
Received October 16, 2020, accepted October 28, 2020, date of publication November 6, 2020, date of current version November 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3036462

Model-Driven Development of Web APIs
to Access Integrated Tabular Open Data
CÉSAR GONZÁLEZ-MORA 1, DAVID TOMÁS1, IRENE GARRIGÓS1,
JOSÉ JACOBO ZUBCOFF 2, AND JOSE-NORBERTO MAZÓN1
1Department of Software and Computing Systems, University of Alicante, 03690 Alicante, Spain
2Department of Sea Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain

Corresponding author: César González-Mora (cgmora@ua.es)

This work was supported by the National Foundation for Research, Technology and Development of the Spanish Ministry of Economy,
Industry and Competitiveness under Project TIN2016-78103-C2-2-R and Project RTI2018-094653-B-C22. The work of César
González-Mora was supported by a contract for predoctoral training with the Generalitat Valenciana and the European
Social Fund under Grant ACIF/2019/044.

ABSTRACT More and more governments around the world are publishing tabular open data, mainly in
formats such as CSV or XLS(X). These datasets are mostly individually published, i.e. each publisher
exposes its data on the Web without considering potential relationships with other datasets (from its own
or from other publishers). As a result, reusing several open datasets together is not a trivial task, thus
requiring mechanisms that allow data consumers (as software developers or data scientists) to integrate
and access tabular open data published on the Web. In this paper, we propose a model-driven approach
to automatically generate Web APIs that homogeneously access multiple integrated tabular open datasets.
This work focuses on data that can be integrated by means of join and union operations. As a first step, our
approach detects unionable and joinable tabular open data by using a table similarity measure based on word
embeddings. Then, an APIfication process is developed to create APIs that access the previously integrated
datasets through a single endpoint. A running example is presented throughout the article, as well as a set of
experiments for performance evaluation to show the feasibility of our approach.

INDEX TERMS Data integration, join, union, open data, data access, Web APIs, word embeddings.

I. INTRODUCTION
Nowadays the amount of open data available on the Web
is increasing due to the great interest of governments
and institutions around the world in adopting open data
initiatives [1]. A good example is found in the smart city
arena, where open data has attracted great attention for local
and regional governments as the best way of publishing the
big data they are producing [2].

This open data is commonly offered in catalogues within
Web platforms, named open data portals. For instance,
https://www.data.gov/, which provides a catalogue of data
resources from the USA Government (at national level),
or https://data.cityofchicago.org/, which gathers open data
from Chicago (at local level).

The ultimate goal of open data portals is to provide Linked
Open Data (LOD) that allows consumers to use Semantic

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

Web technologies to identify relationships among data [3].
LOD is easy to integrate and access by means of query lan-
guages such as SPARQL. Unfortunately, LOD is not usually
available since most used formats in open data government
portals are tabular (46.4%), either direct tabular formats such
as CSV (9.1%) andXLS(X) (6.1%), or embedded tabular data
such as HTML (25.0%) and PDF (9.2%). Meanwhile, LOD
formats such as RDF only represent 0.5% of the total [4]
(even though there exist proposals to transform from CSV to
RDF [5]). The prevalence and priority of tabular formats over
LOD in open data government portals has been highlighted
in recent studies by the European Comission [6] and the
Organisation for Economic Co-operation and Development
(OECD) [7]. In this scenario, accessing and manipulating
tabular datasets remains a relevant research topic in the field
of open data.

When it comes to integrating tabular open data, additional
metadata is required for developers to know how datasets can
be related to each other (such as relational-like primary keys

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 202669

https://orcid.org/0000-0002-6878-5321
https://orcid.org/0000-0002-9469-7747
https://orcid.org/0000-0003-3264-185X

C. González-Mora et al.: Model-Driven Development of Web APIs to Access Integrated Tabular Open Data

or foreign keys, as stated by the ‘‘Model for Tabular Data and
Metadata on the Web’’1 developed by the W3C CSV on the
Web Working Group). Although several recent approaches
proposed adding these kind of metadata to tabular datasets
by means of annotations [8], [9], this methodology has not
being widely adopted by publishers. Therefore, open data is
mostly individually published, i.e. each publisher shares their
data on the Web without considering potential relationships
with other open data. This scenario hampers users of open
data government portals (such as software developers or data
scientists) in reusing open data, since additional effort must
be done to successfully integrate this data. Thus, mechanisms
that allow data consumers to integrate and access tabular open
data published on the Web (through open data government
portals) are highly required.

To this end, in this paper we propose a model-driven
APIfication process to define transformations for automat-
ically generating Web APIs that access integrated tabular
open data. Data integration is a complex process, involving
several kinds of transformations (such as cleansing, combi-
nation, normalisation, etc.) to offer a unified view of a set
of heterogeneous data from different sources. In this paper,
we focus on join and union operators since they are specially
relevant for open data integration [10]. In addition, it should
be noted that considering these operators provides the basis
for including other ones (such as filtering and sorting).

Although data integration challenges have been researched
for years with significant progress [11], efforts have been
made only on solving specific problems. However, according
to Abadi et al. [12] more work is required on researching
how to pipeline data integration to cover all the way from
raw data to an end-user’s desired outcome. This could be
achieved, for instance, by means of generating mechanisms
that support developers and data scientists in consuming the
right data for their purposes by using external programming
languages such as Java, Python, and R. In this sense our work
is aligned with Abadi et al., since the approach we propose
focuses on pipelining the data integration process together
with an API generation in order to simplify consumption of
integrated open data.

The first step in the approach proposed consists of detect-
ing the tabular datasets that are more likely to be inte-
grated by means of join and union operations.2 For this
purpose, we defined a similarity measure between tabular
data based on word embeddings [13]. Afterwards, in a sec-
ond step a Web API is automatically generated to directly
access the integrated datasets. Web APIs are a recommended
feature of open data portals [14], allowing data consumers
to build data-intensive applications and bring open data to
citizens. Moreover, the documentation of the Web API is
also automatically generated (i.e. its interactive OpenAPI3

1https://www.w3.org/TR/tabular-data-model/
2It is worth noting that our approach could be used for any tabular format,

although we focus on CSV files in this article.
3https://www.openapis.org/

documentation), helping data consumers to better understand
how to access and reuse integrated tabular open data coming
from different sources.

It is worth noting that both steps in the APIfication process
are decoupled and can be used independently, while at the
same time relationships among steps (e.g. passing informa-
tion from integrated data to a datamodel in order to initiate the
Web API generation) can be easily considered by following
a model-driven development approach.

In summary, the contributions of this article are as follows:
• The definition of a word embedding-based similarity
measure between tabular datasets to identify joinable
and unionable tabular open data.

• A set of model-driven transformations to automatically
generate a Web API to easily access previously inte-
grated data (by applying the corresponding join and
union operations).

• Evaluation of our approach with real tabular open data.
• The implementation of our approach for automatically
data integration and the corresponding Web API gener-
ation, which is available online at GitHub.4

This article is structured as follows. Section II presents the
running example used to illustrate the approach explained in
Section III. That section describes ourmodel-driven approach
for automatically generating Web APIs to access integrated
tabular open data. Then, Section IV presents the evalua-
tion of the approach. Finally, related work is described in
Section V and conclusions and future work are sketched out
in Section VI.

II. RUNNING EXAMPLE
This section introduces a running example which is used
throughout the article to illustrate our approach. The con-
sidered scenario is related to available open data regarding
the COVID-19 pandemic coming from different open data
portals, and how they can be integrated and accessed through
an automatically generated Web API. All the files related to
the running example are publicly available online.5

This running example describes a situation where a data
scientist is willing to use available open data to create a dash-
board to analyse the COVID-19 pandemic evolution along
different cities in USA. However, the data scientist has to
address a data integration problem, since open data about
COVID-19 is published at different portals, by different local
or regional governments (USA cities or states), and usually
federated in a national open data portal. This data may rely
on different schemas (i.e. data structures), being necessary
to integrate them first in order to successfully analyse them
together.

In our running example, data comes from USA Govern-
ment’s open data portal.6 On one hand, data from Chicago is

4https://github.com/cgmora12/DataIntegration2API
5https://github.com/cgmora12/DataIntegration2API/tree/master/

runningExample
6https://www.data.gov/

202670 VOLUME 8, 2020

C. González-Mora et al.: Model-Driven Development of Web APIs to Access Integrated Tabular Open Data

gathered from two different datasets. The first one7 provides
figures of positive COVID-19 cases by day, filtering by gen-
der, race, and different ranges of age. It contains 148 rows
and 39 columns. An excerpt of this data (called dataset 1) is
shown in Table 1. The second one8 (dataset 2) provides hos-
pital capacity metrics during COVID-19 period. It contains
132 rows and 33 columns. See Table 2 for a sample data.

TABLE 1. Excerpt of data from COVID-19 cases in Chicago (dataset 1).

