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ABSTRACT Digital in-line holography (DIH) is broadly used to reconstruct 3D shapes of microscopic
objects from their 2D holograms. One of the technical challenges in the reconstruction stage is eliminating
the twin image originating from the phase-conjugate wavefront. The twin image removal is typically
formulated as a non-linear inverse problem since the scattering process involved in generating the hologram
is irreversible. Conventional phase recovery methods rely on multiple holographic imaging at different
distances from the object plane along with iterative algorithms. Recently, end-to-end deep learning (DL)
methods are utilized to reconstruct the object wavefront (as a surrogate for the 3D structure of the object)
directly from the single-shot in-line digital hologram. However, massive data pairs are required to train
the utilize DL model for an acceptable reconstruction precision. In contrast to typical image processing
problems, well-curated datasets for in-line digital holography do not exist. The trained models are also
highly influenced by the objects’ morphological properties, hence can vary from one application to another.
Therefore, data collection can be prohibitively laborious and time-consuming, as a critical drawback of
using DL methods for DH. In this article, we propose a novel DL method that takes advantages of the main
characteristic of auto-encoders for blind single-shot hologram reconstruction solely based on the captured
sample and without the need for a large dataset of samples with available ground truth to train the model.
The simulation results demonstrate the superior performance of the proposed method compared to the state-
of-the-art methods used for single-shot hologram reconstruction.

INDEX TERMS Digital holography, phase reconstruction, twin image removal, deep learning, digital
microscopy.

I. INTRODUCTION
Digital holography (DH) is a powerful imaging technique
used to reconstruct the three-dimensional (3D) surface of an
object from its two dimensional (2D) image captured by a
visual sensor. It is considered a digital microscopy suitable for
micro-scaled and nano-scaled objects which is used in a wide
range of applications including chemistry [1], biomedical
microscopy [2], nano-material fabrication [3], [4], and nano-
security [5].

Digital holography can be used in different modalities,
including that of in-line digital holography, i.e. transmission
imaging of transparent objects [6]. The sample modulates the
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wavefront phase of the emitted beam. The 3D structure of the
object can be easily reconstructed from the recovered phase
information, as shown in Fig.1.

Regardless of the object type, there are two main imple-
mentation approaches for digital holography, off-axis holog-
raphy [7], and in-line holography [8]. In off-axis holography,
the laser beam is split into two waves, the reference wave
denoted by R and object wave denoted by O, where only the
latter passes through the object. The two waves are combined
with a small relative incidence angle θ at the exit of the
interferometer to create the hologram intensity as IH (x, y) =
|R2 + |O|2 + R∗O + RO∗, where X∗ denotes the complex
conjugate of X . The relative angle causes the real images and
twin images to form separable locations in Fourier space. This
spatial separation facilitates simple phase recovery through
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FIGURE 1. The amplitude and phase of the wavefront can be extracted
from the recorded hologram using numerical reconstruction methods. The
phase information represents the surface depth or the thickness of the
object, which can be used to reconstruct the object’s 3D view. This figure
shows how digital holography records the 3D information of an object
into a 2D form.

filtering in the Fourier domain. On the other hand, the off-
axis technique requires additional experimental effort, and
because of the spatial filtering in the Fourier Domain there
may be appreciable resolution loss. In comparison, in-line
holography allows for high resolution phase recovery through
simple, inexpensive apparatus without the need to use any
magnifying components such as objective lenses. Only a
single beam path is required for the setup. In addition, numer-
ical refocusing through diffraction algorithms based on the
Fresnel-Kirchhoff such as the Angular Spectrum or Fresnel
approximation eliminate the need for actuating mechanical
devices for focusing.

One significant disadvantage of in-line holography is that
it has to contend with the twin image problem, which is the
result of the loss of phase information in the final refocused
image [9]. The recorded hologram image contains both the
real and virtual image superimposed upon each other along
with the DC (zeroth order term). These terms are not sepa-
rable in the Fourier Domain. To uniquely recover one of the
holographic terms containing the phase information, phase-
retrieval iterative algorithms may be applied [10]–[14]. If the
phase is recovered accurately, the twin image will be highly
suppressed [15], [16]. From the recovered phase information,
the 3D surface profile of the sample may be easily obtained
if the refractive index is known.

