m;
9: cy← 0;
10: while FEs < FEsmax do
11: cy← cy+ 1;
12: Pair_idx = max(EFF[1, 2, . . . , k ∗ m]);
13: for j = 1 : length(Pair_idx) do
14: [C_selected,O_selected]← Pair_idx;
15: Evaluate sub-problem C_selected within the

context vector using the candidate optimizer
O_selected ;

16: Measure the fitness improvementFI based on Equa-
tion (1);

17: Measure the Diversity D based on Equation (2);
18: update the effectiveness EFF ;
19: update the context vector;
20: FEs = FEs + used_FEs;
21: end for
22: end while

IV. EXPERIMENTAL STUDY
In this section, the numerical experiments conducted to mea-
sure the effectiveness of the proposed F3C strategy, which
uses 20 test functions from the CEC’2010 benchmark prob-
lems for LSGO [52], are presented and analyzed. Also, its
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effectiveness for solving 15 other large-scale problems taken
from the CEC’2013 benchmark problems [53] is evaluated.

In the decomposition phase, the enhanced differential
grouping (EDG) method [34] is used to automatically divide
the high-dimensional problems into low-dimensional sub-
problems. In the first stage, this method is capable of
effectively detecting both separable and nonseparable com-
ponents. Then, a further examination is conducted on the
nonseparable ones to identify their direct and indirect inter-
dependencies, to combine them in the same subproblem.
In the optimization phase, variants of three powerful opti-
mization algorithms, 1) SaNSDE [54], 2) CMA-ES [17] and
3) SLPSO [55], are considered.

The experimental results obtained for each benchmark test
problem are based on 25 independent runs, with both the
means and standard deviations of the best solutions calcu-
lated. The population size is set as suggested in the corre-
sponding papers; that is, SaNSDE used a population size
of 100, SLPSO used 100 + D/10 solutions, while CMA-ES
used a population size equal to 4+ (3∗ ln(D)). The maximum
number of fitness evaluations (FEs), divided between the
grouping and optimizing stages, is 3 × 106, and the cycle
size is 104, as suggested in [52] and [38], respectively, with
the group of candidate optimizers using their recommended
original settings.

In this article, the two types of non-parametric statistical
hypothesis tests used, are the Wilcoxon signed rank test [56]
and Friedman ranking test [57]. The former is conducted to
verify any significant differences between algorithms. Using
a 5% significance level, if the p-value is less than or equal to
5%, the null hypothesis is rejected, otherwise it is accepted.
To compare any two algorithms, one of three signs (+,−, and
≈) is used.+ designates that the first algorithm has more sig-
nificant performance than the second, ‘−’, the opposite (i.e.,
the second algorithm outperforms the first) and ≈, that there
is no significant difference between the two algorithms. If the
first algorithm performs better than the second, the Wilcoxon
test adoptsR+which represents the sum of the ranks for those
functions, otherwise this test shows those ranks with R−,
while the Friedman test ranks all the algorithms according
to their average fitness values.

A. BEHAVIOR OF F3C
In this section, an analysis of the F3C’s behavior is pre-
sented, with the numbers of FEs the sub-components con-
sume on some selected functions displayed in Fig. 4. In each
sub-figure, the x-axis is the sub-component’s index and the
y-axis the FEs it consumes. It is obvious that there is an
uneven allocation of the computational resources, as the F3C
optimizes certain sub-components more than the remaining
sub-problems.

As shown in Fig. 4(f), the decision variables of f9 are
grouped into 11 sub-components, 10 of which are non-
separable with 50 decision variables and one is separable with
500. According to F3C, most of the computational budget is
consumed by the first sub-component, the separable one. This

TABLE 3. Results Obtained From Proposed Algorithm Using F3C and
Equal-Allocation CC for CEC’2010 Benchmark Problems.

TABLE 4. Results Obtained From Different Characteristics for
CEC’2010 Benchmark Problems.

TABLE 5. Results Obtained From Wilcoxon Signed Rank Test of the
Proposed Algorithm Using Different Selection Characteristics for
CEC’2010 Benchmark Problems.

indicates that the higher-dimensionality sub-components
often provide higher contributions to enhancing the overall
fitness value, than the lower ones.
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FIGURE 4. Fitness evaluations used to optimize each sub-component.