TABLE 2. Excerpt of hospital capacity data from Chicago (dataset 2).

On the other hand, open data from New York City is
gathered from a unique dataset9 (dataset 3) that includes
daily counts of cases, hospitalisations, and deaths from
COVID-19. It contains 151 rows and 4 columns. An excerpt
is shown in Table 3.

TABLE 3. Excerpt of data from COVID-19 cases in New York City
(dataset 3).

In order to consider data provenance, we automatically add
a new column to each dataset containing its publisher before
processing the data: in dataset 1 and dataset 2 the publisher
is ‘‘City of Chicago’’, whereas ‘‘City of New York’’ is the
publisher of dataset 3. This provenance data comes from the
datasets’ metadata (USAGovernment’s open data portal) and
can be easily obtained through its API.

7https://catalog.data.gov/dataset/covid-19-daily-cases-and-deaths, last
accessed October 2020

8https://catalog.data.gov/dataset/covid-19-hospital-capacity-metrics, last
accessed October 2020

9https://catalog.data.gov/dataset/covid-19-daily-counts-of-cases-
hospitalizations-and-deaths, last accessed October 2020

If a data scientist wants to use this data to get the
COVID-19 positive cases, deaths, and people hospitalised
by day using ventilators, three datasets must be downloaded
and integrated by applying join and union operators (a more
detailed explanation about these operators is provided in the
next section) as follows (see also Fig. 1):

• Dataset 1 and dataset 2 contain data with different mea-
sures that can be joined by the column ‘‘date’’ (result-
ing in a new dataset) in order to have positive cases,
deaths, and hospitalised people using ventilators by day
in Chicago. For example, the 25th of March, there were
367 cases and 5 deaths in Chicago (dataset 1), and
also 79 hospitalised people that used ventilators due to
COVID-19 (dataset 2). All this information is joined in
the same row because they share the same ‘‘date’’, which
is used as a condition for the join operator.

• Union of the previously joined dataset and dataset 3 can
be applied to get the positive cases, deaths, and hospi-
talised persons using ventilators by day in both Chicago
and New York. For example, in order to perform the
union operation, the columns are matched as follows:
‘‘date’’ with ‘‘date’’ (previously considering that a date
format conversion must be done), ‘‘case count’’ with
‘‘cases’’, ‘‘death count’’ with ‘‘deaths’’ and ‘‘hospital-
ized count’’ with ‘‘ventilators’’.Matching these columns
and applying a union operator results in a new table
containing all the rows from the input tables. Fig. 1
shows that the first row of the integrated data comes
from dataset 3, whereas the second row comes from the
previously joined datasets. Additionally, a new column
has been included with information about the publisher
of the data.

Manually obtaining the integrated dataset required in this
example is a time-consuming task for the data scientist. In the
following section, we use this running example to show how
our approach can be useful to save time and effort in integrat-
ing and accessing tabular open data.

III. A MODEL-DRIVEN APIfication APPROACH TO
ACCESS INTEGRATED TABULAR OPEN DATA
This section presents our model-driven APIfication approach
to automatically generate Web APIs to access previously
integrated tabular open data.

Operators considered for handling input tabular data are
union and join from relational algebra. For the sake of sim-
plicity, in this article we borrow these operators from SQL
(the well-known implementation of the relational algebra and
a recognised standard for querying and handling tabular data):

• Union operator is denoted by ∪ symbol in relational
algebra. Given two tabular datasets (A and B), union
operator aims to get a unique dataset that contains rows
that are in A or in B (denoted as A ∪ B). A and B must
have the same columns (number, order, and datatype) to
be computed. Also, each column of each dataset must
refer to the same concept to be meaningful.

VOLUME 8, 2020 202671

C. González-Mora et al.: Model-Driven Development of Web APIs to Access Integrated Tabular Open Data

FIGURE 1. Example of integrating COVID-19 datasets.

FIGURE 2. Automatic open data integration and API generation process.

• Join operator is denoted by FG symbol in relational alge-
bra. Given two tabular datasets A and B, join operator
aims to get a unique dataset that includes every column
fromA and B (denoted as A FGB) and contains rows that
fulfil a matching condition (applied to values of some
columns).

An overview of our approach is shown in Fig. 2. It consists
of two parts:
• Data integration (‘‘Similarity Data’’ and ‘‘Integrated
Open Data’’ boxes in Fig. 2). The first step implies
detecting unionable and joinable tabular datasets from
an open data portal. Our approach uses word embed-
dings [13] to detect which columns from different input
tabular datasets are more likely to be integrated by
using join and union operators. The next step consists
of applying the required join and union operators to get

an integrated tabular dataset. More details are given in
Section III-A. As shown in Fig. 2, prior to this data
integration phase a data profiling is performed in order
to discover data types and to apply type conversions to
homogenise them (e.g. conversion of date formats by
using the ‘‘mm/dd/yyyy’’ pattern), as well as to detect
keys that will be used later to apply the join operator.

• Model-driven transformations to obtain a Web API to
access integrated data, including its interactive OpenAPI
documentation: ‘‘Data model’’, ‘‘OpenAPI model’’,
‘‘OpenAPI documentation’’, and ‘‘Web API’’ boxes
in Fig. 2. From the previously integrated dataset, a Web
API to access this data is generated by means of the fol-
lowing model-driven transformations: (i) a text to model
(T2M) transformation from the integrated data to the
data model; (ii) a model to model (M2M) transformation

202672 VOLUME 8, 2020

C. González-Mora et al.: Model-Driven Development of Web APIs to Access Integrated Tabular Open Data

from the data model to the OpenAPI model; (iii) a model
to text (M2T) transformation from the OpenAPI model
to its OpenAPI documentation; and finally (iv) a text to
text (T2T) transformation from the OpenAPI documen-
tation to the Web API. Therefore, starting from a dataset
containing rows and cells, the system performs a direct
transformation to construct a data model object with row
and cell objects. Then, the data model is transformed to
an OpenAPI model using each cell of the first row as
an API component (method, parameter, and property),
parsing this OpenAPI model object to a standard for-
mat for API documentation. Finally, the complete Web
API is automatically created according to the methods
detailed in its documentation. These model-driven trans-
formations are explained in detail in Section III-B.

A. INTEGRATION OF TABULAR OPEN DATA
As mentioned before, the first part of the process consists
of integrating datasets by means of join and union operators.
The initial step is to determine which columns of the datasets
are similar enough to apply these operations. The following
sections explain in detail how similar columns are detected,
as well as how union and join operators are applied for
integrating tabular data (we specifically focus on CSV files).

1) MEASURING COLUMN SIMILARITY FOR DETECTING
UNIONABLE AND JOINABLE TABULAR DATA
Word embeddings is a Natural Language Processing (NLP)
technique in which words or phrases are mapped to vectors
of real numbers. This mapping is based on the distributional
hypothesis, which states that words that occur in the same
contexts tend to have similar meanings [15]. Word embed-
dings have been shown to capture semantic regularities in
vector space, since the relationship between two word vectors
mirrors the linguistic relationship between those words [13].

In order to determine whether union or join operations
between tabular data can be performed, we have estab-
lished a mechanism based on word embeddings to calculate
the (semantic) similarity of two tabular datasets. Using word
embeddings overcomes the problems of lexical approaches
based on string similarity: terms such as ‘‘city’’ and ‘‘loca-
tion’’ could be considered as being very different in terms
of string matching, but in a word embedding space these two
termsmay be closely related and considered as highly similar.
The similarity mechanism takes as an input a set of tabular
datasets to be compared, returning as a result a JSON file
where all the columns of each dataset are compared with each
other, obtaining a similarity measure for each pair of columns
belonging to different datasets. These column pairs are sorted
in descending order of similarity. This measure serves as
the input to decide whether union or join operators can be
applied to integrate different datasets (see Section III-A2 for
additional information). In order to calculate the similarity
between columns, we take into account two elements of
the tabular datasets: name of the columns and their content
(values) for each row.

The first step consists of normalising these values by
splitting CamelCase and hyphenated words (very common in
column names), removing punctuation, and converting text to
lowercase. After that, the word embedding model is used to
extract two vectors for each column: one represents the name
of the column and the other the content of the column for each
row of data. In those situations where the name of the column
includes more than one word, the vectors representing each
word are averaged to get a single vector. Averaging word
embeddings is one of the most popular methods of combining
embedding vectors, outperforming more complex techniques
especially in out-of-domain scenarios [16]. The same strategy
is applied to the content of the column, where the final vector
is the result of calculating the mean between the vectors of
each of the values contained.

As in previous works [13], we use the cosine similarity
to compute the distance between vectors in the embedding
space:

sim(v1, v2) =
v1v2
‖v1‖‖v2‖

=

∑n
i=1 v1iv2i√∑n

i=1 (v1i)2
√∑n

i=1 (v2i)2
,

where v1 and v2 represent the word embedding vectors of the
name of the columns or the content of the column for each
row, and sim(v1, v2) is a float value in the range [0, 1], where
0 means no similarity and 1 means maximum similarity
between the vectors considered.