The simplicity of sample preparation without the need for
sectioning, as well as staining, and its high-speed imaging
capabilities make the in-line holography well suited for the
investigation of biological specimens [2].

II. PROBLEM STATEMENT
To further explore the physical model behind the concept
of twin image removal, we investigate the process of DIH,
as shown in Fig.3. Suppose that we have an object field
ρ(x, y) and the propagation transfer function h(x, y), then the
scattered wave O(x, y) can be described as [17]:

O(x, y) =
∫ ∫

xi,yi∈6
ρ(xi, yi)h(x − xi, y− yi)dxidyi (1)

where 6 represents an aperture window. The transmittance
function h(x, y) depends on the light wavelength λ and the

FIGURE 2. The illustration of the basic inline holography setup and the
twin-image issue: the scattered object wave interferes with the
unscattered reference wave in the inline holography and creates the twin
image. This effect is shown in the recorded hologram (bottom-middle)
and the back propagated image (bottom-right).

propagation distance z between the image plane and the
hologram. The transfer function in the frequency domain is:

H (fx , fy) = exp(ikz
√
1− (λfx)2 − (λfy)2) (2)

where k = 2π/λ is the wave number. In addition to the
diffracted waveO(x, y), there exists a non-scattered reference
wave R(x, y). The Hologram IH (x, y) records the intensity of
the mixed waves captured by the light sensors and can be
expressed as:

IH = |O+ R|2 = O∗R+ OR∗ + |O|2 + |R|2

= U (x, y)+ U∗(x, y)+ |O|2 + |R|2 (3)

where we define U (x, y) = O∗R for notation convenience.
The captured hologram includes the object field O(x, y) and
its conjugation O(x, y), respectively, representing the virtual
and real images [6]. This phenomenon leads to the formation
of the twin image, an issue to be dealt with in the reconstruc-
tion phase. As one focuses on one of the holographic terms,
the out of focus conjugate smears the reconstructed image.

Note that the reference field (|R|2) can be assumed one
without the loss of generality and can be removed from the
hologram. Also, the term |O|2 can be regarded as the noise
term n(x, y). Therefore, reconstructing the object field boils
down to removing the twin image [17], which has been the
center of attention in many prior works [2], [11], [18], [19].
If we define transformation T : ρ(x, y) 7→ U (x, y), the image
reconstruction can be recast as the following standard inverse
problem:

IH (x, y) = 2Re
[
T
(
ρ(x, y)

)]
+ n(x, y). (4)

BothU (x, y) and its conjugationU∗(x, y) are interchangeably
consistent with the solution of Eq (4); therefore it can be
regarded as an under-determined problem. Also, standard
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inverse problems can not be utilized to solve Eq (4), since
it includes the non-linear transformation.

There exist several means for solving the twin image
problem. Recording a collection of holograms at different
propagation distances and reconstructing the object field by
the transport of intensity (TIE) method has yielded promising
results [20], [21]. Most conventional phase retrieval methods
use the following TIE imaging equation to recover the phase
term φ(x, y) [19], [22], [23]:

∂I (x, y)
∂z

= −
λ

2π
∇(I (x, y)∇φ(x, y)), (5)

where I (x, y) is the hologram intensity, λ is the wavelength,
and ∇ is the gradient operator in the lateral dimensions
(x, y) [19]. When the intensity is constant (or normalized),
the following simplified equations can be used to recover
φ(x, y) [18], [19], [24]:

2π
λI
∂I (x, y)
∂z

= ∇
2φ(x, y). (6)

Several extensions to the TIE method are proposed in
the literature to extend it for different applications including
volume holography [25], and holographic x-ray imaging [26].
One technical difficulty in solving Eqs (5) and (6) is the need
for multiple imaging at fine-tuned distances from the focal
plane (i.e, 1z, 21z, . . . ) to precisely quantify the gradient
term ∂I (x, y)/∂z using least square method [27], hybrid lin-
earization method [28], [29], and iterative methods [18].