The experimental results of the proposed F3C and equal
allocation CC, including mean and standard deviation, are
illustrated in Table 3. As the former framework outperforms
the latter, which illustrates the limitation of allocating equal
shares of the available computational resources, more empha-
sis should be placed on the more effective Ci Oj pair.

B. COMPARISONS OF DIFFERENT
SELECTION CHARACTERISTICS
In this section, the behavior of the proposed algorithm
is demonstrated by measuring the influence of combin-
ing different criteria on the selection of the most effective
CiOj pair. Thus, F3C adopted selection criteria based on:
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FIGURE 5. Convergence graphs of mean fitness values generated by group members using proposed approach based on 25 independent runs.

1) fitness improvement; 2) the diversity of the population
and 3) both of them, with the results shown in Table 4,
which clearly illustrate the importance of merging these
characteristics on evaluating the effectiveness of CiOj pair.
Clearly, the F3C algorithm using complementary characteris-
tics exhibits better results compared to using a single selection
criterion and achieves the best results for 12 out of 20 test
functions. According to the Wilcoxon test results shown
in Table 5, regarding the average fitness values achieved,
there is a significant difference only between using fit-
ness improvement and both characteristics as the selection
criteria.

C. COMPARISONS OF PROPOSED AND
CANDIDATE OPTIMIZERS
The performance of the proposed F3C algorithm is com-
pared with those of the other candidate optimizers, the
CMA-ES, PSO and DE algorithms, and the results are
shown in Table 6. It is clear that F3C’s results are bet-
ter than the others for the majority of test problems,
which indicates that grouping complementary candidate
optimizers in an appropriate manner enhances the over-
all optimization process. Also, for the test functions on
which it is not the best, it obtains the second-best fitness
values.
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TABLE 6. Results Obtained From Proposed Algorithm and Other Candidate Optimizers for CEC’2010 Benchmark Problems.

TABLE 7. Results Obtained From Proposed and State-of-the-Art Algorithms for CEC’2010 Benchmark Problems.

As a further illustration, Fig. 5 shows the convergence
graphs of the F3C, DE, PSO and CMA-ES algorithms on

some selected functions, with each point in the plots calcu-
lated by taking the average of 25 independent runs. It can be
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TABLE 8. Results Obtained From Wilcoxon Signed Rank Test of Proposed
and State-of-the-Art Algorithms for the CEC’2010 Benchmark Problems.

seen that the proposed F3C algorithm produces better con-
vergence speeds and that for all the approaches, the available
resources (3×106) are not sufficient to converge to the global
optimum (i.e., 0).

D. COMPARISONS OF PROPOSED AND
STATE-OF-THE-ART ALGORITHMS
In this section, the performance of the proposed F3C
algorithm is compared with those of the following state-
of-the-art ones in the literature, namely, CCFR2 [45],
two-phase learning-based swarm optimizer (TPLSO) [58],
FCRACC [44], affinity propagation assisted and evolution
consistency based decomposition (APEC) [59], CCFR [42],
CC with optimizer selection (CCOS) [38], CBCC1 [12],

TABLE 9. Results Obtained From Friedman Ranking Test of Proposed and
Other State-of-the-Art Algorithms for CEC’2010 Benchmark Problems.

CBCC2 [12], LSHADE semi-parameter adaptation memetic
framework (MLSHADE-SPA) [60], competitive swarm opti-
mizer (CSO) [61], enhanced adaptive differential evolu-
tion (EADE) [62], multiple offspring sampling (MOS) [63]
and memetic algorithm based on local search chains
(MA-SW-Chain) [25].

The results presented in Table 7 demonstrate that the F3C
algorithm is capable of achieving the best results for 10
of the 20 test problems. It is clear that the F3C algorithm
outperforms the others on the majority of partially separa-
ble functions (f4 − f18) and as for both the fully separable
(f1 − f3) and fully nonseparable (f19 and f20) ones, all the
decision variables are grouped and optimized together in one

TABLE 10. Results Obtained From Proposed and State-of-the-Art Algorithms for CEC’2013 Benchmark Problems.
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TABLE 11. Results Obtained From Wilcoxon Signed Rank Test of Proposed
and State-of-the-Art Algorithms for CEC’2013 Benchmark Problems.

sub-component (where size = 1000), there is no significant
impact on selecting the most effective sub-components for
resource allocation.