If the word embedding model does not provide coverage
for the name of the column or its content (i.e. their tokens
are not in the vocabulary of the model), the Levenshtein dis-
tance [17] is used as a backup strategy to ensure that the sys-
tem always returns a similarity value between columns. This
string metric is based on the number of single-character edits
(insertions, deletions or substitutions) required to change one
string into the other. We applied the normalised edit distance
to obtain values in the range [0, 1], computed as (length −
distance)/length, where distance is the Levenshtein distance
and length is the sum of the lengths of the two strings to
compare.

For each two columns compared, we obtain a similarity
value of the name of the column and a similarity value of
its content. To obtain a single final similarity score of two
columns c1 and c2, we perform a linear combination of these
two values:

sim(c1, c2) = α · sim(cn1, cn2)+ (1− α) · sim(cc1, cc2),

where sim(cn1, cn2) is the similarity of the names of the
columns, sim(cc1, cc2) is the similarity of their contents, and
α is a parameter in the range [0, 1] that weights the relevance
of the two similarity scores in the final result.

2) APPLYING UNION AND JOIN OPERATIONS FOR DATA
INTEGRATION
The similarity measure computed in the previous step is used
to decide whether union or join operations can be applied for
integrating tabular data. Two rules apply:

VOLUME 8, 2020 202673

C. González-Mora et al.: Model-Driven Development of Web APIs to Access Integrated Tabular Open Data

• A join operator can be applied to datasets that have at
least one column (detected as candidate key in the data
profiling) with similarity value higher than a specific
threshold (as explained below). These columns are con-
sidered as key columns in the join operation (several
columns can be detected as key for joining).

• A union operator can be applied to datasets that have
all columns with similarity value higher than a specific
threshold. Columns with similarity below this threshold
can be removed previously. Also, if the majority of
columns are similar, the union operation can be applied
only on these columns omitting the rest of non-similar
columns.

The value of the thresholds mentioned are obtained
empirically considering that: (i) join operation requires key
columns, which are a small subset of columns from the input
datasets (usually one or two); (ii) union operation requires
the same columns to be present in both input datasets. In the
running example, the threshold for join operator was set to
0.95, whereas for union operator was set to 0.75. However,
our approach is flexible and thresholds can be adapted at any
time.

Join and union operators between datasets are automati-
cally applied by dynamically developing and executing trans-
formations with Pentaho Data Integration Java libraries.10

Therefore, after analysing the similarity calculations we can
automatically create a transformation using these libraries
and execute it to obtain the integrated data. This generated
transformation includes the following operations: (i) reading
the datasets to be integrated; (ii) sorting data; (iii) comput-
ing similarity measures to apply join/union operations; and
(iv) save the integrated data to an output file. An excerpt of
the code required is shown in Fig. 3 (the full code is available
at the GitHub repository11).

Regarding the running example, a join operation is per-
formed automatically on the two datasets from Chicago
(dataset 1 and dataset 2) because the similarity of ‘‘date’’
column from COVID-19 cases dataset and the ‘‘date’’ col-
umn from Hospital Capacity Metrics is the highest com-
puted (0.9988) and above the threshold of 0.95. Both ‘‘date’’
columns are selected as key columns for the join operator.
After joining, we obtain a single tabular dataset with data
coming from both datasets (see Table 4). Moreover, after
calculating the similarity between columns from the pre-
viously integrated datasets and dataset 3 from New York,
the similarity obtained is higher than the 0.75 threshold for
the following matching columns: ‘‘case count’’ with ‘‘cases
total’’ (0.8847), ‘‘death count’’ with ‘‘deaths total’’ (0.8724),
‘‘date of interest’’ with ‘‘date’’ (0.8607), and ‘‘hospitalized
count’’ with ‘‘ventilators in use covid 19 patients’’ (0.7793).

10https://www.hitachivantara.com/en-us/products/data-management-
analytics/pentaho-platform/pentaho-data-integration.html

11https://github.com/cgmora12/DataIntegration2API/blob/
7cca3fb915f933a315858ac7ae6e0e1358f7df33/src/table/union/
TableUnion2API.java#L341

FIGURE 3. Excerpt of Java code for generating a join transformation.

TABLE 4. Excerpt of joined dataset from COVID-19 cases in Chicago.

Therefore, a union operation is performed to integrate both
datasets based on these matching columns.

Although a Pentaho Data Integration transformation is
created and executed dynamically by using its corresponding
Java libraries, the transformation for the running example
can be accessed by using the Pentaho Data Integration GUI,
named Spoon, as shown in Fig. 4. It is worth noting that,
by doing this, Spoon capabilities for debugging transforma-
tions can be easily used if required. For example, users could
use Spoon for manually editing joining keys automatically
selected previously by our approach.

FIGURE 4. Example of join transformation auto-generated dynamically.

Once the data is integrated by applying join and union
operators, a Web API is automatically generated to access
these data (Table 5) as shown in the following section. This
process of generating the Web API from the integrated data

202674 VOLUME 8, 2020

C. González-Mora et al.: Model-Driven Development of Web APIs to Access Integrated Tabular Open Data

TABLE 5. Excerpt of the dataset obtained after union operation of the
datasets from COVID-19 cases in Chicago and New York.

is decoupled from data integration itself and can be used
independently. However, at the same time, the required infor-
mation is easily transferred throughout the process thanks to
the model-driven development principles. In particular, after
obtaining the similarity results, the decision on which tables
to perform the union/join operation depends on a threshold.
Although there is a default threshold, users could change it
at the beginning of the data integration process. This deci-
sion does not affect the process of API generation since
only already integrated data, together with other information
stored in the models, are required as an input.

B. MODEL-DRIVEN TRANSFORMATIONS FROM
INTEGRATED DATA TO WEB API
After generating the integrated data, the transformation pro-
cess continues in order to generate aWeb API that offers easy
access to this data. As shown in Fig. 2, this transformation
from the integrated data to the Web API contains a text to
model (T2M) transformation to create a data model, a model
to model (M2M) transformation to generate the documenta-
tionmodel in OpenAPI, a model to text (M2T) transformation
to obtain the complete OpenAPI documentation, and finally
a text to text (T2T) transformation that completes the process
by producing the Web API.

The T2M transformation starts from the integrated open
data, generating the related data model. It consists of a MOF-
based12 model in XMI format according to its metamodel
defined in Fig. 5 by using the Ecore format (actually, the de
facto reference implementation of MOF) from the Eclipse
Modeling Framework (EMF). This metamodel specifies that
tabular data as CSV file contains a name and a set of rows,
which include a position and a set of cells with value and
type. The first row of a tabular dataset, which represents the
column names, is used for the API method, properties, and
parameters; the second row, which contains the data, is used
as example values for each column. Therefore, the integrated
data in a CSVfile is processed by rows, analysing the first two
rows for creating the data model with row and cell objects.

Particularly, in the running example the generated data
model shown in Fig. 6 contains an object ‘‘Table’’, formed by
a set of ‘‘Rows’’ containing many ‘‘Cells’’. The information

12https://www.omg.org/mof/

FIGURE 5. Tabular dataset metamodel.

FIGURE 6. Datafile model in XMI format.

contained in the cells of the first row consists of the column
names, while the cells in the second row contain integrated
data examples about COVID-19. An example of column
name is ‘‘date_of_interest_date’’, which is converted into a
cell in the first row (Row 0 in Fig. 6). This cell, and all
the cells from the first row, will then be used as the name
of an API method, parameter, and property in the subse-
quent transformation steps. On the other hand, an example
value of ‘‘date_of_interest_date’’ is ‘‘02/29/2020’’, which is
converted into a cell in the second row (Row 1 in Fig. 6)
and will be used as an example value in the corresponding
API method, parameter, and property.

Once the data model is created, the M2M transformation is
performed. In this step an OpenAPI model is created from the
data model. This transformation is defined using ATL, one of
themost used languages for model transformations [18], [19].
Using the ATL language we defined a set of transformation
rules (see Fig. 7) that automatically convert the data model

FIGURE 7. Excerpt of ATL transformation rules.

VOLUME 8, 2020 202675

C. González-Mora et al.: Model-Driven Development of Web APIs to Access Integrated Tabular Open Data

FIGURE 8. OpenAPI metamodel.

to the OpenAPI model. Starting with the table object from
the data model, we are able to generate the OpenAPI model
and all the different objects contained in its OpenAPI meta-
model, which has been created by the authors according to the
OpenAPI structure (Fig. 8). The main elements of this Ope-
nAPI metamodel are: the API object containing OpenAPI
information about the version and the URL of the Web API;
the Path object which includes a set of API operations with
their parameters; and the Component object to define the
properties of the API.