Therefore, developing methods that can recover phase
information from only one recording has obvious practical
advantages. Phase retrieval (PR) is one of the most com-
monly used numerical approaches which perform double-
side constraint iteration with a specific support region [30].
Mathematically, the in-line hologram provides an undesirable
component that can result in the loss of phase information.
PR permits the separation of real-object distribution from
the twin-image interference. Gerchberg-Saxton (GS) algo-
rithm [11], [13], [14], [31] and hybrid input-output (HIO)
algorithm [32], [33] perform iterative phase retrieval with the
following steps for object wave R, reference wave O, and
initial guess of the object phase �0:
• Step 1: Let |R + On|ei�n be a trial scattering density
in the nth iteration cycle, and ρ′n is the back-propagated
results of |R+ On|ei�n .

• Step 2: Impose constraints to ρ′n in the support region,
and obtain ρn+1.

• Step 3: Forward-propagate ρn+1 to obtain |R+ On+1|.
• Step 4: Update the phase �n+1 = Angle(R+ On+1).
The inconsistency region γ is the area where the recon-

structed image in the current iteration does not satisfy the
object constraint, or a region we are not interested in per-
forming the phase retrieval. In step 2 of the GS algorithm,
we impose the constraints as follows

ρn+1 =

{
0 ρ′n ∈ γ ;

ρ′n ρ′n /∈ γ ;
(7)

while the HIO algorithm deploys a relaxing factors β to
reduce the probability of stagnation that contains feedback
information concerning previous iterations as:

ρn+1 =

{
ρ′n − βρ′n ρ′n ∈ γ ;

ρ′n ρ′n /∈ γ .
(8)

Although PR shows excellent performance on the object
reconstruction. Due to the double-side constraint iteration
with a specific support region, the reconstruction area is under
a severe limitation, that the reconstruction performs bad when
the desired object has lot of textural and structural details.

Recently, deep learning-based (DL-based) methods have
beenwidely used in phase and amplitude reconstruction prob-
lems, such as deep MRI reconstruction [34]–[37], as well
as end-to-end digital hologram reconstruction [38]–[40] with
proven Superior efficiency. This is due to the power of con-
volutional neural networks (CNNs) that are widely used as a
universal approximator for solving inverse problems in the
field of computer vision. The general approach is training
a CNN on training data pairs (holograms, and twin image-
free phase and amplitude), then using the well-trained CNNs
to reconstruct the twin image-free results. For instance, [34]
offers a DL method based on residual complex complex
convolutional networks to reconstruct multi-channel MRI
images. This method is similar to our method in a sense that
it recovers the real and imaginary part of complex-valued
images. However, it is not directly applicable to digital holog-
raphy, where the real and imaginary parts of the hologram
follow the aforementioned specific wave equations (1-3), and
noting the fact that only the intensity of the holographic
images is available in our method.

DL methods rely on large datasets in the training phase.
In most DL-based image processing tasks, massive training
datasets are easily accessible. However, obtaining datasets for
digital holography, especially when applied to bio-samples,
can be costly since collecting bio samples, capturing holo-
grams, and generating the corresponding ground truth are
pretty difficult and laborious. Meanwhile, CNNs are regarded
as black boxes when the training and inferring steps are
invisible and unexplainable. This means when using a well
trained CNN to reconstruct the hologram, it is impossible to
deal with the upcoming problems if the reconstruction is not
correct.

In [17], an algorithm based on compressive sensing (CS)
is proposed to reconstruct a twin image-free hologram. The
CS method is able to remove the twin image from a single-
shot hologram and does not require a training dataset. As a
physics-driven method, the CS method exploits the sparsity
difference between the reconstructed object and the twin
image by filtering out the diffused conjugated signal by
imposing sparsity constraints on the object plane. The total
variation (TV) norm is suitable for removing the twin image
since the in-focus object has sharp edges, while the out-
of-focus twin image is diffuse. A two-step iterative shrink-
age/thresholding (TwIST) algorithm is used in [17] to address
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the twin image removal problem. their approach is minimiz-
ing an objective function formed from two terms, the mean
squared error (MSE) and TV norm, namely

ρ̂ = argmin
ρ

{
1
2
||H − T (ρ)||22 + τ ||ρ||tv

}
, (9)

where τ is the relative weight between the TV norm ||ρ||tv =∑
i

√
|1x

i ρ|
2 + |1

y
i ρ|

2 and the MSE term. The 1x
i and 1y

i
refer to the horizontal and vertical first-order gradients,
respectively, and ρ is the object field as before. The recon-
struction with denser edges suffers from a more out-of-focus
twin image effect [41] and has a larger TV norm. The CS
method has been proven more effective than the conventional
PR algorithms [30], [42], [43] in terms of removing the twin
image from the recorded holograms. However, this method
suffers from a couple of problems. Accurate tuning of τ that
makes a trade-off between the TV norm and the MSE terms
for optimal twin image removal is not straightforward. Note
that the large values of τ can result in a blurry reconstructed
image, while the small values of τ undermine the efficiency
of twin image removal. Also, imposing severe sparsity con-
straints on the image restoration can lead to edge distortion.