Based on the Wilcoxon signed rank test, Table 8 shows the
comparison of the average values of the proposed F3C and
other peer algorithms. It can be seen that the F3C algorithm
obtains higher R+ than R− values and its performance is
significantly better than those of all the others, except the
TPLSO algorithm for which there is no significant difference
between them. Furthermore, of the 260 cases, it is superior,
inferior and similar to the others for 213, 47 and 0, respec-
tively. Therefore, it can be deduced that it performs better
than the others for 81.92% of all instances and is only out-
performed for 18.07%. Also, the results obtained from the
Friedman ranking test presented in Table 9 demonstrate that it
ranks first (has the smallest value), as shown in bold, followed
by FCRACC, MLSHADE-SPA, CCOS, TPLSO, CCFR2,
MA-SW-Chain, CCFR, MOS, CBCC1, EADE, CSO, APEC
and CBCC2, respectively.

E. TESTING F3C ON CEC’2013 BENCHMARK PROBLEMS
In this section, a set of 15 benchmark functions pro-
posed in the CEC’2013 special session on LSGO [53] are
solved by adopting an ideal decomposition, whereby all
the FEs are involved in the optimization stage. The per-
formance of the proposed F3C algorithm is compared with
those of the following recently proposed state-of-the-art
ones in the literature, namely, CCFR2 [45], TPLSO [58],
FCRACC [44], APEC [59], CCFR [42], BBCC [43],
CCOS [38], CBCC1 [12], CBCC2 [12], CBCC3 [40], coral
reefs optimization (CRO) [64], CSO [61], multilevel CC
(MLCC) [65] and MA-SW-Chain [25].

The results of the comparison presented in Table 10
demonstrate that the F3C algorithm is superior for 7 of
the 15 test problems. Also, similar to its performance for
the CEC’2010 benchmark problems, it is better than the
other algorithms for the majority of the partially separable
functions (f4 − f11).
The Wilcoxon signed rank test results shown in Table 11

are the average values obtained from all the algorithms. It can

TABLE 12. Results Obtained From Friedman Ranking Test of Proposed
and State-of-the-Art Algorithms for CEC’2013 Benchmark Problems.

be seen that the F3C algorithm has higher R+ than R− values
and outperforms the others. Also, as it is superior, inferior
and similar to the others in 162, 41 and 0 cases, respectively.
Although there is no significant difference between F3C and
some peer algorithms (their p-value is greater than 0.05), it is
more successful. It performs the best for 79.8% of cases. Fur-
thermore, the Friedman rank test, according to the obtained
mean results illustrated in Table 12, shows that it ranks
first, followed by TPLSO,MA-SW-Chain, FCRACC, CCOS,
CCFR2, CBCC3, CCFR, CSO, APEC, CBCC1, MLCC,
CBCC2 and CRO, respectively.

V. CONCLUSION
In this article, the F3C algorithm for handling LSGO prob-
lems is presented. In contrast to a typical CC framework,
in which all the sub-components share the computational
resources equally and only a single optimization algorithm
is used to solve them, in this one, a group of optimizers
cooperate in an effective way to evolve the sub-components
according to heuristic fuzzy rules. This heuristic was used
to allocate a computational budget to the most effective sub-
component and optimizer pair based on two criteria, namely,
the fitness improvement and diversity of the population. The
performance of our proposed F3C algorithmwas evaluated by
using it to solve many LSGO benchmark functions. Interest-
ingly, the experimental analysis revealed that it outperforms
an equal-allocation CC, single selection criterion, single-
candidate optimizer and state-of-the-art algorithms.

In the future, the potential of adding adaptive subpop-
ulations to each candidate optimizers within F3C will be
investigated. The selection of optimizer can be done based on
a learning process which will definitely consume extra com-
putational time. So it needs to find a compromise design that
will improve the effectiveness and efficiency of the algorithm.
We are further interested in changing the decomposition
structure while solving a problem and using an alternative
design of allocations, such as switching optimizers between
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sub-problems and/or using more than one operator or algo-
rithm in a single sub-problem.
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