The generated OpenAPI model for the running example is
shown in Fig. 9. The ‘‘date_of_interest_date’’ column name
from the running example is converted into a ‘‘Path’’ object
with the pattern ‘‘/date_of_interest_date/
date_of_interest_date’’ including aGET operation, a ‘‘Param-
eter’’ object ‘‘date_of_interest_date’’ that can be used in this
operation, and a ‘‘Property’’ named ‘‘date_of_interest_date’’.

After that, the M2T transformation between the OpenAPI
model and the OpenAPI documentation is carried out. This
OpenAPI documentation of the Web API is represented by
a JSON file according to the standards of Swagger.13 This
JSON file is directly inferred from the OpenAPI model in
XMI format by a simple element to element transformation,
since theOpenAPImodel contains the same elements than the
API documentation. An excerpt of the OpenAPI documen-
tation in JSON format generated for the running example is
shown in Fig. 10. It contains important elements such as API
information, server URL, components of the API, and paths
to obtain the COVID-19 data filtering by different parameters
and properties. The ‘‘Path’’ object ‘‘date_of_interest_date’’

13https://swagger.io

FIGURE 9. Excerpt of the OpenAPI model (XMI).

from theOpenAPImodel is now converted into a JSONobject
inside the ‘‘Path’’ JSON array. This ‘‘date_of_interest_date’’
JSON object also contains more details about the GET oper-
ation and the parameter to filter the information.

Finally, the complete Web API is generated by the
T2T transformation from the OpenAPI documentation. The
T2T process is able to automatically generate the whole Web
API represented by a server in NodeJS.14 This API generation
is performed with the help of the Swagger Codegen tool,15

which helps in the creation of the structure required for
the API, managing the calls to its different methods. Next,
the code for the methods of the API is provided by our
approach, which includes the required features to retrieve and

14https://nodejs.org
15https://swagger.io/tools/swagger-codegen/

202676 VOLUME 8, 2020

C. González-Mora et al.: Model-Driven Development of Web APIs to Access Integrated Tabular Open Data

FIGURE 10. Excerpt of the OpenAPI JSON file.

return the integrated data requested by the data consumers.
To this end, we first developed a base programming code
which is then automatically added to each generated API.
This code is then adapted to the method of the API and the
source dataset, being able to perform the operations to read
the dataset, search and filter specific information, and return
it to the users.

There is a direct relationship between the OpenAPI and
the API to generate: each ‘‘Path’’ specified in the OpenAPI
documentation will result in a different method of the API,
and each parameter will be used by the API for filtering and
returning the results. The structure of the API also contains:
an ‘‘api’’ folder, which includes a Swagger file defining the
structure of the API; the folder ‘‘controllers’’, which includes
the main controller to manage the queries and redirect them to
the default controller to execute the query, get the information
and return it to the user; a ‘‘node_modules’’ folder with
the required libraries to implement the NodeJS server; the
file ‘‘data.csv’’ containing the CSV input data; and a set of
additional files including API information.

The generated Web API can be published in an online
server so that users can query and filter the integrated
data with the desired parameters. Data consumers are also
able to perform API queries using the interactive Ope-
nAPI documentation. This interactive documentation reduces
the possibility of introducing errors such as writing mis-
takes. For example, if data consumers want to query the
API directly and filter the data by a parameter called
case_count_cases_total, they have to specify the
exact parameter taking into account symbols and lowercase.
However, with our interactive documentation data consumers
do not need to write down the parameter since they can just
click on the specific method to filter by the desired parameter.

With regard to the running example, the OpenAPI model
generated contains all the objects with the specific infor-
mation. That is, the different paths and components of the
API to retrieve the integrated COVID-19 data filtering by
different parameters, which are indeed the columns con-
tained in the integrated data. The API of the running exam-
ple is available at https://wake.dlsi.ua.es/IntegrationAPI/,
whereas the corresponding documentation (see Fig. 11) is at
https://wake.dlsi.ua.es/IntegrationAPI/docs/.

When the API from the running example is queried,
the COVID-19 data that fulfils the specified parame-
ters (column values) is retrieved. For instance, a query
that requests the COVID-19 data in date 03/25/2020
is: https://wake.dlsi.ua.es/IntegrationAPI/?date_of_interest_
date=03/25/2020. From this request, the Web API returns
the required information in JSON format. The result obtained
from this query example is the data about COVID-19 in the
date specified, containing the following information:

IV. EVALUATION
This section describes the evaluation carried out on our
approach. We evaluated three aspects of the system: the
word embeddings-based similarity approach for tabular data
integration, the automatic generation of Web APIs to access
integrated data, and the execution time performance of the
entire pipeline.

A. WORD-EMBEDDINGS FOR DISCOVERING JOINABLE
AND UNIONABLE TABLES
This section presents an intrinsic evaluation of the word
embeddings-based similarity approach for tabular dataset
integration. The goal of these experiments is not only
to evaluate the performance of the similarity approach,
but also to identify the best model and parameters to be
used in the subsequent API generation stage (described
in Section IV-B).

VOLUME 8, 2020 202677

C. González-Mora et al.: Model-Driven Development of Web APIs to Access Integrated Tabular Open Data

FIGURE 11. Interactive OpenAPI documentation of the API.

1) EXPERIMENTAL SETUP
In the evaluation carried out, we assimilated the task of
computing similarity of tabular datasets to the task of ad hoc
table retrieval: answering a search query with a ranked list of
tables [20]. In this context, the search query is not a sequence
of keywords but a table itself [21].

Given a set of tables T , the similarity sim(t1, t2) for every
pair t1, t2 ∈ T is computed as:

sim(t1, t2) =

∑i≤n,j≤m
i=1,j=1 sim(c1i, c2j)

|C1||C2|
,

where C1 = {c11, c12 . . . , c1n} and C2 = {c21, c22 . . . , c2m}
are the set of columns of t1 and t2 respectively. Thus, the sim-
ilarity between two tables is computed as the average sim-
ilarity between their columns (calculated using the formula
described in Section III-A1). For a given table, the systemwill
return a ranked list of related tables based on this similarity
measure.

The dataset used to test the approach was developed by
Nargesian et al. [22] and it is publicly available for the eval-
uation of approaches related to tabular data integration. This
database consists of more than 5,000 tables in CSV format
extracted from USA, Canada, and UK open data portals, pro-
viding a ground truth that identifies which columns of a table
match the columns of the other tables. The dataset was built
starting with 32 base tables, which were manually aligned to
identify matching columns. The final set was created by first
issuing a projection on a random subset of columns of a base
table, and then a selection with some limit and offset on the
projected table. The tables contain the name of the columns
and the corresponding content of the cells, comprising text,
numeric, and date values.

Although the word embedding approach is specially suit-
able for textual data, our proposal also provides coverage

for columns containing other data types. First, the name of
the columns are textual data, even if its contents are num-
bers or dates. Thus, the system can return a similarity value
based solely on the column names. Secondly, if the content
of the columns is considered, even though all the possible
numeric values are not represented in the embedding space,
the word embedding models still provide coverage for many
of them. For instance, the fastText model described below
covers 99.90% of the numbers ranging from 0 to 10,000.
This implies that any numeric value used to represent
days, months, or years has a vector representation in the
model.

In order to perform the experiments, a subset of 1,000 tables
was randomly selected. Every table in this subset was used as
a query to the system and compared with all the other tables in
it, obtaining a ranked list of the most similar tables according
to the measure given above. In our experiments, we consider
a returned table to be relevant to a query table if there is at
least one matching column between them in the ground truth
provided.

In this evaluation, we use two pre-trained word embedding
models and one task-specificmodel in order to decide the best
configuration to incorporate in our pipeline:
• Word2vec:16 embedding vectors pre-trained on part of
Google News dataset, comprising about 100 billion
words. The model contains 300-dimensional vectors for
3 million words and phrases [13], although in the exper-
iments presented here only words are considered.

• fastText:17 embedding vectors pre-trained on Wikipedia
2017, UMBC webbase corpus and statmt.org news
dataset, comprising about 16 billion words [23].

16https://code.google.com/archive/p/word2vec/, accessed October 2020.
17https://github.com/facebookresearch/fastText, accessed October 2020.

202678 VOLUME 8, 2020

C. González-Mora et al.: Model-Driven Development of Web APIs to Access Integrated Tabular Open Data

As in the previous case, the vectors are composed
of 300 dimensions.

• WikiTables: task-specific model using skip-gram
Word2vec [24] trained on the Wikipedia Tables cor-
pus, containing 1.6 million Wikipedia relational
tables [25]. The corpus was pre-processed as mentioned
in Section III-A1, splitting CamelCase and hyphenated
words, removing punctuation, and converting text to
lowercase. For every table in this corpus, all the names
of the columns were extracted and treated as an input
document to train Word2vec.18 A second model was
created for the content of the cells. In this case, all the
attribute values in a column were considered as an input
document to train the model. Thus, we have two sepa-
rate word embedding models to calculate the similarity
between names of the columns and the content of the
cells. Again, vectors are composed of 300 dimensions.