The above-mentioned facts reveal the need for developing
an efficient reconstruction algorithm that is (i) suitable for
one-shot imaging, and (ii) does not require a large train-
ing dataset. In this article, a novel DL-based algorithm is
proposed based on fitting an auto-encoder to the possible
solutions of physics-driven holography equations. Like other
uses of autoencoders, no training dataset is required, as a
key advantage for our method. This method simultaneously
performs noise reduction and twin image removal by a well-
defined objective function. In the presented method, we do
not suppress or remove the twin image in the reconstruction.
Instead, we directly adjust the weights of the utilized DL
architecture to search for the intensity and phase of the tar-
get 3D object most consistent with the captured hologram.
We show that the neural network equipped with convolu-
tional layers naturally tends to produce a more precise result.
Experimental results prove the feasibility and the superior
performance of the proposed method over the existing CS
methods.

III. METHODS
A. DEEP LEARNING SCHEME
For the reconstruction, we use a deep network with encoder-
decoder1 architecture, the so-called auto-encoder which
maps a high dimensional input x into a low dimensional
latent code z = fencode(x) and reconstructs a high dimen-
sional output x̂ = fdecode(z) from the latent code. When
used for supervised image restoration, the objective func-
tion is designed to penalize the error between the output
x̂ and the ground truth y. For the unsupervised denoising

1Note that the source code is available online at
https://github.com/XiwenChen-NAU/DeepDIH and more information
can be found at https://www.cefns.nau.edu/ ar2843/Dendrite/dendrite.html.

FIGURE 3. The overall block diagram of the proposed learning procedure.
After feeding a fixed input (as the initial guess) into the network, the
network reconstructs the image. The reconstructed result is propagated to
the hologram plane by the transmission, depending on the optical
parameters. The network updates its weights by minimizing the pixel-wise
error between the forward-propagated result and the captured hologram.

application, the error between the input and the output is
minimized to achieve the smoothest output consistent with
the input. In [44], an unsupervised blind image restoration
method called deep image prior (DIP) is implemented that fits
a randomly initialized CNN to a single corrupted image. This
method is able to recover the clean image since the CNNs
could naturally learn the uncorrupted and realistic parts when
the networks are underfitting to the noisy and corrupted term.
Inspire by DIP, we consider using a similar approach here to
remove the twin image from the reconstructed object plane.
But another problem arises here due to the high coupling
between the virtual and real object planes in both spatial
and frequency domains. Therefore, the CNN will generate an
output contaminated with the twin image, although it is clear
from the noise. As mentioned in [17], the twin image term
is denser than the object term. Here, we investigate a novel
learning procedure using the physical model in the training
process’s objective function, as shown in Fig. 3. Consider an
autoencoder with randomly initialized weightsw to be trained
to minimize a properly defined objective function, the recon-
structed output ρ can be expressed as ρ = f (x,w), where
x is a fixed input. The objective function can be formulated
as:

w = argmin
w

‖H − T (f (H ,w))‖22, (10)

where we want to propagate the reconstructed object wave
to the hologram plane with transmission T and minimize
the error between the captured hologram and the forward-
propagated result. When minimizing the objective function,
the network indeed searches for the optimal results by tuning
the model parameters within the parameter space. Through
the experiments we conduct, which will be shown later in this
article in Section. IV-A, the network tends first to generate
the primary instance, which is the rough shape estimate of the
reconstructed object. Then the network gradually recovers the
details of the object from coarse to fine. This approach, when
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FIGURE 4. Deep convolutional autoencoder with ‘‘hourglass’’ architecture. Batch normalization is deployed after each convolution layer
except for the last three layers to stabilize the training steps. The hyper-parameters (e.g., the kernel size and feature channels for each layer)
is shown. The network is fully convolutional that enables us to feed inputs with different sizes.

applied to similar image recovery tasks such as denoising
and super-resolution, may overfit the degraded term in the
corrupted image. However, in the case of hologram recon-
struction, both the twin image and the clean object could be
the solution of the non-linear inverse problem. After gener-
ating the main body of the object, the network continues to
generate the fine details of the clean object instead of the twin
image.