In the case of fastText, we also conducted experiments with
a pre-trained model containing subword information, but the
results obtained were worse than the model presented above.
We decided to remove these results from the following section
for the sake of simplicity.

We computed the coverage of each of these models, calcu-
lated as the percentage of tokens in the 1,000 tables bechmark
dataset that has a representation in the model. In the case of
GoogleWord2vec, the coverage for names of the columns and
content of the cells is 83.02% and 78.18% respectively. fast-
Text provides a coverage of 87.69% and 80.91% for columns
and cells. Finally, the coverage of WikiTables is 71.54%
for columns and 78.19% for cells. These values reflect that
fastText is the model offering the largest coverage, whereas
WikiTables provides the lowest results. As mentioned in
Section III-A1, the Levenshtein distance is used as a backup
strategy when a word is not represented in the model.

2) RESULTS AND DISCUSSION
This section reports the precision of top-k table searches at
different k. More precisely, P@10 and P@50 where com-
puted, corresponding to the number of relevant results among
the top 10 and top 50 documents retrieved respectively.
This measure is in accordance with web-scale information
retrieval systems, where thousands of relevant documents are
available but no user will be interested in reading all of them.
The final score is computed as the average precision for the
1,000 queries carried out, one for each table.

The experiments include the three word embeddings mod-
els mentioned above. In addition, we tested a baseline using
BM25 [26], a classical ranking function widely employed by
search engines to estimate the relevance of documents to a
given search query. The implementation of the baseline was
carried out using Apache Solr.19

In order to identify the best value for α, we tested each
embedding model with different values for this parameter,

18https://radimrehurek.com/gensim/models/word2vec.html
19https://lucene.apache.org/solr/.

from 0 to 1 inclusive, in 0.1 increments. In the case of the
baseline, three different queries were employed in Apache
Solr to simulate the ranking experiment done with the embed-
ding vectors: a query that uses only the content of the cells
(equivalent to α = 0.0), a query that uses only the names of
the columns (equivalent to α = 1.0) and, finally, a query con-
taining both (equivalent to α = 0.5). Fig. 12 and Fig. 13 show
the results for Google pre-trained Word2vec (gl), pre-trained
fastText (ft), task-specific Word2vec trained on Wikipedia
Tables (wt), and BM25 (bm).

FIGURE 12. P@50 for each of the embedding models (gl, ft, and wt) and
the baseline (bm).

FIGURE 13. P@10 for each of the embedding models (gl, ft, and wt) and
the baseline (bm).

The results at P@50 show that the three word embed-
dings models perform very close for every α value. The best
result is obtained by Google pre-trained embeddings with
P@50=0.6964 and α = 0.4, which means that the content
of the cells have a higher relevance in the final similarity
score. The other two embedding models reach also its best
performance with α = 0.4. In the case of the BM25 baseline,
it is worth noting that the results using only the content

VOLUME 8, 2020 202679

C. González-Mora et al.: Model-Driven Development of Web APIs to Access Integrated Tabular Open Data

of the cells are significantly lower than the word embed-
dings approaches. These results slightly improve when both
names of columns and content of cells are taken into account
(α = 0.5), but it achieves the best results when only the name
of the columns are considered (α = 1.0), outperforming the
other models.

Results at P@10 are encouraging in terms of the perfor-
mance of the word embeddings models. The best results
(0.9276) are obtained by the fastText model with α = 0.3.
This result improves 7.71% the performance of the baseline.
The comparison between the three embedding models shows
that its performance correlates with the coverage previously
described. This highlights the importance of having a large
enough corpus to properly build an effective word embed-
dings model for this task.

For the end user, the most important aspect is to
improve the precision of the first results obtained by our
approach. Therefore, P@10 is the measure that we should
try to maximise. For this reason, we choose the best per-
forming configuration in this evaluation (fastText model with
α = 0.3) to tune the system for the API generation experi-
ments described in the following section.

The retrieval phase described here was omitted in the
running example, since we started directly having the tables
we wanted to integrate. Nevertheless, we can compute the
similarity sim(t1, t2) between these tables to see how they
would rank in an hypothetical retrieval task such as the one
presented in this section. The similarity between the two
tables from Chicago used in the join operation is 0.2872. This
value reveals that the tables present an average low similarity,
which is an expected result for join operations since most
of their columns are not related. It should be noted that the
formula is computing the similarity between all possible pairs
of columns, which in this case involves 33 and 39 columns for
a total of 1,287 pairs. Following our approach the tables were
considered as joinable since one pair of columns achieved a
similarity value over 0.95 as described in Section III-A2. The
similarity between the resulting joined table (71 columns)
and the New York table (4 columns) is 0.6304, showing
significantly higher similarity than the previous case. The
reason is that the number of column pairs to compare is
lower (284) and there are more related pairs of columns.
Indeed, all the columns in the New York city table presented
a similarity over 0.75 with the corresponding columns in
the Chicago table, resulting in the union of both tables as
established in our methodology.

Although the task proposed in this section is similar to
that defined by Nargesian et al. [22], the results are not
directly comparable. While they try to maximise the per-
formance on their own definition of ‘‘unionability’’ (involv-
ing all the unionable columns of a table), our goal is to
address both union and join operations where tables have at
least one matching column in common. Taking into account
these differences, the authors obtained a P@10 value of
around 0.8 with an approach based solely in word embed-
dings, which improved to about 0.95 when combined with

semantic information from YAGO [27] and the actual set of
values from the tables. Thus, our best result (0.9276) is in a
similar range to those obtained by Nargesian et al. with their
best performing ensemble of features, whereas we are using
only embedding information at this stage.

B. GENERATING WEB APIs FOR ACCESSING INTEGRATED
OPEN DATA
In this section, we provide an evaluation of the approach
for automatically generating Web APIs to access integrated
data. This evaluation measures the quality by considering the
number of correctly generated APIs for a set of input tabular
datasets.

1) EXPERIMENTAL SETUP
We use again the benchmark described by Nargesian et al.
for this evaluation. As mentioned before, this dataset was
generated starting from a set of 32 base tables on which
the authors performed different selections and projections on
various sizes to obtain the final set of 5,000 tables. From this
set of 32 base tables, only 27 were involved in the generation
of the 1,000 random subset used in the previous evaluation
(see Section IV-A). With the aim of aligning both experi-
ments, we focused on these 27 base tables for the evaluation
done in this section.

In order to test the performance of our approach on both
union and join operations, each table was divided into three
subtables by using projection and filtering as reverse opera-
tions of join and union, respectively. The goal of the system
in this experiment is to automatically generate a Web API for
accessing the integration of these subtables by using first join
and then union operations.

Two experiments were conducted either considering
columns names or not when calculating the similarity
between tables. The rationale behind this is to avoid bias
regarding the fact that subtables coming from the same table
have the same column names, and this would not be the
usual situation in a real scenario. Thus, the first experiment
considers only the content of the cells, and the second experi-
ment uses both content and column names for computing the
similarity between tables.

2) RESULTS AND DISCUSSION
The results of the experiments for evaluating the generated
Web APIs are shown in Table 6. The column Original Web
API functions represents the expected functions to be gen-
erated for each of the 27 base tables in the benchmark. The
columns Correctly generated Web API functions indicates
the number of functions that were correctly generated by
our proposal in the two settings proposed: with and without
column names. Precision is defined in this case as the number
of functions of the API generated from the integrated tables
compared to the number of functions offered by the API
from the original tables. In the final results, we consider both
micro-averaged precision (i.e. aggregating the functions of
all the tables to compute the average) and macro-averaged

202680 VOLUME 8, 2020

C. González-Mora et al.: Model-Driven Development of Web APIs to Access Integrated Tabular Open Data

TABLE 6. Results of the Web API generation experiments.

precision (i.e. precision is computed for every table and then
averaged). Macro-averaged precision allows treating all the
APIs generated equally regardless of the number of functions
they have.

The value of micro-averaged precision obtained is 0.76
when column names are not consider. This value rises
to 0.86 when the column names are taken into account in
the similarity measure formula. Macro-averaged precision is
0.74 if column names are not considered and 0.87 otherwise.
In both cases, the use of column names improves the results

as expected, since they are clear cues to identify whether
two columns match in the similarity algorithm proposed. It is
worth noting that using only the content of the cells allows
generating the correct API functions about 75% of the time.

In order to clarify why the system fails to generate the
correct API functions in some situations, we analysed in
more detail the specific case of table 3, where our approach
obtained perfect precision using the names of the columns
but dropped to 0.43 when using only the content of the cells.
This table contains data about ridership from Chicago Transit
Authority.20 The API generated for the original dataset has to
include the 7 functions that are shown in Fig. 14.