B. IMPLEMENTATION OF AUTO-ENCODER
We first built an Auto-encoder with a ‘‘Hourglass’’ archi-
tecture. The encoder fe(ρ̄) maps the fixed network input
into lower-dimensional space (encoding), and the decoder
fd (fe(ρ̄)) reconstructs the object from its representation by
the latent variables (decoding). Batch Normalization [45] and
ReLU activation [46] is used after most layers for accelerat-
ing the model convergence. The network architecture which
includes the hyper-parameters, the kernel size, and channels
of each layer is shown in Fig 4. Wavelet transform and its
inverse transform are used to realize downsampling (encod-
ing) and upsampling (decoding) which replace the pooling,
strided convolution, or interpolation. According to a previous
work [47], using a wavelet transform could impose sparsity
on the reconstruction plane and result in more precise recon-
struction with lower distortion, and our experiments verify
this characteristic. Here, we use 2D Haar wavelet and its
inverse transform in the encoding and decoding stages. The
2D Haar wavelet decomposes the input image or the feature
map into four sub-bands by four convolutional filters (one low
pass filter fLL , and three high pass filters fLH , fHL , and fHH ).
The four filters are defined as: fLL =

[
+1 +1
+1 +1

]
, fLH =

[
−1 −1
+1 +1

]
,

fHL =
[
−1 +1
−1 +1

]
, and fHH =

[
+1 −1
−1 +1

]
. The four sub-bands are

obtained by convolving the input x with the four filters, i.e.
xLL = (fLL ⊗ x), xLH = (fLH ⊗ x), xHL = (fHL ⊗ x), and
xHH = (fHH ⊗ x), where ⊗ is the convolution operator. The
inverse transform of the Haar wavelet in the (x, y) position

can be written as:

x(2i− 1, 2j− 1) =
1
4
(xLL(i, j)− xLH (i, j)− xHL(i, j)

+xHH (i, j)),

x(2i− 1, 2j) =
1
4
(xLL(i, j)− xLH (i, j)+ xHL(i, j)

−xHH (i, j)),

x(2i, 2j− 1) =
1
4
(xLL(i, j)+ xLH (i, j)− xHL(i, j)

−xHH (i, j)),

x(2i, 2j) =
1
4
(xLL(i, j)+ xLH (i, j)+ xHL(i, j)

+xHH (i, j)). (11)

It is notable that during our experiment, we found out
that if skip-connection (i.e. connecting lower level features
to higher level layers by skipping the intermediate layers)
is used in the CNN architecture similar to the U-Net [48]
architecture, the network will directly project the input to the
output instead of learning a clear reconstruction. This might
be desirable in regular image restoration, but not for the phase
retrieval process. The same concept applies when the number
of channels after encoding is significantly high. To avoid this
issue, we compress the feature channels at the output of the
encoder from 1024 into 16 channels shown by a red arrow in
Fig. 4.

IV. EXPERIMENTS
We implement our model using the PyTorch Framework [49]
in a GPU workstation with an NVIDIA Quadro RTX5000
graphics card. Adam optimizer [50] is adopted with a fixed
learning rate of 0.0005 for simulation-based experiments
and 0.01 for optical experiments. We train the network with
an angular spectrum propagation (ASP) back-propagation
reconstruction as input for 1500 to 3500 iterations for simu-
lated holograms, and 2500 to 5000 iterations for real-world
holograms, respectively. There exists no public dataset for
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in-line digital holography. Therefore, we used the cell image
from [17], the USAF resolution chart commonly used in in-
line digital holography research works, a handcrafted π and
circle image, and other bio-images randomly chosen from the
internet for our simulation experiments. We also use our own
samples, available in Dr. Mann’s research laboratory to test
the performance of our method for real-world applications
under more realistic conditions such as imaging artifacts.

A. SIMULATION RESULTS
In this section, several experiments are conducted for com-
paring our method against the CS-based method [17] using
different simulated holograms which verify the superiority
of proposed method over the state-of-the-art CS-based algo-
rithm in terms of twin-image removal and precise phase
reconstruction. We compare our method against the CS
method, since it has shown a superior performance with
respect to the majority of numerical phase retrieval methods.

We set the relative weight of TV norm between 0.01 to
0.1, and trained the algorithm between 150 to 350 iterations,
for different holograms. The following Tree metrics are used
to evaluate the reconstruction quality. The mean squared
error (MSE) that measures the average of the squares of
the pixel-wise errors between the ground truth image and
reconstructed image defined as

MSE(x, y) =
1
MN

√√√√√N ,M∑
i,j

(xi,j − yi,j)2; (12)

for images x and y of sizeM × N , where xi,j is the pixel of x
at position (i, j).
The peak signal-to-noise ratio (PSNR) is an engineering

term for the ratio between themaximum power of a signal and
the power of the corrupting noise that affects the fidelity of
its representation. PSNR is most easily defined via the MSE
as follows

PSNR(x, y) =
max(i,j) {x2ij}

MSE(x, y)
. (13)

The structural similarity index (SSIM) [51] is a perceptual
metric that quantifies the image quality degradation caused by
processing such as data compression or transmission errors.
The SSIM has been proven to be more consistent with the
human visual system compared to PSNR and MSE. The
SSIM quantifies the changes in the structural information
by inspecting the relationship among the image contrast,
luminance, and structural components. The SSIM between
two images is given by:

SSIM (I1, I2) =
(2µI1µI2 + C1)(2σI1I2 + C2)

(µ2
I1
+ µ2

I2
+ C1)(σ 2

I1
+ σ 2

I2
+ C2)

(14)

whereµI1 ,µI2 , σI1 , σI2 , and σI1I2 are the local means, standard
deviations, and cross-covariance for images I1 and I2. C1 and
C2 are two variables to stabilize the division with a weak
denominator.

FIGURE 5. The USAF resolution chart’s reconstruction intensity, the
enlarged area from the reconstruction, and the edge matrix obtained by
the Canny edge detector. (A) ground truth; (B) the proposed method;
(C) CS method [17]. Although the proposed method does not use the TV
norm for removing the twin image in this experiment, it still reconstructs
a clearer image with a sparser edge matrix compared to the CS method.

1) PHASE AND AMPLITUDE RECONSTRUCTION
Fig. 5 compares the amplitude reconstruction of the pro-
posed method with the CS method on the simulated USAF
resolution chart. The origin image is resized into 1000 ×
1000 pixels before simulation. The illumination light with
wavelength λ = 532µm and a complementary metal-oxide-
semiconductor (CMOS) sensor with a pixel size of 4 µm
is considered when simulating the hologram. The distance
between the object plane and the sensor plane is set to 1.2 cm.
The proposed method reconstructs the image amplitude from
the simulated hologram by solving the inverse problem. The
quality of the reconstructed image amplitude is higher (i.e.
more similar to the ground truth) than the reconstructed image
by the the CS algorithm in [17]. Also, a Canny edge detector is
used to extract the edge matrix for the enlarged area in these
two reconstruction results and the ground truth image [52],
[53]. The edge matrix shows that the proposed method has a
better denoising capability than the CS method, even without
any hand-crafted regularization such as the TV norm.

Further experiments demonstrate that the proposedmethod
dramatically improves upon restoring detailed textures and
phase information. The amplitude and phase recovery of
a cell image from its simulated hologram is presented in
Fig. 6. Apparently, the proposed algorithm outperforms the
CS method in restoring finer resolutions and sharper details
of the amplitude and creating more precise phase informa-
tion. This improvement is due to the natural superiority of
CNNs for image recovery applications. When simulating the
hologram with an explicit phase, we apply the grayscale
version of the original RGB image as the reference amplitude
and the green channel as the reference phase. The hologram
size is 500 × 500 that are generated with the same light
wavelength and the object-to-sensor distance used for the
USAF hologram in figure 5. The pixel size here is 1.67 µm.
The output of the proposedmethod exhibits maintainingmore
structural textures with respect to the ground truth amplitude
and phase compared to the CS method.