FIGURE 14. Functions of the Web API generated to access data
from table 3.

The API automatically generated considering column
names has the same 7 functions, whereas the API generated
using only content of the cells fails to produce the following
4 functions:

/alightings/{alightings}
/boardings/{boardings}
/cross_street/{cross_street}
/on_street/{on_street}

When only the content of the table is considered, the sim-
ilarity algorithm incorrectly matches the columns ‘‘alight-
ings’’ and ‘‘boardings’’ with a value of 0.9996, while the
similarity with the correct column ‘‘alightings’’ is 0.9991.
The reason is that both columns have very similar values as
the concepts are closely related (‘‘boarding’’ means going
into a bus, while ‘‘alighting’’ means going out of the bus),
making it difficult for the algorithm to discriminate between
the two cases.

20https://www.transitchicago.com/

VOLUME 8, 2020 202681

C. González-Mora et al.: Model-Driven Development of Web APIs to Access Integrated Tabular Open Data

TABLE 7. Description of the dataset and execution time performance (in seconds) for the integration and generation processes.

Another example is the column ‘‘cross street’’, which
is incorrectly matched to ‘‘on street’’ with a similarity
of 0.9914, while the similarity with the correct column ‘‘cross
street’’ is 0.9833. Again, the reason is that both columns have
similar values as the concepts are related (‘‘on street’’ refers
to the street where the bus stop is, while ‘‘cross street’’ refers
to the nearest crossing street).

In this situation, when the contents of the cells are very
similar, it is required the use of additional metadata such as
the names of the columns to achieve a good performance in
the automatic generation of the API.

In the case of the running example, using the best configu-
ration (fastText model with α = 0.3) all the API functions
expected were correctly generated for the resulting tables
after join (72 functions, including the publisher column)
and union (5 functions, including also the publisher col-
umn) operations, achieving a perfect precision of 1.00 in this
experiment.

C. EXECUTION TIME PERFORMANCE
This section analyses the execution time performance of the
system proposed, providing a reference on the time required
to carry out the integration and generation processes from a
CSV file, and discussing their implications in a production
environment.

1) EXPERIMENTAL SETUP
In order to evaluate the execution time performance of the
integration and API generation processes, two experiments
were carried out using 10 different CSV datasets.21 These
files were retrieved from different open data platforms, rep-
resenting an heterogeneous set in terms of their size and
nature. The content of the tables includes texts, numbers, and
dates. The amount of rows in the tables ranges from 13 (table
‘‘Salmonella tests’’) to over 21 millions (table ‘‘Emloyee
earnings’’), and from 3 columns (table ‘‘Salmonella tests’’)
to 20 (tables ‘Travel data’’ and ‘‘Voter data’’), resulting in a
minimum of 39 cells and a maximum of 379,304,640. The
specific number of rows and columns for each CSV file is
shown in Table 7.

21Datasets available in GitHub repository: https://github.com/
cgmora12/DataIntegration2API#example-datasets.

The measurement of the execution time of the experiments
was carried out in a desktop computer running Windows 10,
equipped with an Intel i7 processor and 16 GB of RAM.

2) RESULTS AND DISCUSSION
First we evaluated the time elapsed during the integration
process. In this phase calculating the embeddings for each
column of a table is the bottleneck of the task. Once the
embeddings are obtained, computing the similarity between
two tables is reduced to calculate the inner product between
300-dimensional vectors representing their columns, which
can be computed in a minimal time. Thus, in this first exper-
iment we have focused on determining the time taken to
calculate the embedding vectors for each table.

This task is time consuming when the tables have a large
number or rows, since the embedding of each column is
computed as the average of the embeddings of its content.
For instance, in the example table ‘‘Traffic state’’ containing
3,565,683 rows and 4 columns, the process of obtaining the
embedding vectors takes 423.41 seconds in the hardware
setting mentioned above, which can be unsuitable for a pro-
duction environment.

To reduce the time required for this process, we first anal-
ysed to what extent the number of rows could be reduced
without affecting the embedding representation of the table,
taking into account that in many cases columns contain
repeated values that could be removed seamlessly. For each
tablewe randomly choose samples of rows of different sizes22

(ranging from 1 to 20,000 in increments of 10) and obtained
the corresponding embeddings. Then, the similarity measure
sim(t1, t2) defined in Section IV-A1was used to compare how
similar were the reduced version of the table and the full
version containing all the rows. The results of this experiment
revealed that, in all the cases, wewere able to obtain a reduced
version of the table that was 99% similar to the original one
by considering a small sample of the rows.

Table 7 shows the number of rows and the percentage
it represents from the original (column Rows selected) that
was required for each table to exceed the 99% similarity
threshold. For instance, table ‘‘Traffic state’’ contains over
3 million rows, but the reduced version has only 20 rows as

22Except for ‘‘Salmonella tests’’, which contained only 13 rows.

202682 VOLUME 8, 2020

C. González-Mora et al.: Model-Driven Development of Web APIs to Access Integrated Tabular Open Data

a result of having a small number of columns (only 4) and
a large number of repeated values in them. The table that
required a larger number of samples was ‘‘Voter data’’, with
700 rows. In all the cases, the time taken to obtain the
embedding representation of the reduced table was below
one second (column Integration time). For the largest tables
(above 200,000 rows), the percentage of rows kept from the
original was below 0.01%. This value could be established
as a fixed threshold in a production environment to ensure
that the tables can be processed in real time while retaining
(at 99%) their original representation in the word embedding
space.

Regarding the evaluation of the API generation process,
the results presented in Table 7 (column Generation time)
show that the automatic process takes between 9.7 and
80.0 seconds to generate a complete Web API, including
the related models and interactive OpenAPI documentation.
This evaluation was carried out using all the rows in the
tables to identify how this number affects the execution time
of the generation module. If we took the reduced tables of
the previous experiment, where the largest table contains
700 rows, the generation time would be comprised between
9.7 and 10.3 seconds in all cases.

Fig. 15 shows a linear behaviour considering the number
of rows of the tables. The process is able to generate the Web
API and its related components (models and documentation)
in an average time of 16 seconds. The results indicate that,
as the number of rows in the source file increases, the time to
generate the Web API also increases in a ratio of 3 seconds
per million rows.

FIGURE 15. Generation time of the API depending on the size of the
tables.

Regarding the performance of the generated APIs in
returning the results, when the number of rows is really
high (such in the case of ‘‘Employee earnings’’) the API
takes a time similar to the generation performance shown
in Table 7. This situation can be overcome by the pagination
of the results using ‘‘limit’’ and ‘‘offset’’ parameters: ‘‘limit’’
indicates the maximum results to show, whereas ‘‘offset’’

indicates the starting point of results bypassing the records
until the specified offset. This pagination auto-generated by
our APIfication approach optimises the performance of the
API and reduces the time to get the results. With this mech-
anism, APIs are able to return results from datasets of up to
21 million rows in less than 4 seconds. For example, a query
that specifies a limit of 10,000 results to the Web API that
manages the largest dataset (‘‘Employee earnings’’) takes
around 3 seconds to return the results to the browser.

V. RELATED WORK
The following paragraphs summarise the existing related
work. Specifically, we focus on two areas: (i) word embed-
dings for data integration; and (ii) Web API generation for
open data access.

A. WORD EMBEDDINGS AND TABULAR DATA
INTEGRATION
In recent years, word embeddings have enjoyed widespread
use in a variety of semantic tasks in the field of Natu-
ral Language Processing, such as sentiment analysis [28],
machine translation [29], text classification [30], and dialog
systems [31].

Prior works related to tabular data considered word embed-
dings as a means to represent the content of the tables. In the
task of table retrieval, consisting on answering a search query
with a ranked list of tables, Zhang et al. [32] used pre-trained
word and entity embeddings combined with different sim-
ilarity measures to beat a strong learning to rank baseline.
The work by Deng et al. [20] considered different table
elements (caption, column headings, and cells) to train word
embeddings that were utilised in three table-related tasks:
row population, column population, and table retrieval. In a
similar vein, Nargesian et al. [22] defined a semantic measure
based on word embeddings that were trained on Wikipedia
documents. The authors defined natural language domains
and statistical tests between the vectors that were used to
evaluate the likelihood that two attributes were from the same
domain.

In the work presented in this paper, we follow a sim-
ilar approach to previous research using pre-trained word
embeddings, but introducing as a novelty the inclusion of
task-specific embeddings based on a large dataset of tabular
data. More importantly, unlike previous works that treat data
integration as an isolated process, we include this procedure
in a pipeline to automatically generate Web APIs for the
integrated data.

B. WEB APIs FOR OPEN DATA ACCESS
Web APIs are created to make accessing open data easier
for developers. However, this process has been usually done
manually [33], [34] as a time-consuming task.

The automatic generation of APIs has been addressed in
recent studies. EMF-REST [35] is a framework for generating
Web APIs that needs a model of the API to create it, requiring
users to build themodel by themselves since it is not generally

VOLUME 8, 2020 202683

C. González-Mora et al.: Model-Driven Development of Web APIs to Access Integrated Tabular Open Data

available. Another work [36] focused on guiding developers
in creating Web APIs for accessing required data. However,
these approaches are not targeting the access and reuse of
integrated open data coming from different sources.

Other works propose the use of model-driven approaches
for API definitions. The models are used to represent the
Web API definition, offering a better visualisation of the API
operations [37], [38]. Also, the metamodel of the API defini-
tion is used to simplify the transformation between the API
and its definition to include it in the OpenAPI initiative [39].
The API2MoL engine [40] creates bridges between APIs
and model-driven engineering, with the objective of creating
models from the APIs for facilitating the management of a
plethora of APIs.

These model-based approaches for generating Web APIs
can be used to represent and generate the Web API documen-
tation, but they are not employed to generate the whole Web
API to access integrated data as proposed in this paper.

VI. CONCLUSION AND FUTURE WORK
In this paper we have presented an approach to address the
problem of accessing integrated open data from different
sources by using a unique end point. Specifically, we have
proposed an APIfication approach which aims to facilitate
the integration and access to tabular datasets. Our APIfica-
tion approach has two parts: (i) a word embeddings-based
approach that uses column similarity to determine which
datasets can be integrated by using union and join operators;
and (ii) a model-driven approach for automatically generating
a Web API to access and reuse open data in an integrated
manner, as well as the documentation of the Web API to
support users in consuming the integrated data easily through
a Web interface.

In the experiments conducted, the proposed similaritymea-
sure based on word embeddings achieved precision values
over 0.92 in the task of retrieving unionable/joinable tables
given a query table. When this measure was included in the
API generation pipeline, our approach was able to automat-
ically integrate the tables and generate the expected func-
tions with a micro-averaged precision of 0.76 using only
the content of the cells, and 0.86 precision when the names
of the columns were also taken into account. These results
are promising, even more so considering that the whole data
integration and API generation process is fully automated.
The execution time performance experiments revealed that
selecting a small number of rows allowed to obtain the word
embeddings representation for large tables in real time, while
keeping the table representation almost unchanged in the vec-
tor space (99% similarity with respect to the original table).
Additionally, the API generation procedure for tables of more
than one million rows took around 10 seconds to complete,
which makes the whole pipeline suitable for a production
scenario.

As a future work, we plan to extend our approach by
considering more operators for data integration in addition
to union and join. We also plan to develop mechanisms to

guide users in the application of the approach, for example,
by defining GUIs to allow developers to provide semantic
hints about the open data to be integrated. Moreover, we plan
to investigate how metadata coming from the W3C CSV
on the Web Working Group23 can improve our approach,
as well as whether it is a motivation for publishers to properly
describe their tabular open data.

Regarding the similarity module, future experiments are
required in order to determine the best performing combi-
nation of models, i.e. using one model (e.g. Word2vec) to
calculate the similarity between column names and another
one (e.g. fastText) for the content values. The backup strategy
based on Levenshtein distance can also be improved by using
subword embeddings that can handle the problem of out-
of-vocabulary terms, such as the subword version of fast-
Text mentioned before, or models using Byte-Pair Encoding
(BPE) [41]. This approach could benefit the system when
the content of the tables include numbers and dates, as it
provides better coverage than word-based models that could
offer limited representation of numeric values. An interest-
ing path for further research is the use of contextual word
embedding models such as BERT [42] and its derivatives
(e.g. ALBERT [43], RoBERTa [44], and DistilBERT [45]).
These models provide different vector representations for
a term in the embedding space depending on the context
(surrounding terms) where it occurs. They have demonstrated
to achieve state-of-the-art results on a number of language
understanding tasks, including question answering and natu-
ral language inference. Another issue that deserves attention
is the improvement of the WikiTables task-specific model
by gathering additional tabular examples. In the experimen-
tal evaluation we showed that this model offered a lower
coverage than the other pre-trained models, which could be
affecting its performance. Finally, another line of future work
is the combination of the similarity functions provided by
the word embeddings models with traditional information
retrieval ranking functions such as BM25, which demon-
strated to obtain better results than the word embedding
models in those experiments where only the content of the
tables was taken into account.

REFERENCES
[1] M. S. Altayar, ‘‘Motivations for open data adoption: An institutional

theory perspective,’’ Government Inf. Quart., vol. 35, no. 4, pp. 633–643,
Oct. 2018.

[2] H. Dong, G. Singh, A. Attri, and A. El Saddik, ‘‘Open data-set of seven
canadian cities,’’ IEEE Access, vol. 5, pp. 529–543, 2017.

[3] C. Bizer, T. Heath, and T. Berners-Lee, ‘‘Linked data: The story so far,’’ in
Linked Data: The Story so Far, in: Semantic Services, Interoperability and
Web Applications: Emerging Concepts. Hershey, PA, USA: IGI Global,
2011, pp. 205–227.

[4] S. Neumaier, J. Umbrich, and A. Polleres, ‘‘Automated quality assessment
of metadata across open data portals,’’ J. Data Inf. Qual., vol. 8, no. 1,
pp. 1–29, Nov. 2016, doi: 10.1145/2964909.

[5] E. Muñoz, A. Hogan, and A. Mileo, ‘‘Using linked data to mine RDF from
wikipedia’s tables,’’ in Proc. 7th ACM Int. Conf. Web Search Data Mining
- WSDM, 2014, pp. 533–542, doi: 10.1145/2556195.2556266.

23https://www.w3.org/TR/tabular-data-model/

202684 VOLUME 8, 2020

http://dx.doi.org/10.1145/2964909
http://dx.doi.org/10.1145/2556195.2556266

C. González-Mora et al.: Model-Driven Development of Web APIs to Access Integrated Tabular Open Data

[6] Open Data Maturity Report 2019, Publications Office of the European
Union, European Commission, Brussels, Belgium, 2019.

[7] Open Government Data Report: Enhancing Policy Maturity for Sustain-
able Impact, OECD Digital Government Studies (2018), Organisation for
Economic Co-operation and Development, OECD, Paris, France, 2018.

[8] M. Arenas, F. Maturana, C. Riveros, and D. Vrgoč, ‘‘A framework for
annotating CSV-like data,’’ Proc. VLDB Endowment, vol. 9, no. 11,
pp. 876–887, Jul. 2016.

[9] Y. Doi and M. Toyama, ‘‘ToT for CSV: Accessing open data CSV files
through SQL,’’ in Proc. 21st Int. Conf. Inf. Integr. Web-based Appl. Ser-
vices, Dec. 2019, pp. 423–429.

[10] R. J. Miller, ‘‘Open data integration,’’ Proc. VLDB Endowment, vol. 11,
no. 12, pp. 2130–2139, 2018.

[11] A. Halevy, A. Rajaraman, and J. Ordille, ‘‘Data integration: The
teenage years,’’ in Proc. 32nd Int. Conf. Very large data bases, 2006,
pp. 9–16.

[12] D. Abadi et al., ‘‘The seattle report on database research,’’ ACM SIGMOD
Rec., vol. 48, no. 4, pp. 44–53, Feb. 2020, doi: 10.1145/3385658.3385668.

[13] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
26th Int. Conf. Neural Inf. Process. Syst., Lake Tahoe, NV, USA, vol. 2,
2013, pp. 3111–3119.

[14] K. Braunschweig, J. Eberius, M. Thiele, andW. Lehner, ‘‘The state of open
data limits of current open data platforms,’’ in Proc. 21st. WWW Conf.,
2012, pp. 1–6.

[15] Z. S. Harris, ‘‘Distributional structure,’’ Word, vol. 10, nos. 2–3,
pp. 146–162, Aug. 1954.

[16] S. Gupta, T. Kanchinadam, D. Conathan, and G. Fung, ‘‘Task-optimized
word embeddings for text classification representations,’’ Frontiers Appl.
Math. Statist., vol. 5, p. 67, Jan. 2020.

[17] V. I. Levenshtein, ‘‘Binary codes capable of correcting deletions, insertions
and reversals,’’ Sov. Phys. Doklady, vol. 10, no. 8, pp. 707–710, 1966.

[18] J. S. Cuadrado, E. Guerra, and J. de Lara, ‘‘AnATLyzer: An advanced
IDE for ATL model transformations,’’ in Proc. 40th Int. Conf. Softw. Eng.,
Companion Proceeedings, May 2018, pp. 85–88, doi: 10.1145/3183440.
3183479.

[19] A. Srai, F. Guerouate, N. Berbiche, and H. Drissi, ‘‘An MDA approach for
the development of data warehouses from relational databases using ATL
transformation language,’’ Int. J. Appl. Eng. Res., vol. 12, pp. 3532–3538,
2017.