Similar results are presented for human dendrite image
under the same configuration in Fig.7 as another evidence for
the efficiency of the proposed algorithm in recovering ampli-
tude and phase information from holographic recordings.
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FIGURE 6. Cell image reconstructions from hologram: (A) the RGB
image (top) and the simulated hologram (bottom); (B) the reference
amplitude and phase; (C) the results of the proposed method; (D) the
results of the CS. Our method reconstructs an image with clearer and
more detailed texture for both amplitude and phase reflected by a higher
SSIM and PSNR compared to the CS algorithm.

FIGURE 7. Human dendrite image reconstructions along with the
performance metrics for the amplitude and phase: (A) the RGB
image (top) and the simulated hologram (bottom); (B) the reference
amplitude and phase; (C) the results of the proposed method; (D) the
results of the CS. In this experiment, the proposed method has shown
much better performance in phase information recovery that the CS
method. (Figure obtained from [54]).

2) RECONSTRUCTION UNDER NOISE
The captured hologram can be noisy due to environmental
factors (dust, low illumination intensity), imperfect sensors,
and other imaging artifacts. We investigate the performance
of the proposed algorithm when the captured hologram of a
‘‘circle’’ image is contaminated with additive white Gaussian
noise. In this experiment, we use different noise levels (vari-
ances) at 5, 10, and 15, as shown in Fig.10. Experimental
results demonstrate that the proposed method holds a better
performance than the CS method when encountering noise in
the captured holograms.

3) RECONSTRUCTION WITH DIFFERENT NETWORK INPUT
The input of the neural network, which is used as the initial
guess in our reconstruction setup, can dramatically affect the
reconstruction quality. We examined the reconstruction with
different network inputs, including the captured hologram
intensity, the back-propagated hologram by angular spectrum

FIGURE 8. Reconstruction on a paramecium hologram. Reconstruction
with back-propagated input holds a higher PSNR/SSIM than hologram
input while using random Gaussian noise as input failed to converge.
(Figure abtained from [55]).

FIGURE 9. Pi image restoration at 100, 200, 500, 1000, and 1500 training
steps. Obviously, the rough shape of the object is restored first, then
more details and sharp edges are restored.

propagation (ASP), and a random Gaussian noise N (0, 1).
Fig.8 shows the reconstruction results of a paramecium holo-
gram with these three network inputs. The best result is
obtained when the back-propagated hologram is used as the
initial guess, as was expected. If the captured hologram is fed
to the network as the initial guess, a reasonable reconstruction
can be achieved. However, the output for a random Gaussian
noise N (0, 1) is not acceptable, and the network could not
converge to the desired point and failed to produce a reason-
able result.

4) RECONSTRUCTION ITERATIONS
An experiment on a simulated Pi-shaped image is conducted
to examine the convergence of the proposed algorithm.
The reconstruction results at different training iterations are
shown in Fig. 9. During the optimization process, the CNN
first tends to restore the general shape of objects and then
gradually adds fine-resolution details to it. This justifies the
use of the proposed architecture for phase retrieval. Com-
pared with the object field, the twin image usually exhibit a
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FIGURE 10. Reconstruction under AWGN: (A) the ground truth phase and amplitude. (B) Reconstruction under noise level at 5.
(c) Reconstruction under noise level at 10. (D) Reconstruction under noise level at 15.

more obscure pattern. Therefore, when the network is used to
restore the object from the captured hologram, it converges
to the object field (the actual image) before the twin image
is recovered, since clean object field is the solution to the
inverse problem.

B. OPTICAL EXPERIMENTS
To verify the performance of the proposed method in real-
world situations, a series of optical experiments are con-
ducted using the holograms taken in Dr. Mann’s research
laboratory. Fig. 11 illustrates the configuration for the lensless
Gabor DHMsystem used in our experiments. The light source
consists of a Thorlabs single-mode fiber-coupled laser. A pig-
tailed light beam is emitted to a single-mode fiber that is ter-
minated at an FC/PC bulkhead. The sample is placed between
the light source and an image sensor (Imaging Source DMM
27UJ003-ML - pixel size 1.67µm) with an object recon-
struction distance z. Performing hologram reconstruction in
piratical is a relatively more laborious task than in simulation
due to the error between the actual parameters and the preset
parameters in the experiment. Meanwhile, the influence of
ambient light and air dust in the environment leads to high
noise in the real hologram. Therefore, the algorithm applied
in real-world data is expected to be robust to noise and optical
parameter errors.

Fig. 12 shows the reconstruction result on a USAF positive
high-resolution test target (which means the stripes and digits
are thicker than the background). An illuminated plane wave
at the wavelength of 406µm is used, and the distance between
the target and the image sensor is set at around z = 1110µm.
A multi-height TIE based algorithm is used for comparison
with ten captured holograms with a step-size 15um between
the adjacent hologram planes. In the former deep learning
based work [38]–[40], the multi-height TIE based algorithm
is used for producing the ground truth of the training pairs

FIGURE 11. The configuration for the lensless digital Gabor holography
system.

that have been proven to hold an excellent performance.
The reconstructed amplitude and phase show the outstanding
denoising and twin image removal capabilities of the pro-
posed method. The reconstructed results have comparable
quality to the multi-height methods with single-shot holo-
gram. The enlarged area proves that our approach can retain
high-quality details to a great extent while removing the twin
image at the same time. The effeteness of the twin image
removal ability is quantified as a mean edge factor, which is
calculated as 1

NM

∑N ,M
i,j=0 Ai,j, where the Ai,j is the edge matrix

obtained by the Canny edge detector [52], [53].We choose the
Canny edge detector for getting edge matrix since it is more
sensitive than the Sobel operator. The mean edge factors are
0.0990 and 0.1210 respectively for the multi-height method
and our deep learning based methodology.

We also show the reconstruction of our method at different
training iterations in Fig. 13 to examine the theoretical expla-
nation we proposed in Section. III-A. The results show that
our interpretation of why the presented method works still
hold true for real-world data.
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FIGURE 12. (A) The captured hologram of the USAF positive high-resolution test target. (B) Multi-height
reconstruction. (C) The proposed deep learning reconstruction.

FIGURE 13. USAF positive high-resolution test target restoration at 100, 300, 500, 1000, 1500, 2500,
and 500 training epochs. The reconstruction still follows the regular pattern that the rough shape is restored
first, and details are restored later.

FIGURE 14. Optical Experimental hologram of USAF Resolution Chart and reconstructions. (A) The captured
hologram. (B) Amplitude reconstruction with our method. (C) The reconstructed quantitative phase with our
method.

An experiment on a sectioned dysplasia tonsillar mucosa
tissue is conducted to verify the potential of our method
on biomedical usage. The tissue holography could be used
to analyze beforehand with clinical histological diagnosis.

The hologram is captured with an illuminated plane wave
with a wavelength at 0.635 µm and an object to sensor
distance set at 857 µm. Fig. 14 shows the captured hologram
and reconstruction. The reconstructed phase shows the tissue

202656 VOLUME 8, 2020



H. Li et al.: Deep DIH: Single-Shot DIH Reconstruction by DL

FIGURE 15. Optical Experimental hologram of a non-keratinizing squamous cell carcinoma and
reconstructions. (A) The captured hologram. (B) Amplitude reconstruction with our method. (C) The
reconstructed quantitative phase with our approach.

structure’s relative depth that could be used to reconstruct
the 3D surface of the tissue. Another experiment on a non-
keratinizing squamous cell carcinoma is shown in Fig.15 also
proves the effeteness of the proposed method on biomedical
imaging.

V. CONCLUSION
A deep learning method for single-shot reconstruction of
in-line digital holography reconstruction is proposed in this
article. The key advantage of the proposed method compared
to similar numerical Reconstruction methods and the recently
developed DL-based methods is two-fold. Firstly, the pro-
posedmethod achieves a considerably improved performance
using single-shot imaging and eliminates the need for multi-
ple imaging. Secondly, no training dataset is required to train
the utilized neural network compared to similar DL-based
methods. The physical symmetry of the holography equations
implies that the object image and the twin image both can
be the solution of the resulting inverse problem. With a
given prior, the proposed Auto-encoder architecture is able
to reconstruct the object image. The proposed method has
been proven powerful and potential through both simulated
and optical hologram experiments. Although most of the
DL-based methods are relatively time-consuming compared
to the complex experimental setup of multi-height phase
retrieval, our method is cost-effective and computationally
affordable.
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