[20] L. Zhang, S. Zhang, and K. Balog, ‘‘Table2 Vec: Neural word and entity
embeddings for table population and retrieval,’’ in Proc. 42nd Int. ACM
SIGIR Conf. Res. Develop. Inf. Retr., Jul. 2019, pp. 1029–1032.

[21] A. Das Sarma, L. Fang, N. Gupta, A. Halevy, H. Lee, F. Wu, R. Xin,
and C. Yu, ‘‘Finding related tables,’’ in Proc. Int. Conf. Manage. Data -
SIGMOD, 2012, pp. 817–828.

[22] F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller, ‘‘Table union search
on open data,’’ Proc. VLDB Endowment, vol. 11, no. 7, pp. 813–825,
Mar. 2018.

[23] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, ‘‘Enriching word
vectors with subword information,’’ Trans. Assoc. for Comput. Linguistics,
vol. 5, pp. 135–146, Dec. 2017.

[24] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation
of word representations in vector space,’’ in Proc. 1st Int. Conf. Learn.
Represent., 2013, pp. 1–12.

[25] C. S. Bhagavatula, T. Noraset, and D. Downey, ‘‘Tabel: Entity linking in
Web tables,’’ in The Semantic Web—ISWC. Cham, Switzerland: Springer,
2015, pp. 425–441.

[26] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and
M. Gatford, Okapi at TREC-3, vol. 109. Gaithersburg, MD, USA: NIST
Special Publication Sp, 1995.

[27] F. M. Suchanek, G. Kasneci, and G. Weikum, ‘‘Yago: A core of semantic
knowledge,’’ in Proc. 16th Int. Conf. World Wide Web - WWW, 2007,
pp. 697–706.

[28] M. Giatsoglou, M. G. Vozalis, K. Diamantaras, A. Vakali, G. Sarigiannidis,
and K. C. Chatzisavvas, ‘‘Sentiment analysis leveraging emotions and
word embeddings,’’ Expert Syst. Appl., vol. 69, pp. 214–224, Mar. 2017.

[29] W. Y. Zou, R. Socher, D. Cer, and C. D. Manning, ‘‘Bilingual word embed-
dings for phrase-based machine translation,’’ in Proc. Conf. Empirical
Methods Natural Lang. Process., 2013, pp. 1393–1398.

[30] M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q. Weinberger, ‘‘From word
embeddings to document distances,’’ in Proc. 32nd Int. Conf. Mach.
Learn., 2015, pp. 957–966.

[31] G. Forgues, J. Pineau, J.-M. Larchevêque, and R. Tremblay, ‘‘Bootstrap-
ping dialog systems with word embeddings,’’ in Proc. NIPS Workshop
Modern Mach. Learn. Natural Lang. Process., vol. 2, 2014, pp. 1–5.

[32] S. Zhang and K. Balog, ‘‘Ad hoc table retrieval using semantic similar-
ity,’’ in Proc. World Wide Web Conf. World Wide Web - WWW, 2018,
pp. 1553–1562.

[33] I. Hopkinson, S. Maude, and M. Rospocher, ‘‘A simple API to the knowl-
edgestore,’’ in Proc. Int. Conf. Developers, vol. 1268, 2014, pp. 7–12.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2878379.2878381

[34] M. Rittenbruch,M. Foth, R. Robinson, andD. Filonik, ‘‘Program your city:
Designing an urban integrated open data API,’’ in Proc. Cumulus Conf.,
Open Helsinki–Embedding Design Life, 2012, pp. 24–28.

[35] H. Ed-douibi, J. L. C. Izquierdo, A. Gómez, M. Tisi, and J. Cabot, ‘‘EMF-
REST: Generation of RESTful APIs from models,’’ in Proc. 31st Annu.
ACM Symp. Appl. Comput. SAC, 2016, pp. 1446–1453.

[36] R. Queirós, ‘‘Kaang: A RESTful API Generator for the Modern Web,’’ in
Proc. 7th Symp. Lang., Appl. Technol., vol. 62, 2018, pp. 1:1–1:15.

[37] H. Ed-douibi, J. L. C. Izquierdo, F. Bordeleau, and J. Cabot, ‘‘WAPIml:
Towards a modeling infrastructure for Web APIs,’’ in Proc. ACM/IEEE
22nd Int. Conf. Model Driven Eng. Lang. Syst. Companion (MODELS-C),
Sep. 2019, pp. 748–752.

[38] H. Ed-douibi, J. L. Cánovas, and J. Cabot, ‘‘OpenAPItoUML: A tool to
generate UML models from OpenAPI definitions,’’ in Web Engineering.
Cham, Switzerland: Springer, 2018, pp. 487–491.

[39] H. Ed-douibi, J. L. Cánovas, and J. Cabot, ‘‘Example-drivenWebAPI spec-
ification discovery,’’ in Modelling Foundations and Applications. Cham,
Switzerland: Springer, 2017, pp. 267–284.

[40] J. L. Cánovas Izquierdo, F. Jouault, J. Cabot, and J. García Molina,
‘‘API2MoL: Automating the building of bridges between APIs and model-
driven engineering,’’ Inf. Softw. Technol., vol. 54, no. 3, pp. 257–273,
Mar. 2012. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0950584911001984

[41] B. Heinzerling and M. Strube, ‘‘Bpemb: Tokenization-free pre-trained
subword embeddings in 275 languages,’’ in Proc. 11th Int. Conf. Lang.
Resour. Eval. (LREC), Miyazaki, Japan, 2018, pp. 2989–2993.

[42] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘Bert: Pre-training of
deep bidirectional transformers for language understanding,’’ inProc. 2019
Conf. North Amer. Chapter Assoc. Comput. Linguistics. Minneapolis, Min-
nesota: Association for Computational Linguistics, 2019, pp. 4171–4186.

[43] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and
R. Soricut, ‘‘ALBERT: A lite BERT for self-supervised learning of
language representations,’’ CoRR, vol. abs/1909.11942, 2019. [Online].
Available: http://arxiv.org/abs/1909.11942

[44] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, ‘‘Roberta: A robustly optimized BERT
pretraining approach,’’ 2019, arXiv:1907.11692. [Online]. Available:
https://arxiv.org/abs/1907.11692

[45] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, ‘‘DistilBERT, a distilled
version of BERT: Smaller, faster, cheaper and lighter,’’ CoRR,
vol. abs/1910.01108, 2019. [Online]. Available: http://arxiv.org/abs/
1910.01108

CÉSAR GONZÁLEZ-MORA is currently pursuing
the Ph.D. degree with the Web and Knowledge
Research Group, Department of Software, Uni-
versity of Alicante, Spain. His research interests
include open data, Web augmentation, and the
semantic Web and application programming inter-
faces. His work is funded by a contract with the
Generalitat Valenciana of Spain and the European
Social Fund for predoctoral training.

DAVID TOMÁS is currently a Lecturer with the
Department of Software and Computing Systems,
University of Alicante, Spain. He is the author
of more than 70 scientific publications in inter-
national conferences and journals. He has par-
ticipated in over 20 public and private projects,
including EU-funded QALL-ME, FIRST, and
SAM projects. His research interests include
information retrieval, knowledge representation,
information extraction, question answering, sen-

timent analysis, recommender systems, log analysis, and machine learning
approaches to text categorisation.

VOLUME 8, 2020 202685

http://dx.doi.org/10.1145/3385658.3385668
http://dx.doi.org/10.1145/3183440.3183479
http://dx.doi.org/10.1145/3183440.3183479

C. González-Mora et al.: Model-Driven Development of Web APIs to Access Integrated Tabular Open Data

IRENE GARRIGÓS is currently an Associate
Professor with the Department of Software and
Computing Systems, University of Alicante,
Spain. She is also the Head of theWeb and Knowl-
edge Research Group, University of Alicante. Her
research interests include open data, Web augmen-
tation, Web modeling languages, personalization,
and application programming interfaces.

JOSÉ JACOBO ZUBCOFF presents a wide teach-
ing and research experience in the field of statis-
tics, data mining, and its application to biology.
He has more than 100 publications in which he has
dealt with obtaining knowledge from a data source.
He has done research in various fields of science,
both in computing, biology, medicine, education,
and social sciences. In addition, he has directed
and participated in more than 20 competitive pub-
lic projects financed by the Ministry of Economy

and Competitiveness, the Generalitat Valenciana, the University of Alicante,
and European and private projects, all of them contributing his knowledge
about data analysis, data mining, and aiming at the democratization of
knowledge.

JOSE-NORBERTO MAZÓN is currently an Asso-
ciate Professor with the Department of Software
and Computing Systems, University of Alicante,
Spain. He is the author of more than 100 scien-
tific publications in international conferences and
journals. His research interests include open data,
business intelligence in big data scenario, design
of data-intensive Web applications, smart cities,
and smart tourism destinations. He is also the
Chair of the Torrevieja’s Venue of the University
of Alicante.

202686 VOLUME 8, 2020

